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Abstract: The Internet of Things is constantly capturing interest from modern applications, changing
our everyday life and empowering industrial applications. Interaction and the collaboration among
smart devices offer new challenges to security since they conflict with economic and energy consumption
requirement constraints. On the other hand, the lack of security measures could negatively impact the
concrete adoption of this paradigm. This paper focuses on the Message Queuing Telemetry Transport
(MQTT) protocol, widely adopted in the Internet of Things. This protocol does not implement natively
secure authentication mechanisms, which are demanded to developers. Hence, this paper proposes a
novel OTP (one-time password)-authentication schema for MQTT, which uses the Ethereum blockchain
to implement a second-factor out-of-band channel. The proposal enables the authentication of both local
and remote devices preserving user privacy and guaranteeing trust and accountability via Ethereum
smart contracts.
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1. Introduction

The Internet of Things (IoT) is a well-known paradigm that relies on the interactions of intelligent
computing devices. Each device (and each user) in the IoT domain is provided with a unique identifier.
According to the Reference Architecture reported in the standard ISO/IEC 30141 [1] the devices can be
classified as sensors or actuators, and they are connected to the Internet in order to be reached by a generic
user of the system. This paradigm had rapid growth in recent years. In fact, according to a Gartner study,
we may expect to reach about 50 billion devices by the end of 2020 [2], also thanks to the migration to the
IPv6 [3] version of the Internet Protocol, which would solve the problem of IPv4 address exhaustion.

The design and the development of an IoT application must cope both with the problem of limited
energy consumption and security issues, among other challenges. These requirements often conflict,
and developers must find a compromise when designing novel solutions. Moreover, existing protocols
commonly adopted in IoT were designed without facing security issues that are demanded of developers
and depend on the specific application. As an example, the Message Queuing Telemetry Transport
(MQTT) [4] protocol, one of the widely adopted protocols for communication among devices, is an
example of a source of security vulnerabilities. As will be clear in the rest of this paper, MQTT requires the
usage of a message broker (i.e., the MQTT broker) to enable the adoption of the publish–subscribe pattern.
The broker interconnects a set of clients, playing the roles of publishers and/or subscribers. In the IoT
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domain and according to the ISO Reference Architecture, the publishers are commonly sensing devices,
while subscribers are actuators.

MQTT does not include strong security features. In the MQTT specification, security is completely
demanded to developers, increasing the risk of bad implementation. The protocol specification, in fact,
highly recommends the adoption of transport layer security (TLS) at the transport layer to enforce security.
Focusing specifically on the authentication, the MQTT built-in mechanism is very weak. It is based on the
transmission of username and password in a CONNECT message. The latest version of MQTT, i.e., Version
5.0 released in March 2019 [5], still specifies that a username and password are sent in the CONNECT
message, respectively as UTF-8 encoded string and binary data. Even if MQTT version 5.0 provides
an enhanced authentication mechanism that allows, for example, the usage of the password as a token,
it is explicitly stated that the protocol suffers from man-in-the-middle and replay attacks, also in the
authentication phase. The confidence of having only authorized clients in the network can be obtained by
adopting a virtual private network. Similarly, TLS certificates sent from clients can be used to authenticate
them to servers.

This paper focuses on the authentication in MQTT by describing a novel approach for adopting
one-time password (OTP) authentication schema, without the support of TLS. As also stated by the
National Institute of Standards and Technology (NIST) guidelines (see the original document [6] and
recent updates), OTP authentication allows the obtaining of strong authentication. In the case of not using
the Lamport schema [7], i.e., when we want to avoid the problem of storing, protecting, and sharing a
secret between prover and verifier, it is very important to have two channels, as independent as possible,
for the transmission of the second-factor authentication (disposable) secrets.

