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Abstract: This paper relates to the separation of single channel source signals from a single mixed
signal by means of independent component analysis (ICA). The proposed idea lies in a time-frequency
representation of the mixed signal and the use of ICA on spectral rows corresponding to different
time intervals. In our approach, in order to reconstruct true sources, we proposed a novelty idea of
grouping statistically independent time-frequency domain (TFD) components of the mixed signal
obtained by ICA. The TFD components are grouped by hierarchical clustering and k-mean partitional
clustering. The distance between TFD components is measured with the classical Euclidean distance
and the β distance of Gaussian distribution introduced by as. In addition, the TFD components are
grouped by minimizing the negentropy of reconstructed constituent signals. The proposed method
was used to separate source signals from single audio mixes of two- and three-component signals.
The separation was performed using algorithms written by the authors in Matlab. The quality of
obtained separation results was evaluated by perceptual tests. The tests showed that the automated
separation requires qualitative information about time-frequency characteristics of constituent signals.
The best separation results were obtained with the use of the β distance of Gaussian distribution,
a distance measure based on the knowledge of the statistical nature of spectra of original constituent
signals of the mixed signal.

Keywords: independent component analysis; single channel source separation; audio unmixing;
clustering; sensors

1. Introduction

Blind signal separation (BSS) is one of the areas of blind signal processing (BSP), a rapidly
developing and very promising field of signal processing. The term “blind” refers to the fact that
BPS methods make it possible to separate source signal from mixed signals without the aid of any
information or training data. These methods have numerous applications in many research fields,
including medical imaging and engineering [1–4], image processing and speech recognition [5,6]
and communication systems [7], as well as astrophysics [8]. In audio engineering, besides speech
recognition, BSS can also be used for automatic transcription or speech and musical instrument
identification [9].
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One of the BSS methods is independent component analysis (ICA) [10], which has gained
popularity in a wide range of applications due to its conceptual simplicity and results quality.
The ICA technique is a method that uses linear transformation to find statistically independent
components from multidimensional mixed data (mixed multichannel signals), assuming that the source
signals are statistically independent too. Examples of such multichannel data are audio or vibration
signals generated by microphones or vibration sensors recording signals from different measurement
points. Standard ICA consists in finding the extreme value of the cost function describing statistical
independence, which means that the obtained components will be maximally statistically independent.
The efficiency of ICA depends on the cost function selection and the employed optimization strategy [10].

Standard ICA makes use of a multichannel signal, with the number of channels n (the number
of microphones or sensors) not being lower than the number of source signals p. ICA consists in
calculating statistically independent components (source signals) s1, . . . , sp and a p× n mixing matrix A
for n ≥ p only based on n values of observed signals (signals generated by microphones or sensors)
x1, . . . , xn. A standard linear ICA model has the form of Equation (1):

x = As (1)

where x = (x1, . . . , xn)
T is a vector of observed signals, s =

(
s1, . . . , sp

)T
is a vector of source signals,

A is an n× p mixing matrix (Figure 1). The separation problem is solved by ICA as Equation (2):

ŝ = Wx = WAs (2)

where ŝ = (ŝ1, . . . , ŝn)
T is an estimation of s and matrix W is an estimation of the inverse of A called

filtration matrix. When n = p, the filtration matrix W belongs to the general linear group Gl(n) of
non-singular matrices det(W) , 0.
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Usually, the computational complexity of ICA is reduced at the pre-processing stage by so-called
whitening the observed signal, which yields a signal z = Bx = BAs, where B is the whitening matrix
characterized by unitary variance and decorrelation Cz = E

(
zzT

)
= I. Assuming that for source signals

Cs = I we obtain Equation (3):

I = Cz = E
(
zzT

)
= BAE

(
ssT

)
(BA)T = BA(BA)T (3)

