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Abstract: Thermal cameras are popular in detection for their precision in surveillance in the dark
and for privacy preservation. In the era of data driven problem solving approaches, manually finding
and annotating a large amount of data is inefficient in terms of cost and effort. With the introduction
of transfer learning, rather than having large datasets, a dataset covering all characteristics and aspects
of the target place is more important. In this work, we studied a large thermal dataset recorded
for 20 weeks and identified nine phenomena in it. Moreover, we investigated the impact of each
phenomenon for model adaptation in transfer learning. Each phenomenon was investigated separately
and in combination. the performance was analyzed by computing the F1 score, precision, recall, true
negative rate, and false negative rate. Furthermore, to underline our investigation, the trained model
with our dataset was further tested on publicly available datasets, and encouraging results were
obtained. Finally, our dataset was also made publicly available.

Keywords: thermal; person; databases; deep learning; CNN; images; detection; outdoor; dataset;
model adaptation

1. Introduction

Person detection is the backbone of many applications ranging from surveillance and military
to traffic analysis. Many computer vision branches like behavior analysis, activity recognition, threat
recognition, and person re-identification start with the challenge of person detection.

Visual cameras capturing visible light, as well as thermal cameras capturing infrared radiation
have been utilized for person detection. Many feature based machine learning [1–4], as well as
deep learning [5–7] approaches have been utilized to deal with the problem of person detection
in thermal images. Even though thermal cameras have an advantage in outdoor person detection,
due to the independence of illumination, robust detection still becomes very challenging in diverse
weather and light conditions (see Figure 1) and is therefore far from a solved problem.

In the last decade, many deep learning based networks [8–14] have been abundantly created
and utilized for person detection in color images. The key to success in the area of machine
learning and deep learning is the availability of many datasets [1,13–16]. Recording and processing
of large amount of dataset take much effort and many resources. Alternatively, currently, single shot
detectors [8,10,11] and transfer learning are also gaining the attention of developers due to their speedy
detection and fewer data requirements. Transfer learning refers to learning for a task by transferring
the knowledge from the learning of another task. In deep learning, it refers to a method where a model
for one task is reused as a starting point for training another task [17]. This reduces the data required,
as well as the time needed for training. While learning based approaches have been successful in many
computer vision and data domains, there is still a large gap in being able to solve thermal detection
and classification problems due to the lack of a comprehensive and diverse dataset.
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Figure 1. Some challenging characteristics in thermal data. (a) Varying body temperatures. (b) Similar
temperatures. (c) Motion blur due to wind. (d) Shadows.

We reviewed the thermal datasets that are available publicly and can be used for person detection.
Most of the publicly available thermal datasets (see Table 1) are either for tracking or classification.
They are short sequences with little variability in the scene, i.e., weather conditions, light conditions,
and person heat radiation. This drawback decreases the generalization of detectors. Furthermore, most
of the thermal datasets available for person detection are pedestrian data from traffic scenarios
and captured from the front view, which makes it difficult to detect people far from the camera.
Only one dataset is available that has weather information including haze, rain, and cloudy
conditions [18]. However, it contains only a small number of images and hence fails to generalize.

Capturing and annotating a large amount of thermal data are still challenging. An optimal
solution would be to study a large range of data and utilize the tool of transfer learning to learn from
RGB data. A different range of phenomena affecting thermal videos in the outdoor environment
have not been investigated and described yet. Observing the effect of various data phenomena from
thousand of hours of video can help in optimizing dataset development and annotation. The study
requires a large dataset recorded over several weeks in different positions and in different places
to make sure that all possible outdoor phenomena are covered.

