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Abstract: This paper relates to the separation of single channel source signals from a single mixed 

signal by means of independent component analysis (ICA). The proposed idea lies in a 

time-frequency representation of the mixed signal and the use of ICA on spectral rows 

corresponding to different time intervals. In our approach, in order to reconstruct true sources, we 

proposed a novelty idea of grouping statistically independent time-frequency domain (TFD) 

components of the mixed signal obtained by ICA. The TFD components are grouped by 

hierarchical clustering and k-mean partitional clustering. The distance between TFD components is 

measured with the classical Euclidean distance and the �  distance of Gaussian distribution 

introduced by as. In addition, the TFD components are grouped by minimizing the negentropy of 

reconstructed constituent signals. The proposed method was used to separate source signals from 

single audio mixes of two- and three-component signals. The separation was performed using 

algorithms written by the authors in Matlab. The quality of obtained separation results was 

evaluated by perceptual tests. The tests showed that the automated separation requires qualitative 

information about time-frequency characteristics of constituent signals. The best separation results 

were obtained with the use of the � distance of Gaussian distribution, a distance measure based on 

the knowledge of the statistical nature of spectra of original constituent signals of the mixed signal. 

Keywords: independent component analysis; single channel source separation; audio unmixing; 

clustering; sensors 

 

1. Introduction 

Blind signal separation (BSS) is one of the areas of blind signal processing (BSP), a rapidly 

developing and very promising field of signal processing. The term “blind” refers to the fact that 

BPS methods make it possible to separate source signal from mixed signals without the aid of any 

information or training data. These methods have numerous applications in many research fields, 

including medical imaging and engineering [1–4], image processing and speech recognition [5,6] 

and communication systems [7], as well as astrophysics [8]. In audio engineering, besides speech 

recognition, BSS can also be used for automatic transcription or speech and musical instrument 

identification [9]. 

One of the BSS methods is independent component analysis (ICA) [10], which has gained 

popularity in a wide range of applications due to its conceptual simplicity and results quality. The 
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ICA technique is a method that uses linear transformation to find statistically independent 

components from multidimensional mixed data (mixed multichannel signals), assuming that the 

source signals are statistically independent too. Examples of such multichannel data are audio or 

vibration signals generated by microphones or vibration sensors recording signals from different 

measurement points. Standard ICA consists in finding the extreme value of the cost function 

describing statistical independence, which means that the obtained components will be maximally 

statistically independent. The efficiency of ICA depends on the cost function selection and the 

employed optimization strategy [10]. 

Standard ICA makes use of a multichannel signal, with the number of channels n (the number 

of microphones or sensors) not being lower than the number of source signals p. ICA consists in 

calculating statistically independent components (source signals) ��, … , ��  and a � × �  mixing 

matrix A for � ≥ � only based on n values of observed signals (signals generated by microphones or 

sensors) ��, … , ��. A standard linear ICA model has the form of Equation (1): 

� = �� (1) 

where � = (��, … , ��)� is a vector of observed signals, � = (��, … , ��)� is a vector of source signals, 

� is an � × � mixing matrix (Figure 1). The separation problem is solved by ICA as Equation (2): 

�̂ = �� = ��� (2) 

where s� = (�̂�, … , �̂�)�  is an estimation of � and matrix � is an estimation of the inverse of � 

called filtration matrix. When � = �, the filtration matrix � belongs to the general linear group 

��(�) of non-singular matrices det (�) ≠ 0. 

 

Figure 1. Block diagram of standard independent component analysis. 

Usually, the computational complexity of ICA is reduced at the pre-processing stage by 

so-called whitening the observed signal, which yields a signal � = �� = ��� , where � is the 

whitening matrix characterized by unitary variance and decorrelation �� = �(���) = �. Assuming 

that for source signals �� = � we obtain Equation (3): 

� = �� = �(���) = ���(���)(��)� = ��(��)� (3) 

This shows that (��)� = (��)��, or ��, is an orthogonal matrix (transformation from � to � 

takes place via an orthogonal matrix ��). Therefore, if �̂ = ��� = ����� = ��, then the matrix � =

���� is a permutation matrix, and thus a new filtering matrix � (after whitening) must also satisfy 

the orthogonality condition. The solving of the ICA task (when � = �) is therefore reduced to an 

optimization on the orthogonal group �(�) or the special orthogonal group ��(�) when compared 

to the original optimization problem on the group ��(�)  (matrices �  only satisfying the 

invertibility condition det (�) ≠ 0). This is connected with a reduction of the degrees of freedom in 

the problem containing �� for the matrix � ∈ ��(�) on 
�(���)

�
 for the matrix � ∈ ��(�). 