This shows that (BA)T = (BA)−1, or BA, is an orthogonal matrix (transformation from s to z
takes place via an orthogonal matrix BA). Therefore, if ŝ = QTz = QTBAs = Us, then the matrix
U = QTBA is a permutation matrix, and thus a new filtering matrix Q (after whitening) must also
satisfy the orthogonality condition. The solving of the ICA task (when n = p) is therefore reduced to
an optimization on the orthogonal group O(n) or the special orthogonal group SO(n) when compared
to the original optimization problem on the group Gl(n) (matrices W only satisfying the invertibility
condition det(W) , 0). This is connected with a reduction of the degrees of freedom in the problem

containing n2 for the matrix W ∈ Gl(n) on n(n+1)
2 for the matrix Q ∈ SO(n).
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Standard ICA is based on the assumption that the number of source signals si is known and equal
to the number of observed signals xi, i.e., n = p. Still, the ICA estimation can also be performed for a
more general case, i.e., when the number of estimated sources p is unknown. In this case, it is possible
that n , p. When n < p, i.e., when the number of observed signals is lower than that of source signals,
we are dealing with over-complete ICA bases, but when n > p we are dealing with under-complete
ICA [11,12]. From a mathematical point of view, such problem can be considered an unconstrained
optimization on the Stiefel manifold [13–17].

Many ICA-based methods were used to separate mixed signals [18–21]. In audio engineering,
observed (mixed) signals usually have the form of double channel (stereophonic) or single channel
signals. In the case of a single channel signal, which is an “extremely over-complete” ICA model,
Equations (1) and (2) cannot be directly employed. In the case of a stereophonic signal, which is
known as the problem of under-complete ICA (n < p), differences between channels in intensity and
phase of the signals are used for demixing [22–25]. Wang and Brown [26] introduced a perceptually
motivated technique known as the computational auditory scene analysis (CASA) for single channel
separation. Nevertheless, it must be emphasized that the effectiveness of such methods is limited
and thus some additional a priori information about source signals is required. Most studies in this
field are devoted to the extraction (separation) of speech signals [27,28], a commonly used approach
is the so-called the W-disjoint orthogonality of signals that assumes their non-overlapping in the
time-frequency plane [25,29,30]. Jang and Lee [20] proposed a single channel separation method that
use the basis signals obtained by learning the probabilistic properties of sources [31]. Taghia and
Doostari [32] used band-wide decomposition of mixed signal components and used ICA for signals
mixed in time domain. Davies and James [33] proposed the Single Channel ICA (SCICA) method which
is also based on the time domain. In [19] Casey used a single channel separation method that is based
on the use of spectrograms of observed signals. In this method, the time-frequency representation
of a signal (spectrogram) is treated as a multichannel observed signal and can this be separated by
ICA. ICA-obtained statistically independent time-frequency components are then grouped by the
Kullback–Liebler measure in order to reconstruct source signals. A similar albeit less complicated
approach was adopted by Barry et al. [21]. They separate two signals by using only two spectrogram
rows (spectrogram matrix) separated by 330 ms assuming additionally that spectrum of the signals
was stationary over this time. A similar approach was taken by Wang and Plumbley [34]. They
employed the nonnegative matrix factorisation (NMF) method on the Short Time Fourier Transform
(STFT) representation of a single channel observed signal. Their algorithm, however, required the use
of an additional training data. In [35], Mijovic employed both wavelet transforms and a combination
of empirical mode decomposition (EMD) and ICA for ECG signals decomposition. Methods based
on spectral representation of the observed signal are usually known as spectral decomposition-based
methods. In [36] Litvin et al. used the bark scale aligned wavelet packet decomposition (BS-WPD)
instead of the Fourier transform and at the stage of separation they use the Gaussian mixture model
(GMM). In [37], Duan proposed a combination of various single channel separation methods, including
some elements of the CASA, spectral decomposition based techniques and model based methods.
An excellent overview of single channel source separation methods can be found in [38,39].