As our first contribution, we studied 20 weeks of variable outdoor thermal data thoroughly
to find different phenomena that affect the images. Even by determining all the phenomena, it is still
questionable what kind of data are going to have a positive effect and which kind will have a negative
effect on person detection in outdoor environments while training a network. Generally, it is presumed
that the higher the number of images, the better the detection results. However, due to the high
variation of the data characteristics and the low resolution of the thermal images, this is not necessarily
the case here, as some phenomena might contribute to a high FP rate. To investigate this research
question, as our second contribution, we categorized the phenomena and performed an ablation study
for each category. This study gave us a deep analysis of the impact of each category of thermal data
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and let us choose data in an intelligent manner. This analysis was performed using a single shot deep
network and the tool of transfer learning. We employed a single shot deep network due to its high
performance and fast learning rate. Finally, the third contribution of this article was a new public
thermal dataset for thermal person detection that contains variations regarding the time of day, weather,
distance to the camera, various body vs. background temperatures, and shadows. The thermal weights
will also be available for researchers for further utilization for transfer learning and solving other
thermal data problems.

The rest of the paper is organized as follows: Section 2 provides an overview of the related work.
In Section 3, we present our new dataset, and in Section 4, we conduct a thorough investigation into
the role of novel training data in transfer learning. Finally, in Section 5, we discuss our findings
and future perspectives.

2. Related Work

To create an understanding of thermal person detection, the following provides an overview
of the state-of-the-art techniques, as well as the datasets used for the evaluation of these techniques.

2.1. Multimodal Approaches

Hwang et al. [1] presented a benchmark dataset and baseline code for detection of pedestrians
in RGB-Thermal (RGB-T) data. Lahmayed et al. [19] presented a method based on multi-threshold
and Histogram of Oriented Gradients (HOG) and Histograms of Oriented Optical Flow (HOOF) color
features combined with an SVM using both thermal infrared and visible light images. They tested their
algorithm on the OSU color thermal dataset [20],video analytic dataset [21], and LITIVdataset [22].
Fritz et al. [23] investigated the generalization of a deep learning network in multispectral person
detection datasets. They mainly used the Caltech [24], city person [25], CVC-09 [26], KAIST [1], OSU
color thermal [20], and Tokyo segmentation [27] datasets for their investigation. Li et al. [28] used
the KAISTdataset [1] to create a person detector baseline and then narrowed it down by mining hard
negatives. Cuerda et al. [29] employed stream selection based on the confidence map. In this way, they
were able to choose the best image out of thermal and visible data based on day and night confidence
maps. Many feature extraction and deep learning based approaches have been used for dealing with
multimodal data. The problem with multimodal based techniques is the complexity in data handling,
as well as the complexity in hardware installation. Here, we are more concerned about thermal
only approaches.

2.2. Thermal Approaches

Thermal cameras have been utilized in many scenarios ranging from industry to daily life
applications [30]. Much research has been carried out for person detection in the infrared domain.
Dai et al. [31] presented a method based on background subtraction and shape based classification.
They tested their method on the OSU thermal pedestrian database [18]. Zhang et al. [4] also
presented a method based on background subtraction and boundary gradients, the temporal coherence
of the object area, and the region signature of the intensity distribution. They also tested their method
on the OSU thermal database [18]. Li et al. [2] implemented the pedestrian detection in infrared
imagery by tuning HOG features. They also tested their algorithm on the OSU thermal pedestrian
dataset [18]. A two-stage person recognition approach based on Maximally Stable Extreme Regions
(MSERs) and verification of the detected hot spots using a Discrete Cosine Transform (DCT) based
descriptor was proposed by Teutsch et al. [3]. They evaluated their approach on the OSU thermal
pedestrian [18], OSU color thermal [20], and Terravic motion IR datasets [32]. Many [29,33–39] used
their own datasets for the evaluation.

Recently, Herrmann et al. [5] tested the Single Shot Detector (SSD) with different preprocessing
methods to assess thermal performance. They used KAIST [1] for performance evaluation. They [5]
also worked with MSERs and CNN and tested on the AMROS, OSU thermal pedestrian [18], OSU color
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thermal [20], and Terravic motion IR [32] datasets. Tumas et al. [6] proposed an HOG based pedestrian
detector combined with CNN for the FIR domain. Heo et al. [7] proposed adaptive Boolean map
based saliency combined with YOLO for pedestrian detection at night time. They used CVC-09 [26]
for their experiments. For sports player detection, Gade et al. [37,38,40] presented a method based on
background subtraction and automatic thresholding. They tested their method on the indoor thermal
dataset [40]. Huda et al. [39] previously suggested a simulation based occlusion handling method
for detecting and counting the players. This was tested on their own sports dataset.