Standard ICA is based on the assumption that the number of source signals ��  is known and 

equal to the number of observed signals �� , i.e., � = � . Still, the ICA estimation can also be 

performed for a more general case, i.e., when the number of estimated sources p is unknown. In this 
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case, it is possible that � ≠ �. When � < �, i.e., when the number of observed signals is lower than 

that of source signals, we are dealing with over-complete ICA bases, but when � > � we are dealing 

with under-complete ICA [11,12]. From a mathematical point of view, such problem can be 

considered an unconstrained optimization on the Stiefel manifold [13–17]. 

Many ICA-based methods were used to separate mixed signals [18–21]. In audio engineering, 

observed (mixed) signals usually have the form of double channel (stereophonic) or single channel 

signals. In the case of a single channel signal, which is an “extremely over-complete” ICA model, 

Equations (1) and (2) cannot be directly employed. In the case of a stereophonic signal, which is 

known as the problem of under-complete ICA (n < p), differences between channels in intensity and 

phase of the signals are used for demixing [22–25]. Wang and Brown [26] introduced a perceptually 

motivated technique known as the computational auditory scene analysis (CASA) for single channel 

separation. Nevertheless, it must be emphasized that the effectiveness of such methods is limited 

and thus some additional a priori information about source signals is required. Most studies in this 

field are devoted to the extraction (separation) of speech signals [27,28], a commonly used approach 

is the so-called the W-disjoint orthogonality of signals that assumes their non-overlapping in the 

time-frequency plane [25,29,30]. Jang and Lee [20] proposed a single channel separation method that 

use the basis signals obtained by learning the probabilistic properties of sources [31]. Taghia and 

Doostari [32] used band-wide decomposition of mixed signal components and used ICA for signals 

mixed in time domain. Davies and James [33] proposed the Single Channel ICA (SCICA) method 

which is also based on the time domain. In [19] Casey used a single channel separation method that 

is based on the use of spectrograms of observed signals. In this method, the time-frequency 

representation of a signal (spectrogram) is treated as a multichannel observed signal and can this be 

separated by ICA. ICA-obtained statistically independent time-frequency components are then 

grouped by the Kullback–Liebler measure in order to reconstruct source signals. A similar albeit less 

complicated approach was adopted by Barry et al. [21]. They separate two signals by using only two 

spectrogram rows (spectrogram matrix) separated by 330 ms assuming additionally that spectrum of 

the signals was stationary over this time. A similar approach was taken by Wang and Plumbley [34]. 

They employed the nonnegative matrix factorisation (NMF) method on the Short Time Fourier 

Transform (STFT) representation of a single channel observed signal. Their algorithm, however, 

required the use of an additional training data. In [35], Mijovic employed both wavelet transforms 

and a combination of empirical mode decomposition (EMD) and ICA for ECG signals 

decomposition. Methods based on spectral representation of the observed signal are usually known 

as spectral decomposition-based methods. In [36] Litvin et al. used the bark scale aligned wavelet 

packet decomposition (BS-WPD) instead of the Fourier transform and at the stage of separation they 

use the Gaussian mixture model (GMM). In [37], Duan proposed a combination of various single 

channel separation methods, including some elements of the CASA, spectral decomposition based 

techniques and model based methods. An excellent overview of single channel source separation 

methods can be found in [38,39]. 

The paper is organized as follows. In Section 2 the proposed method of separating 

single-channel signals is described. There we present subsequent stages of the process and define 

distance measures used in the method. In addition, the use of linear ICA to solve this type of 

problem is also explained. In Section 3 the proposed procedure is used to signal source separation of 

two- and three-component mixed signals, and the quality of obtained separation is discussed in the 

context of the signal variance used in the analysis. Section 4 presents the results of an auditory test 

carried out on separated signals. Section 5 discusses the problem of computational complexity of the 

proposed method and offers a comparative analysis with other simple single-channel separation 

methods. The results of the analysis are presented in both quantitative and qualitative form. Finally, 

in Section 6 (Conclusions) the obtained separation results are summarized with respect to the impact 

of the number of source components, the spectral type of sources, as well as the impact of the signal 

variance used in the analysis. 