The paper is organized as follows. In Section 2 the proposed method of separating single-channel
signals is described. There we present subsequent stages of the process and define distance measures
used in the method. In addition, the use of linear ICA to solve this type of problem is also explained.
In Section 3 the proposed procedure is used to signal source separation of two- and three-component
mixed signals, and the quality of obtained separation is discussed in the context of the signal variance
used in the analysis. Section 4 presents the results of an auditory test carried out on separated signals.
Section 5 discusses the problem of computational complexity of the proposed method and offers a
comparative analysis with other simple single-channel separation methods. The results of the analysis
are presented in both quantitative and qualitative form. Finally, in Section 6 (Conclusions) the obtained
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separation results are summarized with respect to the impact of the number of source components, the
spectral type of sources, as well as the impact of the signal variance used in the analysis.

2. Model Definition and Procedure

The proposed concept involves the use of ICA for the time-frequency t-f representation
(spectrogram) of a single-channel observed signal. The representation of signal in the form of a
spectrogram is actually a non-linear transformation (quadratic transformation). In this case, the use of
non-linear BSS (non-linear ICA) would be appropriate. It is well known that nonlinear ICA is a difficult
problem and it is generally impossible to identify unambiguously true sources [40,41]. However,
under certain conditions linear ICA can be used to solve nonlinear BSS. The theoretical conditions
for the use of a linear encoder, i.e., cascade PCA and linear ICA to solve a non-linear problem and
reconstruct of real independent sources, are presented in [42]. Solutions are asymptotically achieved
when the number of sources is high, and the numbers of inputs m (mixed signals) and non-linear
bases m f are large relative to the number of sources ns. In our approach, this condition is satisfied, i.e.,
ns = 2 or 3� m f = m, which means that the use of linear ICA is justified in this case.

To this end, the time signal xmix(t) was analysed by the Short Time Fourier Transform (STFT) in
compliance with Equation (4):

xmix(t)
STFT
→ STFTmix (4)

where STFTmix is the m× n complex matrix of t-f containing in m-rows instantaneous signal spectra
(m is the number of STFT time frames). The input data for ICA is a spectrogram (autospectrum)

of the signal TFDmix =
∣∣∣STFTmix

∣∣∣2 [43,44]. The rows of the TFDmix matrix are treated as individual
channels in a multichannel signal. By applying the ICA on this multichannel signal, we obtain spectral
components zi of the t-f representation of a single channel signal which are statistically independent.
The following relation holds between a TFDmix and matrix Z = (z1, . . . , zm) a matrix of statistically
independent spectral components as seen in Equation (5):

TFDmix = T·Z =
∑

i

tizi =
∑

i

TFDi (5)

where T is a m× n mixing matrix, ti is an i-th column of T, zi is an i-th row of Z, TFDi = tizi is an i-th t-f
component of a mixed one-channel signal.

Throughout this paper, the components zi are called spectral bases whereas the columns of T
describing time variation of zi are called time bases and denoted by ti. The matrix TFDi, which is the
product of the time basis ti and the spectral basis zi, is called i-th t-f component. By an appropriate
grouping of TFDi bases into subgroups generating constituent components of the mixed signal, this
mix can be decomposed into p components (for comparison, see Equation (1)) using Equation (6):

TFDmix =
∑

i

TFDi =
∑

j1

TFD j1 +
∑

j2

TFD j2 + . . .+
∑

jp

TFD jp (6)

where j1, . . . , jp are p index sets obtained by grouping TFDi bases.
In [45,46], the single channel signal decomposition was done by the grouping of time bases ti and

frequency bases zi.
For practical reason, to reduce computational complexity, it is convenient to only use the TFDi

bases which “carry” a specified variance of the mixed signal. Assuming that in the analysis we use
σ(TFDαmix)
σ(TFDmix)

= α ∈ (0, 1] of signal variance, Equation (5) has the following form in Equation (7):

TFDαmix =
∑

iα

TFDiα (7)
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where the index iα = (1, . . . , k), k ≤ n corresponds to the number of TFDi bases “carrying” α variance
of the mixed signal. The selection of α determines the number iα of TFDi bases that are subsequently
used in ICA estimation. These bases span a subspace TFDαmix of the primary TFDmix which is
maximally energetic.