2.3. Datasets

Different multimodal and thermal datasets are publicly available for traffic analysis, surveillance,
person tracking, and human pose estimation, among others. The datasets that can be used for person
detection are listed in Table 1. The scene characteristics, type of data, number of frames, viewpoint,
and scene characteristics/or main purpose of the datasets are also provided in the table. All these
datasets can be used as pre-training of another network according to the application area.

Table 1. Available thermal datasets for person detection and the characteristics of each dataset.
“Application area/main scene characteristics” summarizes the main features of the videos in
each dataset. “Viewpoint” is estimated by generally looking at the image for the camera angle and the
distance of persons from the camera.

Name # of Frames
# of
Sequences

Viewpoint
Application Area/
Main Scene
Characteristics

Camera/
Image
Specifications

KAIST [1] 95 k Near front

outdoor
traffic,
day and night
multispectral

640 × 480,
20 Hz

OSU
Color Thermal
(CT) [20]

17 k Far top
Outdoor
walkway

Raytheon
PalmIR 250D,
320 × 240,
30 Hz

AAU-VAP
TPD [41]

5.7 k 3 Near front Indoor office
Axis Q1922
640 × 480
30 Hz

LITIV-VAP [22] 4.3 k Near front Indoor hall

CVC-09 [26] 11 k Near
Traffic pedestrian,
day and night

640 × 480

CVC-14 [42] 7.7 k Near
Traffic pedestrian,
day and night

LITIV-2018 [43] 3 Near front Indoor hall

OSU
Thermal (T) [18]

0.2 k Far top

Outdoor
pedestrian
haze, fair,
light rain,
partially cloudy

Raytheon
300D,
320 × 240,
30 Hz

ASL-TID [44] 4.3 k 8 Varied
Outdoor varied
background,
person, cat, horse

FLIR Tau
324 × 256
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Table 1. Cont.

Name # of Frames
# of
Sequences

Viewpoint
Application Area/
Main Scene
Characteristics

Camera/
Image
Specifications

Terravic
Motion IR [32]

23.7 k 18 Varied

Outdoor tracking,
surveillance,
indoor hallway,
plane tracking,
underwater and
near-surface motion,
background motion

Raytheon L-3
Thermal-eye
2000AS,
320 × 240

LSI Dataset [45] 15.2 k 13
Outdoor
pedestrian Hz

Intigo Omega
imager,
164 × 129

BU-TIV [46]
Benchmark
Atrium

7.9 k 2 Near Indoor atrium 512 × 512

Lab 26.7 k 3 Near Indoor and 512 × 512

Marathon 1 k Very far
outdoor
marathon

1024 × 640

VOT-TIR 2015 [47]
Birds

270 1 Near front Fair outdoor
640 × 480,
30 Hz

Crossing 301 1 Near top Fair outdoor
640 × 480,
30 Hz

Crouching 618 1 Near front
Outdoor
roadside

640 × 480,
30 Hz

Crowd 71 1 Near front
Outdoor roadside
occluded

640 × 512,
30 Hz

Street 172 1 Far front Outdoor street
640 × 480,
30 Hz

Saturated 218 1 Near front
Outdoor street
occluded

640 × 480,
30 Hz

Mixed
distractor

270 1 Near front Indoor
527 × 422,
30 Hz

Hiding 358 1 Near front Indoor
263 × 210,
30 Hz

Garden 676 1 Near top Outdoor garden
324 × 256,
30 Hz

Depth-wise
crossing

851 1 Medium top
Outdoor fair
roadside

640 × 480,
30 Hz

Trees 665 1 Far top Outdoor dark
640 × 480,
30 Hz

Thermal soccer
dataset [40]