2. Model Definition and Procedure 
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The proposed concept involves the use of ICA for the time-frequency t-f representation 

(spectrogram) of a single-channel observed signal. The representation of signal in the form of a 

spectrogram is actually a non-linear transformation (quadratic transformation). In this case, the use 

of non-linear BSS (non-linear ICA) would be appropriate. It is well known that nonlinear ICA is a 

difficult problem and it is generally impossible to identify unambiguously true sources [40,41]. 

However, under certain conditions linear ICA can be used to solve nonlinear BSS. The theoretical 

conditions for the use of a linear encoder, i.e., cascade PCA and linear ICA to solve a non-linear 

problem and reconstruct of real independent sources, are presented in [42]. Solutions are 

asymptotically achieved when the number of sources is high, and the numbers of inputs � (mixed 

signals) and non-linear bases �� are large relative to the number of sources ��. In our approach, 

this condition is satisfied, i.e., �� = 2 �� 3 ≪ �� = �, which means that the use of linear ICA is 

justified in this case. 

To this end, the time signal ����(�) was analysed by the Short Time Fourier Transform (STFT) 

in compliance with Equation (4): 

mix
STFT

mix tx STFT)(  (4) 

where STFT���  is the � × �  complex matrix of t-f containing in �-rows instantaneous signal 

spectra ( �  is the number of STFT time frames). The input data for ICA is a spectrogram 

(autospectrum) of the signal ������ = �STFT����
�

 [43,44]. The rows of the ������  matrix are 

treated as individual channels in a multichannel signal. By applying the ICA on this multichannel 

signal, we obtain spectral components �� of the t-f representation of a single channel signal which 

are statistically independent. The following relation holds between a ������  and matrix � =

(z�, … , z�) a matrix of statistically independent spectral components as seen in Equation (5): 

������ = � ∙ � = � ��

�

�� = � ����

�

 (5) 

where � is a � × � mixing matrix, �� is an i-th column of �, z� is an i-th row of Z, ���� = ���� is 

an i-th t-f component of a mixed one-channel signal. 

Throughout this paper, the components �� are called spectral bases whereas the columns of T 

describing time variation of �� are called time bases and denoted by ��. The matrix ���� , which is 

the product of the time basis ��  and the spectral basis �� , is called i-th t-f component. By an 

appropriate grouping of ����  bases into subgroups generating constituent components of the 

mixed signal, this mix can be decomposed into � components (for comparison, see Equation (1)) 

using Equation (6): 

������ = � ����

�

= � �����

��

+ � �����

��

+ ⋯ + � �����

��

 (6) 

where ��, … , �� are � index sets obtained by grouping ����  bases. 

In [45,46], the single channel signal decomposition was done by the grouping of time bases �� 

and frequency bases ��. 

For practical reason, to reduce computational complexity, it is convenient to only use the ����  

bases which “carry” a specified variance of the mixed signal. Assuming that in the analysis we use 
����������

���������
= � ∈ (0,1] of signal variance, Equation (5) has the following form in Equation (7): 

������� = � �����

��

 (7) 

where the index �� = (1, … , �), � ≤ �  corresponds to the number of ����  bases “carrying” � 

variance of the mixed signal. The selection of � determines the number �� of ����  bases that are 

subsequently used in ICA estimation. These bases span a subspace �������  of the primary ������  

which is maximally energetic. 

The grouping of bases is, in fact, a clustering process, i.e., collecting elements into clusters 

[47,48]. Clustering results depend on many factors, such as the employed distance measure and 
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clustering algorithm. The distance between base components can be defined in many ways. The 

selection of a given distance measure type depends on many factors, including the frequency 

composition of signals, degree of overlapping of signals in time and frequency, the required quality 

of separation and frequency-related similarity of constituent signals of the mix. In the present 

experiment, two types of grouping were applied. The first was based on the use of clustering 

algorithms (hierarchical and k-mean clustering), while the other involved the maximization of 

negentropy of separated components. ICA-based single channel separation methods primarily use 

component grouping based on similarity in time or frequency domain. We suggest the use of a 

time-frequency structure to measure the similarity features in both time and spectral domain. We 

cluster the 〖TFD〗^i bases using two types of distance between ����  bases, i.e., the classic 