The grouping of bases is, in fact, a clustering process, i.e., collecting elements into clusters [47,48].
Clustering results depend on many factors, such as the employed distance measure and clustering
algorithm. The distance between base components can be defined in many ways. The selection of
a given distance measure type depends on many factors, including the frequency composition of
signals, degree of overlapping of signals in time and frequency, the required quality of separation and
frequency-related similarity of constituent signals of the mix. In the present experiment, two types
of grouping were applied. The first was based on the use of clustering algorithms (hierarchical and
k-mean clustering), while the other involved the maximization of negentropy of separated components.
ICA-based single channel separation methods primarily use component grouping based on similarity
in time or frequency domain. We suggest the use of a time-frequency structure to measure the similarity
features in both time and spectral domain. We cluster the (TFD)ˆi bases using two types of distance
between TFDi bases, i.e., the classic Euclidean distance DEuk and the distance Dβ, which we call in this
study as the β distance of Gaussian distribution. The Euclidean distance DEuk is defined as Equation (8):

DEuk(i, j) =
∣∣∣∣∣∣TFDi

− TFD j
∣∣∣∣∣∣2 (8)

where ||·|| denotes the Frobenius norm. The generalized Gaussian distribution is expressed by
Equation (9) [49]:

p(y
∣∣∣µ, σ, β) =

ω(β)

σ
exp

−c(β)
∣∣∣∣∣ y− µ
σ

∣∣∣∣∣2/(1+β)
 (9)

where µ, σ are the expected value and the standard deviation of a random variable y, respectively.
The parameter β ∈ [−1, 0] describes the type of a random variable y, i.e., its deviation from normal
distribution. The parameters ω(β) and c(β) are defined by Equations (10) and (11):

ω(β) =
Γ
[

3
2 (1 + β)

]1/2

(1 + β)Γ
[

1
2 (1 + β)

]3/2
(10)

c(β) =

Γ
[

3
2 (1 + β)

]
Γ
[

1
2 (1 + β)

] 
1/(1+β)

(11)

where Γ is the Gamma-Euler function.
By treating a signal spectrogram as a random variable one can describe its distribution in parametric

terms, i.e., it is possible to estimate the parameters µ, σ, β based on the model in Equation (9). When
the source spectrograms are known, we can find the parameter βi,org. The Dβ distance is defined as
the difference between βi,org and the parameter βi characterising the spectrogram of a constituent
signal reconstructed after grouping TFDrec,i =

∑
ji TFD ji (index ji was defined in Equation (6)) in the

following way in Equation (12):
Dβ =

∣∣∣βi,org − βi(TFDrec,i)
∣∣∣ (12)

By minimizing the Dβ distance for individual constituent signals one can group TFDi bases
so that the reconstructed signals are statistically as close as possible to the original signals. The βi
parameter we estimated by a posteriori determination of the maximum of β. When observations of the
random variable y =

{
y1, . . . , yN

}
are available the a posteriori distribution of the β parameter is given

by Equation (13) [10,18]:
p(β

∣∣∣y) ∝ p(y
∣∣∣β)p(β) (13)
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where p(y
∣∣∣β) = ∏

N
ω(β)
σ exp

[
−c(β)

∣∣∣ yN−µ
σ

∣∣∣2/(1+β)
]

denotes a data likelihood [18] and p(β) is an a priori

distribution of the β parameter. The study [18] offers practical recommendations (solutions) for
calculating the p(β) distribution.

The other way of grouping TFDi bases consists in maximizing negentropy (negative entropy)
of reconstructed constituent signals TFDrec,i. Statistically independent constituent signals have the
maximum negentropy [10,50]. By finding of reconstructed constituent signals TFDrec,i =

∑
ji TFD ji

with the maximum negentropy, we group the TFDi bases in a correct way. The negentropy function
J(y) was approximated as Equation (14) [10]:

J(y) ∼ [E(G(y)) − E(G(ν))] (14)

where ν is the normalized Gaussian random variable (µ = 0, σ = 1) and G(·) is a nonlinear function of

the random variable usually having the form G(y) = 1
a log cos h(ay), a ∈ (1, 2) or G(y) = − exp

(
−

y2

2

)
.