3000 4 Near top
Indoor soccer
arena

640 × 480,
30 Hz

All the datasets available consisted of sequences with a short duration; thus, they had less
variability in terms of weather and light conditions. Most of the available datasets were pedestrian
data from traffic data analysis and captured from a frontal viewpoint. Many datasets were indoor,
and thus, these were captured in controlled light and temperature conditions and did not include
all the variability of outdoor environments. Even with a large number of frames [1] and weather
information [18], it was still questionable if the data were enough to include all outdoor phenomena.
Therefore, the research community lacks a comprehensive and diverse dataset to develop robust



Sensors 2020, 20, 1982 6 of 17

algorithms for the detection of people. Therefore, we studied long durations of data and came up with
a shorter, but novel and diverse dataset below that is comprised of all outdoor phenomena.

3. Novel Dataset

The first contribution of this paper is the investigation and study of a diverse thermal dataset
for person detection. In thermal images, weather conditions have a similar effect as lighting conditions
have on RGB images. it is therefore essential to include varying weather and light effects in a dataset.
Furthermore, because the resolution of thermal sensors is still relatively low, the size of objects
in images is also an important factor. The data we recorded were captured in outdoor sports fields
with people playing soccer or performing related exercises. The nature of these recordings ensured
that many challenges related to person detection were included: different scales, pose variations,
interactions/occlusions between people, and fast and erratic motion. Regarding the weather effects,
we recorded 20 weeks of thermal recordings across January to April in Denmark. Therefore, it spanned
the periods from little daylight to bright sunny days and snowy days of winter to pleasant
spring days. In the recordings, we experienced several different key challenges: varying temperatures
(people hotter/colder/same temperature than the ground), shadows (parts of the ground were not
heated by the Sun), wind (camera moving), snow (regions on the ground with different reflection
and emissivity of heat), and occlusion (people in groups) in the thermal images.

After examining all challenges and scrutinizing the entirety of the data, we suggested that
nine different phenomena should be included in a dataset for it to be sufficiently diverse and help
the model generalize outdoor person detection in thermal images. These nine phenomena are listed
and illustrated in Figure 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Nine different phenomena that are included in our novel dataset. (a) Low resolution.
(b) Far viewpoint. (c) Wind. (d). Occlusion. (e) Shadow. (f) Snow. (g) Opposite temperature.
(h) Similar temperature. (i) Good condition.
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3.1. Data Recording

We recorded thermal videos from 10 different sports fields for two weeks each, which comprised
20 weeks of data. The cameras used for recording were Axis Q1921 (resolution 384 × 288 pixels)
and Axis 1922 (resolution 640 × 480), and they were mounted approximately 9m above the ground on
a light pole surrounding the field. Three cameras were installed at the center of each field to cover
the entire field area. The sequences selected for this investigation were from all of the cameras’ views.
The recordings were done from January 2018 to April 2018.

3.2. Data Description

As the first step in transfer learning is a model adaptation, we used 3000 indoor publicly
available images [40] as pre-training images for model adaptation. The dataset from [40] was selected
for pre-training as it had nearly perfect thermal data, i.e., lighter person on a darker background.
Moreover, it was similar to our dataset as it was recorded in an indoor sports field and contained
24,000 person annotations. As the data from [40] helped in model adaptation and saved in annotation
cost, our new dataset (Table 2) helped in obtaining the goal of generalization in detection as it included
all possible outdoor phenomena from an outdoor environment.

Manually annotating all the data was unrealistic. Therefore, we scrutinized the periods where
all nine phenomena occurred, and the number of players in a given image in these periods varied
(from 0 to 40). In each period, we selected a frame every 160th second and annotated that frame.
This large temporal gap between annotated frames was introduced to enforce as much diversity as
possible. One-thousand nine-hundred forty-one frames were selected as the training dataset. In these
frames, a total of 5590 persons were annotated. The details of the dataset are presented in Table 2.
For testing purposes, 1000 more frames were randomly selected from all the recorded data (100 frames
from two weeks of video). it was manually checked that no image from the training data was repeated
in the testing data. The camera view (left, right, middle) was also selected randomly. All of the data
were annotated with the MATLAB object detection bounding box annotator [48]. Our person detection
dataset (PD-T) is available at http://www.vap.aau.dk/dataset/.