With respect to the adoption of TLS, as suggested by the MQTT specification, our solution does not
rely on security at lower layers, so reducing the impact in terms of energy consumption. Our solution also
differs from the basic OTP authentication schema proposed for MQTT [8] since it adopts a blockchain as a
second independent channel. Specifically, our proposal adopts Ethereum because it offers the powerful
mechanism of smart contracts. In fact, an Ethereum smart contract ensures the correct execution of the
protocol. Another important advantage of our solution is that despite the public availability of the data
stored in a smart contract, the proposed solution preserves the privacy of users, mainly using hashes as
user pseudonyms. The main advantages of our solutions are that it is capable of enhancing the security in
MQTT by using a lightweight approach (without the adoption of TLS protocol at the transport layer), so
restricting the work of the developers and the possibility to introduce security vulnerabilities.

The rest of the paper is structured as follows. Section 2 describes some related works and discusses
the innovations of our solution with respect to the existing literature. Section 3 clarifies some preliminary
concepts that are needed for the proposal. Section 4 describes the proposed solution. Section 5 reports the
security analysis of the proposed solutions by discussing how it is robust with respect to possible malicious
actions. Section 6 ends the paper by giving some conclusions and by suggesting possible future work.

2. Related Work

The ever-growing development of Internet of Things-based solutions leads to a set of security issues
that must be taken into account. Current literature shows several works [9–11] addressing security
challenges in IoT. Among them, in this paper, we focus our attention on the authentication problem [12,13].
In [14], the main authentication models for IoT are presented. However, our model is different as it uses
blockchain as a secondary channel to transmit OTP codes that identify the attempts of access of devices.
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Many works [15–18] adopt blockchain-based solutions to enforce the security of complex IoT
applications. As an example, in [19], the authors present an interesting survey about the security problems
in IoT and how blockchain can be used to face them. A blockchain-based solution to the authentication
problem is discussed in [20]. However, this proposal contrasts only attacks where the attacker is in
proximity to IoT devices, while our solution is more general and works with remote devices.

Another challenge is to provide an authentication mechanism which works with the most common
message protocol for IoT, which is MQTT [21,22]. Security in MQTT has been deeply studied in the
literature. For example, the study in [23] faces the confidentiality problem by using attribute-based
encryption [24]. However, it has some drawbacks regarding inefficiency and complexity which should be
avoided in IoT networks.

Regarding the authentication problem, we found the work proposed in [25] were similarly to our
proposal. The authors present an authentication scheme using OTP for MQTT. With respect to our solution,
their proposal requires the encryption of the exchanged messages. This approach has an extra effort
that is similar to the adoption of the TLS protocol. In [26], we found another interesting proposal which
implements an OTP-based authentication schema on MQTT. However, it is not specified how the device
owner proves he/she is the legal user. Moreover, since the solution does not use blockchain, it is not
possible to notarize the accesses of devices.

With respect to the proposals existing in the literature, our solution offers different novelties, which can
be summarized in the following points: (1) blockchain is integrated with IoT application for authentication
purposes without disclosing user identities, so preserving user privacy; (2) the proposed solution is
totally compliant with the MQTT protocol since it preserves the standard messages of MQTT; and
(3) the authentication is enforced by the OTP schema. The main advantage of adopting a blockchain
resides in the possibility of having a public ledger trusted by its nature. In fact, with respect to the
adoption of a public-key infrastructure, we do not need a trusted third party. Furthermore, a public-key
infrastructure would require the use of a public-key cryptography that is not feasible for constrained
devices (typical of the IoT domain). In particular, as will be clear in the rest of the paper, a central role
in our proposal is assumed by smart contracts. One smart contract is published for each topic managed
by each MQTT broker, so it is simple to verify if a user is authorized or not in that topic. We did not add
this feature in the described proposal to keep authentication distinguished from authorization, to better
integrate our approach to the standard MQTT protocol.

3. Background

This section reports some preliminary concepts that represent the background of our proposal. It
gives some details about the MQTT protocol, also clarifying the roles of the different entities involved
that are publishers, subscribers and brokers. Then, some preliminary concepts on blockchains and on
Ethereum are also given.