This type of approximation has numerous advantages including conceptual simplicity and rapid
calculation rate [10]. As a result, it is very often used as a cost function in algorithms for solving ICA
problems [51].

3. Experiment

The proposed idea of single channel separation was verified by experimental tests. The experiments
involved demixing single-channel signal consisting of two and three constituent signals. The constituent
signals S1(t), S2(t) and S3(t) were selected so that their spectral composition and their respective types
of sources were different. The S1(t) signal (“ringer”) was generated by an electric device and was a
recording of an electric ringer, while the S2(t) signal (”baby”) was a baby cry, which means that it had a
specific stochastic variation of the spectre, as do all sounds generated by living beings. The S3(t) signal
(“tom”) was a sound generated by a percussion instrument and, as such, was a typical impulsive signal.
The above constituent signals were mixed in the following combinations: S2mix(t) = S1(t) + S2(t) and
S3mix(t) = S1(t) + S2(t) + S3(t). The signals were recorded at the sampling frequency Fs = 8 kHz and
their duration was 1.2 s. Mixed single channel signal was transformed to the frequency domain using
the STFT. We use blocks 256 samples long, 50% overlapped. The t-f analysis was performed in two
separate blocks of 3968 and 5888 samples corresponding to the time intervals of 0–0.51 s and 0.51–1.2 s,
respectively, in order to ensure higher stationarity of signal spectra in individual blocks. We used full
signals of 9856 samples to determine the Dβ distance. Figure 2 shows the spectrograms of constituent
signals S1(t) and S2(t), with the spectrogram on the left showing the S1(t) signal (“ringer”) and the
spectrogram on the right showing the S2(t) signal (“baby”).

The STFT-generated spectrogram of TFD2mix (bottom diagram in Figure 2) was treated as a
multichannel signal and estimated by ICA. This was done using the FastICA Matlab function algorithm
based on [14]. Signal whitening was performed by singular value decomposition (SVD) using the Matlab
function svd. ICA-generated statistically independent spectral bases zi, time bases ti and time-frequency
bases TFDi for the variance α = 0.85 of the input signal are shown in Figures 3–5, respectively.

For all TFDi shown in the Figure 5 the ordinate axes scales range 0–129, which corresponds to the
frequency range 0–4 kHz. The time scale range 0–30 corresponds to the range 0–0.51 s. A comparison
of the obtained TFDi bases in Figure 2 reveals that bases 4, 7, 11 belong to the spectrogram of the S1

signal (ringer). Both this figure and some subsequent figures show the ICA results made in the first
sample block (from 0 to 0.51 s).
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The clustering was performed by hierarchical [48] and k-mean partitional clustering [52] using
two standard Matlab functions: dendrogram and kmeans. Figure 6a shows the separation results
obtained with the Euclidean distance between TFDi components and a dendrogram obtained by
hierarchical clustering. Figure 6b illustrates the “distances” between TFDi components obtained by
multidimensional scaling [53]. Ellipses correspond to components collected in the dendrogram shown
in Figure 6a. By summing the TFDi components grouped in Figure 6b and shown as green and black
ellipses, we obtain spectrograms of two separated components seen in Equation (15):

TFD1 =
∑

j1=1,2,3,4,6,7,10,11,13
TFD j1

TFD2 =
∑

j2=5,8,9,12
TFD j2 (15)

Figure 7 shows the reconstructed spectrograms of TFD1 and TFD2 components. Figure 8 shows
the results of separation obtained by maximizing the negentropy of components TFD1 and TFD2.
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Figure 8. Reconstructed spectrograms (spectra) of TFD1 and TFD2 components obtained by minimizing
the negentropy of TFD1 and TFD2 components. TFD1—ringer, TFD2—baby: (a) results for the time
interval of 0.00–0.51 s, (b) results for the time interval of 0.51–1.20 s.