Table 2. Key characteristics of the proposed training data.

Category Phenomena # of Frames # of Persons

Viewpoint Good condition 122 632
Far viewpoint 64 652

Heat effects Opposite temperature 72 792
Similar temperature 107 644

Image artifacts Low resolution 158 734
fOcclusion 20 305

Weather effects
Shadow 171 742
Snow 1060 168
Wind 167 921

4. Investigating the Role of Training Data

A traditional deep learning network contains a large number of parameters. Training such
a network requires an enormous amount of training data. The online availability of such an enormous
amount of data is not always a possibility, especially in non-RGB applications. Transfer learning
is the optimal solution in such conditions since many features in the first layers of a deep learning
network are similar across applications [49]. The question is which phenomena need to be included
in a dataset for outdoor thermal person detection for a positive transfer. To investigate this research
question, we needed a pre-trained detection algorithm on which we could apply transfer learning with
our data. we chose the CNN based single shot detector YOLOv3 [8].

http://www.vap.aau.dk/dataset/
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You Only Look Once (YOLO) is one of the fastest deep learning algorithms for the detection
of objects in an image, which can process 45 frames per second. This algorithm treats the problem
of detection as a regression problem and trains on the whole image at once to optimize the performance.
Moreover, it detects the class objects with their probabilities at the same time without requiring
region proposals.

The YOLOv3 network, used in this work, divided every training image into a grid of (S × S) cells.
it searched for the center of the target objects in these grid cells. B number of bounding boxes with
their confidence scores could be predicted by each grid cell. Confidence was defined as the probability
of detected objects multiplied by the Intersection over Union (IoU) between the ground truth bounding
box area and the detected object bounding box area.

The model was more effective at detecting small objects compared to previous versions of YOLO
because it predicted bounding boxes at different scales. This added multiscale detection in v3 allowed
us to detect a person very far from the camera. At the same time, the number of predictable bounding
boxes in each cell provided some limitation on the detection.

4.1. Assessment Protocol

To assess the role of training data, we divided our training data based on the phenomena discussed
in Section 3 into categories defined in Table 2. The amount of test data was always kept the same.
Tests were performed by adding one category of images at a time and then combining different
categories of images. A total of 16 different combinations were tested, listed in Table 3. Indoor data
were from [40] and were used as a baseline for model adaptation. Results for each of these combinations
would provide insights into how different types of training data affected the detection results on
varying data.

Table 3. List of combinations for tests.

# Combinations # Combinations

1. Indoor 9. Indoor+heat effects+image artifacts
2. Indoor+viewpoint 10. Indoor+heat effects+weather effects
3. Indoor+heat effects 11. Indoor+image artifacts+weather effects
4. Indoor+image artifacts 12. Indoor+Viewpoint+heat effects+image artifacts
5. Indoor+weather effects 13. Indoor+viewpoint+heat effects+weather effects
6. Indoor+viewpoint+heat effects 14. Indoor+heat effects+image artifacts+weather effects
7. Indoor+viewpoint+image artifacts 15. Indoor+viewpoint+image artifacts+weather effects
8. Indoor+viewpoint+weather effects 16. Indoor+viewpoint+heat effects+image artifacts+weather effects

For transfer learning, we used convolution weights that were pre-trained on ImageNet [14]
using the Darknet53 [8] model due to their reported high performance and speed [8]. The network
was trained with S = 7, where network iterations were set to 40,000, and the results from the mean
of iterations (10,000, 20,000, 30,000, and 40,000) were considered. Here, we set the learning rate to 0.001,
momentum to 0.9, and decay to 0.0005. The training and testing of all combinations were performed
using a graphical processing unit GTX 1080 with Linux Ubuntu 16.04.