3.1. The MQTT Protocol

Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol designed for
constrained devices. Usually, it runs at the application layer, on TCP (connection-oriented and reliable),
but some variants as MQTT-S (for sensors networks) rely on UDP or other protocols. MQTT is often
used as an alternative to HTTP in IoT networks. In fact, in those contexts where the bandwidth is
limited and low-powered devices interact, HTTP might be too heavy to implement because of the high
overhead. On the contrary, MQTT presents a very low overhead and small message size. Moreover,
it provides an asynchronous communication model, thus it can be used even in case of devices with
intermittent connectivity.
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MQTT is based on a publish–subscribe model and a client–server paradigm. The clients can be of
two types: publishers (producers of the messages) and subscriber (consumers of the messages). They do
not communicate directly between them, but through a server called broker. In detail, the broker runs
different topics and receives the subscriptions on these topics from subscribers. When a publisher sends a
message, it specifies the topic associated with the message and the broker forwards this message to the
interested subscribers (i.e., those registered to the topic). The communication between clients (publishers
or subscribers) and the broker takes place as part of a session. A session can be persistent or non-persistent.
In a non-persistent session, if the connection is interrupted, all the subscriptions of the client to the various
topics are not kept and the messages associated with such topics are lost. Moreover, when the client
turns on and connects again with the broker, it has to re-subscribe to the topics, thus it cannot be efficient,
especially when the clients are constrained devices with limited resources. Therefore, in these cases, a
client can require a persistent session in which the broker stores (among other things) the subscriptions to
topics and the messages for the client (even if the connection is interrupted and the client goes offline).
When the client reconnects, all the undelivered messages associated with the topics it has subscribed to are
forwarded by the broker. Non-persistent sessions are used when clients play, mainly, the role of publishers.
The architecture of MQTT is depicted in Figure 1.

Figure 1. The main entities of the MQTT protocol.

Initially, MQTT was developed to run on a private network, so security did not play a key role in the
design of the protocol. However, today, MQTT is widely used in IoT networks, so new vulnerabilities and
threats must be taken into consideration. In this paper, we focus our attention on the security aspects of
MQTT; in particular, we investigate the authentication problem.

When a client wants to start a connection with the broker, it sends a CONNECT message. The basic
authentication mechanism offered by MQTT provides two fields in the CONNECT message to transmit
username and password to the broker. The broker evaluates the credentials and accepts or refutes the
connection. The main problem is that these fields are sent in plain text and this exposes the client to an
eavesdropping attack. However, it is possible to rely on secure transport protocol such as SSL or TLS to
carry the message, but it has a price in terms of the light weight of the protocol.
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A lighter approach to face the authentication problem is to use OTPs (passwords valid only for
a session). Often OTPs are used as part of two-factor identification where the credentials of the client
(username and password) are the first factor and OTPs are the second factor. However, OTPs cannot be
sent on the same channel (MQTT messages) used for the credentials. Therefore, in this paper, we rely on
blockchain as a separate channel to implement a two-factor authentication model for MQTT.

3.2. Blockchain

The objective of blockchain is to deploy a peer-to-peer (decentralized) network that keeps track
of the occurrence of events. In a classical bank transaction, Alice sends X dollars to Bob and the bank
guarantees the correctness of the transfer. In this way, users must, necessarily, trust the bank. There are
two problems. First, recent events have shown that financial institution may be malicious. Moreover, we
have no guarantees that the bank’s servers do not go down compromising the entire network. Blockchain
resolves both the problems by implementing a peer-to-peer network that does not rely on a third trusted
party to validate the transactions. Actually, blockchain can store any type of data, not just monetary
transactions. However, currently, all implemented blockchain are used as a means to exchange value and
they develop their own cryptocurrency. Cryptocurrencies are also used to reward users who contribute to
the maintenance of the network.