An analysis of the data in Figure 9 demonstrates that the separation is effective yet it depends
on the length and the variance (parameter α) of the analysed signal, and hence on the number of
obtained TFDi bases. The lower the number of these bases is, the more effective the grouping results
are obtained. Nevertheless, a decrease in the variance α results in a reduced quality of reconstruction
spectrograms. The quality of separation is considerably lower for the variance α = 0.7 of the mixed
signal, which is manifested in the interpenetration (interference) of spectra of the constituent signals.
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Figure 9. Reconstructed spectrograms (spectra) of TFD1 and TFD2 components obtained by k-mean
partitional clustering and the β distance of Gaussian distribution. TFD1—ringer, TFD2—baby. The
results were obtained for the variances (a) α = 0.7 and (b) α = 0.8, respectively, and the signal duration
of 1.2 s.

Figure 9 shows the results of clustering process with β distance of Gaussian distribution Dβ. As
it results from the presented Figure 9 results of the separation seems to be efficient. They depend
however on the length of the analysed signal and the used variance value of the analysed signal
(parameter α) and therefore on the number of received TFDi bases. The smaller the number, the better
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the grouping results. However, lowering the value of variance α also causes a reduction in the quality
of spectrogram reconstruction. The quality of separation is significantly worse when using α = 0.7
variance of the mixed signal, which is manifested by the interpenetration (interference) of spectra of
the signal components.

We used our method for the demixing a single-channel signal consisting of three component signals
S3mix(t) = S1(t) + S2(t) + S3(t). The spectrogram of the mixed signal as well as the spectrograms of
its constituent signals were shown in Figure 10. Like in Figure 5 the scales range 0–129 for all TFDi

corresponds to the frequency range 0–4 kHz. The time scale range 0–30 corresponds to the range 0–0.51
s. Statistically independent TFDi bases are shown in Figure 11. One can notice a sharp similarity
between TFDi bases and the constituent sounds of the TFDi mixed signal. To give an example, TFD1,
TFD2, TFD8 are ringer sounds, TFD5, TFD7 and TFD9 are tom sounds, while other bases are baby
sounds. Hence, at the clustering stage, the TFDi bases were grouped into 3 classes (clusters) by k-mean
partitional clustering. Figure 12 shows the results of separation of a three-component signal.
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4. Perceptual Evaluation

For each of the decomposition versions presented in Section 3, the inverse STFT for every separated
TFDi was used. The proposed separation method has been implemented in Matlab. The inverse STFT
involved reconstructing time signals based on the spectrograms of separated TFDi bases. Given that
such transformation is only based on amplitude information (spectrograms do not contain phase
information), the time signals were additionally burdened with the error of “imprecise” invertibility of
the STFT. In order to eliminate the effect of “imperfect” invertibility of the STFT (phase distortion), the
reference signal’s sounds of the mix were also re-synthesized with zero phase. The RMS values of all
separated and reference signals were normalised. All sounds were Microsoft Windows system sounds
and were resampled to 8 kHz.

For the purpose of the test, 9 pairs of reference (original) and separated sound were prepared.
These pairs are called “samples”. We generated 5 sets of samples (one set per every listener), each
containing 9 samples. Sequence of samples was random and different in each set. The samples
were separated by 3 to 4 s of silence. Each of five participants listened to five sets of samples. The
participants included one sound engineer, two instrumental musicians and two individuals not related
to music. Every listener listened to samples at the same loudness (over 80 dBA) over the AKG K271
closed-back (studio) headphones in studio room. Degradation category rating scale [54] was used to
rate the quality of separation by the listener. The original five-point scale was extended to six-point,
as suggested by the listeners. A score of 1 means “very distorted” while a score of 6 means “inaudibly
distorted”. Before the final test, each listener underwent a short training session.

Table 1 gives the scores (mean values and standard deviations) of perceptual quality of separation
with β distance of Gaussian distribution Dβ and the Euclidean distance for TFDi components. Table 2
shows the impact of the mixed signal variance used (α = 0.7 or α = 0.9) on the perceptual quality
of separation.