Euclidean distance ����  and the distance �� , which we call in this study as the � distance of 

Gaussian distribution. The Euclidean distance ���� is defined as Equation (8): 

����(�, �) = ����� − �����
�
 (8) 

where ‖∙‖ denotes the Frobenius norm. The generalized Gaussian distribution is expressed by 

Equation (9) [49]: 

�(�|�, �, �) =
�(�)

�
��� �−�(�) �

� − �

�
�

�/(���)

� (9) 

where �, � are the expected value and the standard deviation of a random variable�, respectively. 

The parameter � ∈ [−1,0] describes the type of a random variable �, i.e., its deviation from normal 

distribution. The parameters �(�) and �(�) are defined by Equations (10) and (11): 

�(�) =
Γ �

�

�
(1 + �)�

�/�

(1 + �)Γ �
�

�
(1 + �)�

�/� (10) 

�(�) = �
Γ �

�

�
(1 + �)�

Γ �
�

�
(1 + �)�

�

�/(���)

 (11) 

where Γ is the Gamma-Euler function. 

By treating a signal spectrogram as a random variable one can describe its distribution in 

parametric terms, i.e., it is possible to estimate the parameters �, �, �  based on the model in 

Equation (9). When the source spectrograms are known, we can find the parameter ��,��� . The ��  

distance is defined as the difference between ��,���  and the parameter ��  characterising the 

spectrogram of a constituent signal reconstructed after grouping ������,� = ∑ �����
��

 (index ��  was 

defined in Equation (6)) in the following way in Equation (12): 

�� = ���,��� − ��(������,�)� (12) 

By minimizing the �� distance for individual constituent signals one can group ����  bases so 

that the reconstructed signals are statistically as close as possible to the original signals. The ��  

parameter we estimated by a posteriori determination of the maximum of �. When observations of 

the random variable � = {��, … , ��} are available the a posteriori distribution of the � parameter is 

given by Equation (13) [10,18]: 

�(�|�) ∝ �(�|�)�(�) (13) 

where �(�|�) = ∏�
�(�)

�
��� �−�(�) �

����

�
�

�/(���)

� denotes a data likelihood [18] and �(�) is an a 

priori distribution of the � parameter. The study [18] offers practical recommendations (solutions) 

for calculating the �(�) distribution. 
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The other way of grouping ����  bases consists in maximizing negentropy (negative entropy) 

of reconstructed constituent signals ������,� . Statistically independent constituent signals have the 

maximum negentropy [10,50]. By finding of reconstructed constituent signals ������,� = ∑ �����
��

 

with the maximum negentropy, we group the ����  bases in a correct way. The negentropy function 

�(�) was approximated as Equation (14) [10]: 

�(�) ∼ [���(�)� − ���(�)�] (14) 

where �  is the normalized Gaussian random variable ( � = 0, � = 1 ) and �(∙)  is a nonlinear 

function of the random variable usually having the form �(�) =
�

�
log cosh (��) , � ∈ (1,2) or �(�) =

−exp (−
��

�
). This type of approximation has numerous advantages including conceptual simplicity 

and rapid calculation rate [10]. As a result, it is very often used as a cost function in algorithms for 

solving ICA problems [51].  

3. Experiment 

The proposed idea of single channel separation was verified by experimental tests. The 

experiments involved demixing single-channel signal consisting of two and three constituent 

signals. The constituent signals ��(�) , ��(�)  and ��(�)  were selected so that their spectral 

composition and their respective types of sources were different. The ��(�) signal (“ringer”) was 

generated by an electric device and was a recording of an electric ringer, while the ��(�) signal 

(”baby”) was a baby cry, which means that it had a specific stochastic variation of the spectre, as do 

all sounds generated by living beings. The ��(�) signal (“tom”) was a sound generated by a 

percussion instrument and, as such, was a typical impulsive signal. The above constituent signals 

were mixed in the following combinations: �����(�) = ��(�) + ��(�) and �����(�) = ��(�) + ��(�) +

��(�). The signals were recorded at the sampling frequency �� = 8 ��� and their duration was 1.2 s. 