Some of the main features that blockchain offers are:

• No third trusted party is necessary to maintain the network.
• The transactions must be validated and cannot be modified after they have been approved.
• Users cannot repudiate a transaction that they had generated.
• Users must prove they own the currency they spend.
• It shall not be possible to create currency from scratch. It is necessary to follow a legal protocol.
• Anyone can access and verify the transactions stored in the blockchain.
• The transactions must remain anonymous.

Regarding this latter point, for example, Bitcoin guarantees a pseudo-anonymity because, even if the
identity of a user is not revealed, his/her transactions are linkable and it is possible to follow the flows
of money.

The idea behind the blockchain is to have a single public ledger, shared by all nodes of the network
that stores all the transactions in a way that they are easily checkable by anyone. All nodes maintain a copy
of this ledger and can contribute to its construction by adding their own transactions or the transactions of
other nodes. The first problem is: if each node has its own copy of the ledger, how can we get everyone to
agree on what the right ledger is? We need a consensus mechanism that ensures that the nodes reach an
agreement about the status of the network. In particular, a group of nodes exists called miners, which verify
the transactions from different users and aggregate them into blocks. Then, the miners send, in broadcast,
such blocks and each node can verify them. If the verification succeeds, the nodes add these blocks to its
copy of the ledger. Therefore, in short, a blockchain is a chain of blocks of transactions. The word “chain”
is used because each block also contains a pointer (i.e., the hash) to the previous block. This means that
it is not possible to modify a block without modifying all subsequent blocks. Actually, to create a block
is not just to aggregate transactions, but it also needs to win a cryptographic puzzle. If n is the current
number of blocks in the chain, all miners compete to create the (n + 1)th block and the first that wins the
puzzle receives a reward. This challenge is called “proof of work” and it is necessary to demonstrate that
miners have spent a huge computational effort in order to "mine" a block and thus, they are trustworthy.
In fact, to win the game before the others, a malicious node should have more computational power than
the rest of the network. The reward represents the incentive (along with the fees of the transactions) for
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the miners, to contribute to the construction of the blockchain. In this paper, we refer to the Ethereum
blockchain which supports smart contracts. A smart contract is an entity stored in the blockchain, thus
immutable, that is activated when it is triggered by a transaction of a user or by a message of another
smart contract. The contract code is executed by the Ethereum virtual machine (EVM) and consists of a
series of instructions written in a Turing complete programming language which allow the programmer
to write arbitrary contracts for any situation. For example, the smart contracts are suitable in those cases
where, in exchange for a sum of money, a customer requires digital service and the trustworthiness of the
service provider or of the customer is not guaranteed. The smart contracts can ensure that the service
provider receives the money and the consumer receives the service. A smart contract is executed when a
user generates a transaction where the recipient’s address is the smart contract and miners try to include
this transaction, in a block. Once the block is generated, the code of the smart contract is run, again, by all
users, who verify the block and add it to the blockchain.

4. The Proposed Solution

The adoption of OTP authentication into MQTT represents a lightweight approach to face the
authentication problem. This section describes in detail the proposed solution, which relies on the
use of the Ethereum blockchain. Our solution reduces the energy consumption of IoT devices since they
need to perform a few simple operations. Moreover, authentication is realized without the adoption
of the TLS at the transport layer. The core of our solution resides inside Ethereum, and in particular
in a smart contract that we developed. As will be clear in the rest of this paper, a solution that does
not employ a smart contract suffers from serious drawbacks. We remark that our solution offers only
authentication in MQTT, hence any other feature allowed in real-world adoptions of MQTT is also allowed
with our authentication schema, including further authentication methods that can be combined with the
proposed solution.

Furthermore, as in the general case of an MQTT-based architecture, we do not require the broker to
reside in a specific physical location. For example, it may run on a specific host or reside in the cloud.