Table 1. Results of test in the form of mean scores and standard deviations for each sound obtained
with the Euclidean distance and the β distance of Gaussian distribution Dβ for TFDi bases.

Euclidean Distance β Distance

baby mean = 2.4400; σ = 0.9025 mean = 3.4160; σ = 1.1158
ringer mean = 3.1200; σ = 1.0375 mean = 4.4480; σ = 0.9875
tom mean = 2.5333; σ = 0.6644 mean = 3.0500; σ = 0.7961

Table 2. The impact of the mixed signal variance used on the perceptual quality of separation.

Measure of Distance
“Ringer” “Baby” “Tom”

α = 0.9 α = 0.7 α = 0.9 α = 0.7 α = 0.9 α = 0.7

β distance 5.00 4.36 4.32 3.04 2.75 2.14

Euclidean distance 3.44 4.00 2.44 2.64 2.42 1.63

The best results were obtained for the separation performed with the use of the β distance. The
ringer sound was most efficiently unmixed for every mixed signal type and distance measure. The
results of the baby sound are worse. The tom sound was the most difficult to separate. These results
demonstrate that the proposed method is the most effective for signals (sounds) with a quasi-stationary
signals with harmonic spectrum (ringer) and the least effective for non-stationary signals with a
noise-like spectrum (tom). The quality of separation is higher when the variance α of the mixed
signal is higher (Table 2) and, as expected, when separating from two-component mixes. In this case,
specifically, the results are 0.5 points higher on the average.
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5. Computational Complexity and Comparison Analysis

In this section, we evaluate the computational complexity of the proposed methods and compare
our results with those obtained by other simple single-channel source separation methods. Our
approach consists of five stages of processing: transformation of the time signal into a spectrogram,
ICA stage with whitening as pre-processing, calculation of distance measure, grouping and inverse
transform to the time domain. We consider the approximate number of floating point operations
(flops). The code is implemented on a 2.8 GHz (CPU), 8 GHz (RAM) platform. At the transformation
stage, we employ STFT with the FFT algorithm which is a very effective method because it involves
overall 2n(log22n) (only the most significant terms are retained) flops for the time window (time
segment), where 2n is the number of samples in the time window used in STFT. Using the big O
notation, the computational complexity of this stage is O(n(log2n)). In the ICA stage, we used the
Singular Value Decomposition (SVD) as pre-processing which involves O

(
mn2

)
flops, where m is the

number of time segments used in STFT stage. At the SVD sub-stage, we reduced the dimension of the
analysis based on the desired signal variance value α. In the ICA stage, we used the FastICA algorithm
which is a very effective algorithm and requires only 2(mα + 1)n [55] per iteration, where mα < m is a
dimension of ICA reduced in the SVD sub-stage. This means that the approximation of complexity
in the ICA stage is of order O(mαn). In the stage of calculating the distance between the TFDi bases
we used two types of distances: the classic Euclidean distance DEuk and the distance Dβ, that require

approximately O
((

mα

2

)
·m2
αn3

)
and O(m3

αn2) flops, respectively. In the clustering stage, we used the

hierarchical clustering algorithm (single-linkage type) or the k-mean algorithm. Both algorithms have
computational complexity of order O((mmαn)2) [48] but it includes the complexity of distances DEuk
and Dβ calculating as the main stage of clustering process. At the inverse transform stage, we used
IFFT algorithm which requires, similar to FFT, O(n(log2n)) flops.

In order to compare our method with others solutions, we additionally carry out single-channel
separation using the method proposed in [19] and the method based on analysing the similarity of
time bases ti which are called here as TFD-SCSS, KL-SCSS and T-SCSS, respectively. In the KL-SCSS
method, the Kullback–Leibler distance (symmetrical Kullback–Leibler divergence) is used as a measure
of distance for the spectral bases zi. In the T-SCSS method we use the Euclidean distance for time bases
ti. Separation efficiency is measured using the root mean square error indicator (RMSE) compared to
the original sources. Considering the spectrograms of the original TFDi

org, i = 1, 2, . . . , ns sources and
separate TFDi, i = 1, 2, . . . , ns sources, the RMSE is calculated as:

RMSE =

√√√√√√∑
i
∑

k,l

(
TFDi

org(k, l) − TFDi(k, l)
)2

∑
i
∑

k,l

(
TFDi

org(k, l)
)2 (16)

where k, l are the row and column indices of the TFDi
org and TFDi indices.