Mixed single channel signal was transformed to the frequency domain using the STFT. We use 

blocks 256 samples long, 50% overlapped. The t-f analysis was performed in two separate blocks of 

3968 and 5888 samples corresponding to the time intervals of 0–0.51 s and 0.51–1.2 s, respectively, in 

order to ensure higher stationarity of signal spectra in individual blocks. We used full signals of 9856 

samples to determine the �� distance. Figure 2 shows the spectrograms of constituent signals ��(�) 

and ��(�), with the spectrogram on the left showing the ��(�) signal (“ringer) and the spectrogram 

on the right showing the ��(�) signal (“baby”). 

The STFT-generated spectrogram of ������� (bottom diagram in Figure 2) was treated as a 

multichannel signal and estimated by ICA. This was done using the FastICA Matlab function 

algorithm based on [14]. Signal whitening was performed by singular value decomposition (SVD) 

using the Matlab function svd. ICA-generated statistically independent spectral bases ��, time bases 

��  and time-frequency bases ����  for the variance α = 0.85  of the input signal are shown in 

Figures 3–5, respectively. 
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Figure 2. Spectrograms of constituent signals, (a) S1—ringer; (b) S2— baby and (c) the mixed signal 

S1+S2. 

For all ���� shown in the Figure 5 the ordinate axes scales range 0 ̶ 129, which corresponds to 

the frequency range 0 ̶ 4 kHz. The time scale range 0 ̶ 30 corresponds to the range 0 ̶ 0.51 s. A 

comparison of the obtained ����  bases in Figure 2 reveals that bases 4, 7, 11 belong to the 

spectrogram of the S1 signal (ringer). Both this figure and some subsequent figures show the ICA 

results made in the first sample block (from 0 to 0.51 s). 

 

Figure 3. 7 spectral bases z� obtained by ICA on the spectrogram of the mixed signal for variance 

α = 0.85. 

 

Figure 4. 7 time bases �� obtained by ICA on the spectrogram of the mixed signal for variance α =

0.85. 

 

 

b) 

 

c) 

 

a) 

 

a

) 
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Figure 5. 13 statistically-independent ���� bases obtained by ICA on the spectrogram of the mixed 

signal for a signal variance α = 0.9: a) ���� bases belonging for S1 source b) ���� bases belonging 

for S2 source. 

The clustering was performed by hierarchical [48] and k-mean partitional clustering [52] using 

two standard Matlab functions: dendrogram and kmeans. Figure 6a shows the separation results 

obtained with the Euclidean distance between ����  components and a dendrogram obtained by 

hierarchical clustering. Figure 6b illustrates the “distances” between ����  components obtained by 

multidimensional scaling [53]. Ellipses correspond to components collected in the dendrogram 

shown in Figure 6a. By summing the ����  components grouped in Figure 6b and shown as green 

and black ellipses, we obtain spectrograms of two separated components seen in Equation (15): 

���� = � ����� 

����,�,�,�,�,�,��,��,��

 

��� � = � �����

����,�,�,��

 

(15) 

Figure 7 shows the reconstructed spectrograms of ����  and ����  components. Figure 8 

shows the results of separation obtained by maximizing the negentropy of components ���� and 

����. 

An analysis of the data in Figure 9 demonstrates that the separation is effective yet it depends 

on the length and the variance (parameter α) of the analysed signal, and hence on the number of 

obtained ����  bases. The lower the number of these bases is, the more effective the grouping 

results are obtained. Nevertheless, a decrease in the variance αresults in a reduced quality of 

reconstruction spectrograms. The quality of separation is considerably lower for the variance α =

0.7 of the mixed signal, which is manifested in the interpenetration (interference) of spectra of the 

constituent signals. 

Figure 9 shows the results of clustering process with β distance of Gaussian distribution ��. As 

it results from the presented Figure 9 results of the separation seems to be efficient. They depend 

however on the length of the analysed signal and the used variance value of the analysed signal 

(parameter α) and therefore on the number of received ����  bases. The smaller the number, the 

better the grouping results. However, lowering the value of variance α also causes a reduction in the 

quality of spectrogram reconstruction. The quality of separation is significantly worse when using 

α = 0.7 variance of the mixed signal, which is manifested by the interpenetration (interference) of 

spectra of the signal components. 