Figure 2 depicts the entities of which the system is composed. We provide a brief overview of the
authentication procedure. It will be discussed in more detail below. In a preliminary phase, a user registers
a remote device, which she/he owns, with the broker. When such a device needs to authenticate (triggered
by the user), it sends an authentication request to the broker. The broker calls a function of a smart
contract (by generating a transaction) which starts a timer. Meanwhile, it generates an OTP and sends
it to the user. This latter publishes the OTP on the blockchain and demonstrates that he/she has started
the authentication request. When the OTP is published, the user calls another function on the smart
contract which verifies that the OTP has not expired. If the OTP is valid, the remote device retrieves it by
the blockchain and sends it to the broker. Finally, the broker retrieves the OTP (and other information)
from the blockchain and verifies the correctness of the procedure. Please note that in a realistic scenario,
the devices and the broker do not communicate, directly, with the Ethereum blockchain, but through
an Ethereum gateway. Moreover, over the classic MQTT software, the broker has high-level software
called IoT application, which is in charge of carrying out some operations of the authentication procedure:
generation of the OTP, verification of the correctness of the latter, communication with the Ethereum
gateway, and so on.
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Figure 2. Realistic architecture of the proposed model.

Starting from the described scenario and before the detailed description of the proposed authentication
procedure, it is necessary to extract the domain model of our solution in order to formalize the concepts
needed in the following. The domain model is depicted in the UML class diagram of Figure 3.

In this diagram, the concepts are depicted as UMLclasses and relationships are depicted as
UML associations.

The main class of this model is IoTApplication, which represents a generic application in the IoT
domain. Each IoT application is hosted by an MQTT broker and interacts with a set of IoT devices. Hence
the corresponding class in the domain model is associated with the classes MQTTBroker and IoTDevice.
The former models the concept of an MQTT Broker while the latter models whatever IoT device is
involved in the functionalities offered by the IoT application. Each IoTDevice is identified by an ID
(note that from now on, we consider the IPv6 address of the device as its identifier). The IoTDevice is
connected to the class Topic with two different associations, which model the roles of publishers and
subscribers they can play. As we will describe, the devices must be registered at the MQTT broker. Hence,
the class IoTDevice is derived in two different classes in the domain model, i.e., UnregisteredDev and
RegisteredDev. On the other hand, each device is owned by a User. The class User is generalized in
the class BCUser, which represents a generic Ethereum user. It is characterized by an Ethereum address
(identifier of the class) and a couple of keys (public and secret). In our approach, both a physical User
and the MQTT Broker are possible users of the Ethereum blockchain; in fact, they inherit from the class
BCUser. On the right of the model, we reported the concept of the Ethereum blockchain, represented by
the homonym class, which stores a set of SmartContracts. Each Smart Contract has an Ethereum address
and, for our solution, contains a set of tuples—one for each device.
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Figure 3. Domain model of our solution.

After the complete formalization of the concepts inside our domain, we are now ready to describe
the authentication process. As said before, our solution requires that every user is an Ethereum user
as well as the MQTT broker. Furthermore, each device must be registered at the MQTT broker. Hence,
the preliminary two steps of our solution are the following.

The first step requires that the owner u of a set of devices associates her/his identity with her/his
Ethereum address ETHu. To accomplish this task, u sends the tuple 〈PKu, ETHSKu

u 〉 to the broker, where
PKu is the u’s public key and ETHSKu

u is the signature of PKu generated with the Ethereum private key SKu.
Consider that in Ethereum, the address is represented by the first 20 bytes of the hashed public key, hence
the MQTT broker can open the ETHSKu

u by retrieving ETHu and then it can check the correspondence
between ETHu and PKu. At the end of this step, the broker can link the identity of the user u with an
Ethereum address ETHu. Theoretically, the procedure of generation of the Ethereum addresses from the
public keys could lead to the generation of two equal addresses. However, according the birthday attack,
in a realistic complex application scenario where the number of users is around 109, the probability of a
collision is lower than 10−30. Hence, we can conclude that the probability of having colliding Ethereum
addresses is negligible.