The same set of source and mixed signals as in the auditory tests (Section 4) as well as the same
analysis parameters are used in the comparative analysis. Table 3 presents the average results of the
RMSE index for four combinations of mixed signals. It can be stated that our method based on the
time and frequency domain similarity generally yields better separation results than those obtained
with the methods that only use time or spectral similarity. For the mixed signal ringer + tom, better
separation results are obtained using T-SCSS. This probably results from the clear differences in the
time structure of the signal sources and better matching of distance in the T-SCSS method.
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Table 3. RMSE index mean and standard deviation for separation algorithms used in comparative
analysis.

Separation Algorithm
RMSE (Mean and Std. dev.)

Baby + Ringer Ringer + Tom Baby + Tom Baby + Ringer + Tom

TFD-SCSS 0.2120 ± 0.0235 0.1138 ± 0.0134 0.1821 ± 0.0148 0.3125 ± 0.0725

KL-SCSS 0.2935 ± 0.0455 0.3120 ± 0.0436 0.3120 ± 0.0445 0.5120 ± 0.1215

T-SCSS 0.2330 ± 0.0145 0.0820 ± 0.0212 0.2020 ± 0.0135 0.3520 ± 0.0935

In addition, the time-course results are subjected to auditory testing. Table 4 gives the scores
(mean values and standard deviations) of the perceptual quality of separation of our methods with the
β distance of the Gaussian distribution Dβ and the KL-SCSS and T-SCSS methods.

Table 4. Results of test in the form of mean scores and standard deviations for analysed methods.

Source Signals TFD-SCSS KL-SCSS T-SCSS

baby mean = 3.4160; σ = 1.1158 mean = 2.8420; σ = 1.3457 mean = 3.2180; σ = 1.3651

ringer mean = 4.4480; σ = 0.9875 mean = 3.8490; σ = 0.9961 mean = 4.5460; σ = 0.9354

tom mean = 3.0500; σ = 0.7961 mean = 2.7533; σ = 0.9832 mean = 2.9544; σ = 0.8794

6. Conclusions

This study proposed a new ICA-based method for single channel separation in time-frequency
domain. In terms of the grouping of TFDi bases and distance measure types, the methods can be divided
into those which require some information about the source signals (the β distance) and those which
only exploit the similarity between TFDi bases (Euclidean distance and negentropy minimization).
The aim should be to group the bases without the use of any information about constituent signals.
Nevertheless, the selection of a distance depends on the constituent signals S j(t), which means that
some information about the mixed signal is required. If the signal amplitude varies in time to a
significant extent, the Euclidean distance should be employed. This distance is by nature predisposed
to group the spectral and time features of a signal. It has been shown that clustering analysis (in
hierarchical and k-means forms) can be effectively used to group basis components of the signals.
In order for the decomposition to be successful, the source components of mixed signals should have a
stationary spectrum in the analysed period. Although this limitation can be overcome by shortening
the analysed period, it causes in the deterioration in audible quality of reconstructed signals. The
main limitation of the method is the lack of universality of the procedure. The selection of a distance
measure and a clustering algorithm depends on the time-frequency structure of component signals of
the mix. In addition to that, the results of separation greatly depend on the variance parameter α. If a
value of α is too high and thus the number of TFDi bases is high too, the clustering will yield worse
results. This is caused by the scattering of characteristics of the constituent signal spectra with a greater
number of TFDi bases. On the other hand, if a value of α is too low, the quality of reconstructed signal
spectra will be lower too. The quality of separation also depends on ICA limitations. As the number of
mixed signals increases, the quality of separated component signals decreases, which is evidenced in
the interpenetration of the component signal spectra.
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