 

a) 

 

b) 

 

b) 
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Figure 6. The results of hierarchical clustering for the Euclidean distance for ���� components (a), 

and visualisation of groups of ���� obtained by multidimensional scaling (b). 

 

 

 

Figure 7. Reconstructed spectrograms (spectra) of ����  and ����  components as a results of 

hierarchical clustering with Euclidean distance for ���� components. ����—ringer, ����—baby: 

a) results for the time interval of 0.00–0.51 s, b) results for the time interval of 0.51–1.20 s. 

 

 

Figure 8. Reconstructed spectrograms (spectra) of ����  and ����  components obtained by 

minimizing the negentropy of ���� and ���� components. ����—ringer, ����—baby: a) results 

for the time interval of 0.00–0.51 s, b) results for the time interval of 0.51–1.20 s. 

���� ���� 

���� ���� 

a) 

 

b) 

 

���� ���� 

���� ���� 

b) 

 

a) 
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Figure 9. Reconstructed spectrograms (spectra) of ���� and ���� components obtained by k-mean 

partitional clustering and the � distance of Gaussian distribution. ����—ringer, ����—baby. The 

results were obtained for the variances a) α = 0.7 and b) α = 0.8, respectively, and the signal 

duration of 1.2 s. 

We used our method for the demixing a single-channel signal consisting of three component 

signals �����(�) = ��(�) + ��(�) + ��(�) . The spectrogram of the mixed signal as well as the 

spectrograms of its constituent signals were shown in Figure 10. Like in Figure 5 the scales range 0 ̶   

129 for all ����  corresponds to the frequency range 0 ̶ 4 kHz. The time scale range 0 ̶ 30 corresponds 

to the range 0 ̶ 0.51 s. Statistically independent ����  bases are shown in Figure 11. One can notice a 

sharp similarity between ����  bases and the constituent sounds of the ����  mixed signal. To give 

an example, ����, ����, ���� are ringer sounds, ����, ���� and ���� are tom sounds, while 

other bases are baby sounds. Hence, at the clustering stage, the ����  bases were grouped into 3 

classes (clusters) by k-mean partitional clustering. Figure 12 shows the results of separation of a 

three-component signal.  

 

Figure 10. Spectrograms of constituent signals: �� —ringer, �� —baby, �� —tom. The bottom 

spectrogram shows the mixed signal �����. 

b) ���� ���� 

a) 
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Figure 11. Statistically independent ���� bases of a three-component signal for the variance α =

0.8. 

 

Figure 12. Reconstructed spectrograms of a three-component signal obtained by k-mean partitional 

clustering and Euclidean distance for ����  bases (duration: 0.51 s): ����—ringer, ����—tom, 

����—baby. 

4. Perceptual Evaluation 

For each of the decomposition versions presented in Section 3, the inverse STFT for every 

separated ����  was used. The proposed separation method has been implemented in Matlab. The 

inverse STFT involved reconstructing time signals based on the spectrograms of separated ����  

bases. Given that such transformation is only based on amplitude information (spectrograms do not 

contain phase information), the time signals were additionally burdened with the error of 

“imprecise” invertibility of the STFT. In order to eliminate the effect of “imperfect” invertibility of 

the STFT (phase distortion), the reference signal’s sounds of the mix were also re-synthesized with 

zero phase. The RMS values of all separated and reference signals were normalised. All sounds were 

Microsoft Windows system sounds and were resampled to 8 kHz.  

For the purpose of the test, 9 pairs of reference (original) and separated sound were prepared. 

These pairs are called “samples”. We generated 5 sets of samples (one set per every listener), each 

containing 9 samples. Sequence of samples was random and different in each set. The samples were 

separated by 3 to 4 s of silence. Each of five participants listened to five sets of samples. The 

participants included one sound engineer, two instrumental musicians and two individuals not 

related to music. Every listener listened to samples at the same loudness (over 80dBA) over the AKG 

K271 closed-back (studio) headphones in studio room. Degradation category rating scale [54] was 

used to rate the quality of separation by the listener. The original five-point scale was extended to 

six-point, as suggested by the listeners. A score of 1 means “very distorted” while a score of 6 means 

“inaudibly distorted”. Before the final test, each listener underwent a short training session.  