During the second step, the MQTT broker publishes a smart contract that stores a set of tuples
whose single entry is of the form: 〈private_deviceID, owner_address, random, expiration_time〉, where
private_deviceID is the hashed IP address of a device owned by a user, owner_address is the Ethereum
address of that user, random is the random value used for OTP authentication, and expiration_time defines
the expiration time of an OTP, after its generation. Therefore, for each registered user u who performed the
Ethereum association, and for each device owned by u with IPv6 address d, a tuple 〈ETHu, h(d), _, _〉 exists
in the smart contract, where h(d) denotes the application of a secure hash function on the IPv6 address d.
Observe that since h(d) is not-reversible because IPv6 addresses are 128 bits, and the hash function h is
assumed to be secure, the privacy of the user is not violated even though the storage of the smart contract
is public. In particular, we refer to the hash function SHA-256, which is considered currently irreversible.
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These tuples, in Ethereum smart contracts, are realized through a mapping, where the key is
represented by the private_deviceID and the data is represented by a struct made of the remaining
three fields.

After these preliminary steps, the system is ready to allow for secure device OTP authentications. We
distinguish between the authentication of local devices and of remote devices. This includes, indirectly,
the authentication of publishers and subscribers in MQTT. In fact, usually, an IoT publisher is a sensing
device which must be remotely authenticated by a user. On the other hand, a subscriber is an actuator
device, locally used by the user to read the data published on specific topics.

We start from the description of the authentication procedure of a remote device. In this case, the user,
in order to authenticate the owned remote IoT device, needs an auxiliary local IoT device (not necessarily
registered to the MQTT broker) which is able to communicate with the remote device and with the broker.
The UML communication diagram in Figure 4 describes the sequence of messages needed to authenticate
the remote IoT device acting as publisher. The process starts by the user u which contacts, through her/his
local device (namely l), the remote device (namely r) with IPv6 address d (Messages 1–2) asking it to
perform the procedure of authentication. When r receives the request of u, it contacts the IoT Application
running on the broker (Message 3). This latter extracts a random R from a strong True Random Number
Generator (TRNG) and calls a function of the smart contract by sending a transaction from its Ethereum
address ETHBR towards the smart contract, which has the Ethereum address ETHSC (Message 4), which
contains h(d) as function parameter. By executing this function, the entry 〈ETHu, h(d), _, _〉 changes to
〈ETHu, h(d), _, Tgen〉 where Tgen represents the OTP generation time. From the other side, the value R
representing the OTP is sent to the broker and shown to the user by l (Messages 5–6–7). The user reads R
on her/his device and calls a different function of the smart contract by sending a transaction from her/his
Ethereum address ETHu (Message 8), which contains the couple (R, h(d)), as function parameters. This
function retrieves the entry 〈ETHu, h(d), _, Tgen〉 from the smart contract storage, verifies the temporal
validity of the OTP by evaluating the difference between the current time and Tgen, and updates the entry
by adding the value R if the OTP is not expired. Hence, the final form of the entry is 〈ETHu, h(d), R, T〉,
where T represents the current time. Please note that the delay introduced by the mining of the transactions
on the block chain does not impact the validity of our solution. In fact, after Message 8 the smart contract
stores the timestamp of the method invocation that is not affected by the following mining time. Hence,
the temporal validity considered by the smart contract is related to the net interval of time between
Messages 4 and 8 and it is not affected by mining delays.

After this last operation, the smart contract publishes an event on the Ethereum blockchain containing
the entire entry (Message 9). Finally. the remote device r recovers the OTP R from the list of Ethereum
events, and sends it to the IoT application (Messages 10–11). This latter verifies the correctness of R
and accesses the Ethereum event list retrying the public entire entry (Message 12). In particular, the IoT
application verifies that R is still valid; h(d) and ETHu represents the proper user under authentication
and checks the freshness of the timestamp T. This last step is needed to check the correct execution of the
entire authentication procedure. In particular, we recall here that in our hypothesis the remote device r is
under the control of the user u. Hence, if no access to the blockchain is performed, the IoT application has
no evidence that the user has correctly executed the entire procedure.
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Figure 4. Authentication of a remote device.