Table 1 gives the scores (mean values and standard deviations) of perceptual quality of 

separation with �  distance of Gaussian distribution ��  and the Euclidean distance for ����  

components. Table 2 shows the impact of the mixed signal variance used (� = 0.7 or � = 0.9) on the 

perceptual quality of separation. 
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Table 1. Results of test in the form of mean scores and standard deviations for each sound obtained 

with the Euclidean distance and the � distance of Gaussian distribution �� for ���� bases. 

 Euclidean Distance � Distance 

baby mean = 2.4400; σ = 0.9025 mean = 3.4160; σ = 1.1158 

ringer mean = 3.1200; σ = 1.0375 mean = 4.4480; σ = 0.9875 

tom mean = 2.5333; σ = 0.6644 mean = 3.0500; σ = 0.7961 

Table 2. The impact of the mixed signal variance used on the perceptual quality of separation. 

Measure of Distance 
“Ringer” “Baby” “Tom” 

� = 0.9 � = 0.7 � = 0.9 � = 0.7 � = 0.9 � = 0.7 

� distance 5.00 4.36 4.32 3.04 2.75 2.14 

Euclidean distance 3.44 4.00 2.44 2.64 2.42 1.63 

The best results were obtained for the separation performed with the use of the � distance. The 

ringer sound was most efficiently unmixed for every mixed signal type and distance measure. The 

results of the baby sound are worse. The tom sound was the most difficult to separate. These results 

demonstrate that the proposed method is the most effective for signals (sounds) with a 

quasi-stationary signals with harmonic spectrum (ringer) and the least effective for non-stationary 

signals with a noise-like spectrum (tom). The quality of separation is higher when the variance � of 

the mixed signal is higher (Table 2) and, as expected, when separating from two-component mixes. 

In this case, specifically, the results are 0.5 points higher on the average. 

5. Computational Complexity and Comparison Analysis 

In this section, we evaluate the computational complexity of the proposed methods and 

compare our results with those obtained by other simple single-channel source separation methods. 

Our approach consists of five stages of processing: transformation of the time signal into a 

spectrogram, ICA stage with whitening as pre-processing, calculation of distance measure, grouping 

and inverse transform to the time domain. We consider the approximate number of floating point 

operations (flops). The code is implemented on a 2.8 GHz (CPU), 8 GHz (RAM) platform. At the 

transformation stage, we employ STFT with the FFT algorithm which is a very effective method 

because it involves overall 2�(����2�) (only the most significant terms are retained) flops for the 

time window (time segment), where 2n is the number of samples in the time window used in STFT. 

Using the big � notation, the computational complexity of this stage is �(�(�����)). In the ICA 

stage, we used the Singular Value Decomposition (SVD) as pre-processing which involves �(���) 

flops, where � is the number of time segments used in STFT stage. At the SVD sub-stage, we 

reduced the dimension of the analysis based on the desired signal variance value α. In the ICA 

stage, we used the FastICA algorithm which is a very effective algorithm and requires only 

2(�� + 1)� [55] per iteration, where �� < � is a dimension of ICA reduced in the SVD sub-stage. 

This means that the approximation of complexity in the ICA stage is of order �(���). In the stage of 

calculating the distance between the ����  bases we used two types of distances: the classic 

Euclidean distance ����  and the distance �� , that require approximately � ����
�

� ∙ ��
� ���  and 

�(��
� ��) flops, respectively. In the clustering stage, we used the hierarchical clustering algorithm 

(single-linkage type) or the k-mean algorithm. Both algorithms have computational complexity of 

order �((����)�) [48] but it includes the complexity of distances ���� and ��  calculating as the 

main stage of clustering process. At the inverse transform stage, we used IFFT algorithm which 

requires, similar to FFT, �(�(�����)) flops. 

In order to compare our method with others solutions, we additionally carry out single-channel 

separation using the method proposed in [19] and the method based on analysing the similarity of 

time bases ��  which are called here as TFD-SCSS, KL-SCSS and T-SCSS, respectively. In the 

KL-SCSS method, the Kullback–Leibler distance (symmetrical Kullback–Leibler divergence) is used 

as a measure of distance for the spectral bases ��. In the T-SCSS method we use the Euclidean 
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distance for time bases �� . Separation efficiency is measured using the root mean square error 

indicator (RMSE) compared to the original sources. Considering the spectrograms of the original 

������
� , � = 1,2, … , �� sources and separate ����, � = 1,2, … , �� sources, the RMSE is calculated as: 

���� = �
∑ ∑ �������

� (�, �) − ����(�, �)�
�

�,��

∑ ∑ �������
� (�, �)�

�

�,��

 (16) 

where �, � are the row and column indices of the ������
�  and ����  indices. 

The same set of source and mixed signals as in the auditory tests (Section 4) as well as the same 

analysis parameters are used in the comparative analysis. Table 3 presents the average results of the 

RMSE index for four combinations of mixed signals. It can be stated that our method based on the 

time and frequency domain similarity generally yields better separation results than those obtained 

with the methods that only use time or spectral similarity. For the mixed signal ringer + tom, better 

separation results are obtained using T-SCSS. This probably results from the clear differences in the 

time structure of the signal sources and better matching of distance in the T-SCSS method. 

Table 3. RMSE index mean and standard deviation for separation algorithms used in comparative 

analysis. 

Separation Algorithm 
RMSE (Mean and Std. dev.) 

Baby + Ringer Ringer + Tom Baby + Tom Baby + Ringer + Tom 

TFD-SCSS 0.2120 ± 0.0235 0.1138 ± 0.0134 0.1821 ± 0.0148 0.3125 ± 0.0725 

KL-SCSS 0.2935 ± 0.0455 0.3120 ± 0.0436 0.3120 ± 0.0445 0.5120 ± 0.1215 

T-SCSS 0.2330 ± 0.0145 0.0820 ± 0.0212 0.2020 ± 0.0135 0.3520 ± 0.0935 

In addition, the time-course results are subjected to auditory testing. Table 4 gives the scores 

(mean values and standard deviations) of the perceptual quality of separation of our methods with 

the � distance of the Gaussian distribution �� and the KL-SCSS and T-SCSS methods.  

Table 4. Results of test in the form of mean scores and standard deviations for analysed methods. 

Source Signals TFD-SCSS KL-SCSS T-SCSS 

baby mean = 3.4160; σ = 1.1158 mean = 2.8420; σ = 1.3457 mean = 3.2180; σ = 1.3651 

ringer mean = 4.4480; σ = 0.9875 mean = 3.8490; σ = 0.9961 mean = 4.5460; σ = 0.9354 

tom mean = 3.0500; σ = 0.7961 mean = 2.7533; σ = 0.9832 mean = 2.9544; σ = 0.8794 

6. Conclusions 

This study proposed a new ICA-based method for single channel separation in time-frequency 

domain. In terms of the grouping of ����  bases and distance measure types, the methods can be 

divided into those which require some information about the source signals (the � distance) and 

those which only exploit the similarity between ����  bases (Euclidean distance and negentropy 

minimization). The aim should be to group the bases without the use of any information about 

constituent signals. Nevertheless, the selection of a distance depends on the constituent signals 

��(�), which means that some information about the mixed signal is required. If the signal amplitude 

varies in time to a significant extent, the Euclidean distance should be employed. This distance is by 

nature predisposed to group the spectral and time features of a signal. It has been shown that 

clustering analysis (in hierarchical and k-means forms) can be effectively used to group basis 

components of the signals. In order for the decomposition to be successful, the source components of 

mixed signals should have a stationary spectrum in the analysed period. Although this limitation 

can be overcome by shortening the analysed period, it causes in the deterioration in audible quality 

of reconstructed signals. The main limitation of the method is the lack of universality of the 

procedure. The selection of a distance measure and a clustering algorithm depends on the 

time-frequency structure of component signals of the mix. In addition to that, the results of 

separation greatly depend on the variance parameter �. If a value of α is too high and thus the 



Sensors 2020, 20, 2019 14 of 16 

 

number of ����  bases is high too, the clustering will yield worse results. This is caused by the 

scattering of characteristics of the constituent signal spectra with a greater number of ����  bases. 

On the other hand, if a value of � is too low, the quality of reconstructed signal spectra will be lower 

too. The quality of separation also depends on ICA limitations. As the number of mixed signals 

increases, the quality of separated component signals decreases, which is evidenced in the 

interpenetration of the component signal spectra. 
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