The authentication of a local device is simpler than the previous since the process includes a single
device. Figure 5 depicts the UML communication describing this process. Initially, the user u contacts
his/her local device l (with IPv6 address d) to start the authentication procedure (Message 1). In turn,
l contacts the IoT application (Message 2). This latter extracts a random R from a TRNG and calls a
function of the smart contract by sending a transaction from its Ethereum address ETHBR towards the
smart contract, which has the Ethereum address ETHSC (Message 3), which contains h(d) as function
parameter. By executing this function, the entry 〈ETHu, h(d), _, _〉 changes to 〈ETHu, h(d), _, Tgen〉 where
Tgen represents the OTP generation time. From the other side, the value R representing the OTP is sent to
the broker and shown to the user by l (Messages 4–5–6). The user reads R on her/his device and calls a
different function of the smart contract by sending a transaction from her/his Ethereum address ETHu

(Message 7), which contains the couple (R, h(d)), as function parameters. This function retrieves the
entry 〈ETHu, h(d), _, Tgen〉 from the smart contract storage, verifies the temporal validity of the OTP by
evaluating the difference between the current time and Tgen, and updates the entry by adding the value R
if the OTP is not expired. Hence, the final form of the entry is 〈ETHu, h(d), R, T〉, where T represents the
current time. Consequently, the smart contract publishes an event on the Ethereum blockchain containing
the entire entry (Message 8). Finally. the local device l recovers the OTP R from the list of Ethereum events,
and sends it to the IoT application (Messages 9–10). The latter verifies the correctness of R and accesses to
the Ethereum event list retrying the public entire entry (Message 11). In particular, the IoT application
verifies that R is still valid, h(d) and ETHu represents the proper user under authentication and checks the
freshness of the timestamp T.

Before concluding this section, it is important to say that the deployment and execution costs of the
smart contract are entirely accounted to its owner that in our solution, is represented by the broker. These
costs are rather low, and have been evaluated around 20Gwei.
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Figure 5. Authentication of a local device.

5. Security Analysis

The objective of this section is to analyze the security properties offered by our solution. We first
define our threat model.

Assumptions.

Our threat model relies on several realistic assumptions.

A1 : The OTP generation is based on a secure random generation. Therefore, the generated number is
not guessable by any party.

A2 : The MQTT broker is not malicious, but it is not immune from attacks on integrity of its databases.
A3 : The smart contract is bug-free, and any out-of-chain interaction performs correctly, and its integrity

is guaranteed.
A4 : The secrecy of private keys corresponding to Ethereum addresses cannot be violated.
A5 : Ethereum transactions/addresses are managed in such a way (e.g., mixnet services,

disposable addresses, etc.) that even by considering possible available background information,
de-anonymization is infeasible.

A6 : The adopted cryptographic hash function is secure, in the sense it is robust against pre-image,
second pre-image and collision attacks. As a matter of fact, to the best of the current knowledge,
SHA-256 is an example of hash function fulfilling this assumption.

Adversaries.

The adversary in our threat model is any external party.

Security Properties.

Our protocol is required to satisfy the following three properties:

SP1 : (Not Impersonation) No adversary can impersonate the legitimate user in the authentication process.
SP2 : (Privacy) No privacy leakage regarding device owners occurs.
SP3 : (Accountability) The responsibility of any action can be attributed to the actual actor.

We now analyze the attacks compliant with the above threat model and show that security properties
are still satisfied.
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AA1 : The attacker intrudes into the database of the MQTT broker and changes the association of a
generated OTP in favor of an impostor.

AA2 : A legitimate user or a legitimate device keeps the random R and tries to re-use it (replay attack).
AA3 : The attacker tries to disclose the identity of the user who has performed the authentication procedure

through a device or tries to disclose the IPv6 address of such device.
AA4 : The attacker declares an access never actually occurred or repudiates a performed access.

The assumptions A1 and A2 are essentials for the entire protocol, as previously explained in the
description of the model. Considering the attack AA1. When a legitimate user u performs an authentication
request, the broker stores the random R and the IPv6 address d of the device which originates the request
until it verifies these values match with the values recovered by the blockchain. If the attacker alters R or
d in the database of the broker, it has to change the corresponding value of the entry 〈ETHu, h(d), R, T〉.
Due to assumptions A3, the data stored on the smart contract cannot be altered. Thus, then only option for
the attacker is to generate a legal Ethereum transaction originated from the address ETHu, where R or
h(d) is different by the legal value (i.e., the attacker impersonates the legitimate user). This is impossible
due the assumption A4, since the private key of the legitimate user is kept secret. This shows that the
property SP1 is verified. The attack AA2 is easily contrasted through the expiration time associated with
the random R. In fact, in case a user tries to use R after its validity time, the smart contract detects it.
On the other hand, if a device does not use R within an appropriate time frame, the IoT application
does not allow authentication. Regarding AA3, the only public information linked to the users are their
Ethereum addresses. The association identity Ethereum address is kept only by the broker. Thus, if this
latter is not compromised, since the identities of the users cannot be retrieved by any de-anonymization
(Assumption A5), the privacy of the users is preserved (security property SP2). Furthermore, regarding
the IPv6 addresses, only their digests are published on the blockchain. Since their domain is large enough
(128 bits) and the hash function is secure (Assumption A6), they cannot be disclosed. Finally, for the attack
AA4, all the accesses to the devices are stored on the blockchain in form of pseudonyms. In the case of
misbehavior, the information stored by the broker is enough to reveal and account each authentication
attempt to a user and to her/his specific device. This shows that the property SP3 is guaranteed.

6. Conclusions

This paper proposes an extension of the MQTT messaging protocol, adding OTP authentication by
using Ethereum as a second communication channel. With respect to the native authentication mechanism
provided by the MQTT protocol, this solution ensures secure authentication, preserving privacy and
allowing for accountability. Consider that the standard MQTT protocol is based on the simple transmission
from the client to the MQTT broker of a message containing a username and password as plain text.

With respect to the adoption of TLS at the transport layer, our solution could deal with low-power
devices typical of the IoT domain. Our solution introduces into the protocol the most lightweight
mechanism to implement strong authentication, i.e., OTP. Observe that in our solution the MQTT broker
is in charge of generating a secure challenge (i.e., to execute either a PRNG or a TRNG algorithm), thus
unloading the work of devices. Even if a naive inclusion of the OPT mechanism into the MQTT messaging
would keep open some vulnerabilities, our solution overcomes the well-known drawbacks thanks to the
adoption of Ethereum and smart contracts. Moreover, increased levels of privacy and accountability are
obtained by relying on the trust offered by the blockchain.

As a final consideration, we can observe that the usage of blockchain and smart contracts provides
benefits in terms of accountability and forensics, because all the authentication events are stored immutably
on chain. If needed in the specific application context, further transactions could be included (for instance,



Sensors 2020, 20, 2002 13 of 14

a confirmation transaction generated at the end of the authentication by the MQTT broker), to enforce the
accountability forensic information available in the blockchain.

In terms of future work, we plan to perform an experimental validation of the proposal, by also
verifying the costs of the smart contract operations.
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Abbreviations

The following abbreviations are used in this manuscript:

HTTP HyperText Transfer Protocol
IEC International Electrotechnical Commission
ISO International Organization for Standardization
MQTT Message Queuing Telemetry Transport
NIST National Institute of Standards and Technology
OTP One-time password
TCP Transmission Control Protocol
TLS Transport Layer Security
TRNG True random number generator
UDP User Datagram Protocol
UML Unified Modeling Language
UTF Unicode Transformation Format
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