4.2. Evaluation

We used precision, recall, F1 score, False Negative Rate (FNR), and True Negative Rate (TNR) as
the performance measures. Along with recall and precision, we were also interested in true and false
negative rates, as these matrices are of great importance in surveillance and occupancy analysis
applications, where an event of negative detection is as important as an event as positive detection.
The F1 scores of all the combinations are provided in Table 4. Recall, precision, TNR, and FNR
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are illustrated in Figure 3. Here, we calculated our measures, i.e., F1 score, recall, precision, TNR,
and FNR, as:

F1 score =
Precision ∗ Recall
Precision + Recall

, Recall =
TP

TP + FN
, Precision =

TP
TP + FP

(1)

TNR =
TN

TN + FN
, FNR =

FN
FN + TP

(2)

True Positives (TP) were defined as the number of persons that were correctly detected as persons
and True Negatives (TN) as the number of images with zero persons correctly identified as having
zero persons. False Positives (FP) represented the regions in the image with no person, but there was
nonetheless a person detected. False Negatives (FN) represented the regions where persons were
present, but the detector failed to recognize them.

Results presented in Table 4 indicated that for Combinations 2 to 5, when only one category
was added at a time, viewpoint images significantly increased the value of the F1 score, indicated
by green, while the images with the heat effect had the least impact on the results, indicated by red.
For Combinations 6 to 11, the alliance of heat and weather effects and the alliance of viewpoint
and image artifacts seemed to have the lowest performance. The combinations of heat effect and image
artifacts and the combination of viewpoint and weather effects had the highest performance in terms
of F1 score. For the last combinations, 12–15, we could see that including all categories exclusive
of the weather effect had the highest F1 score of 89.74%, while the other combinations performed almost
equally. The last combination with all data included as expected showed the maximum performance
in terms of F1 score.

In looking individually at the results of each combinations, one noticeable observation was found
with Combinations 2, 7 and 10. These combinations almost had the same performance. Although,
if we looked at the number of images in Combinations 2 and 10, Combination 10 had more than three
times the number of images as Combination 2. The same pattern could be observed in Combinations
12 and 16. The weather effect contained more than half of the data, but its inclusion increased
the performance only by 1%.

The overall contribution of each category is also shown in the last row of Table 4. The mean was
computed by taking the mean of all F1 scores in which a particular category was included. Results were
consistent with the precision and TNR results, and heat effects had the lowest F1 score. The highest
F1 score was obtained for the viewpoint category, which had images with good contrast and both far
and close views. Moreover, this category introduced scene adaptation from an indoor to outdoor field
environment. it could also be observed that although the image artifacts category had eight times
fewer training images than weather effects, it had a better mean F1 score.

The results obtained from the experiment are also presented in Figure 3. Precision and recall
are shown in Figure 3a, and FNR and TNR are shown in Figure 3b. it can be seen that for certain
combinations, i.e., 3, 6, 10, and 13, there were visible dips in the precision and TNR values.
The magnitude of the dip in precision was less than the TNR because only FP was considered
in the calculation of precision, whereas in the TNR calculation, both FP and TN played a role.

If we looked at all these combinations, the common category was “heat effects”. The other
noticeable effect was the decrease in the dip magnitude with the addition of more categories. As more
and more categories were added to “heat effects”, the precision and TNR both improved. There was
no significant change observed in the FNR results. However, the recall had an opposite effect from
the precision and TNR, as the addition of the “heat effects” category improved recall. The details
of this improvement are explained later in the section.
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Table 4. F1 score of combinations. Here, X indicates the category added in a combination. Other than
indoor data, Combinations 2–5 only had one category of images, Combinations 6–11 two categories
of images, and Combinations 12–15 three categories of images. Lastly, Combination 16 had all categories.
The red color shows the worst-performing combinations, and the green color shows the best performing
combinations within each section.

Combinations Indoor Viewpoint Heat
Effects

Image
Artifacts

Weather
Effects

F1
Score

1 X 63.35

2 X X 81.52
3 X X 75.35
4 X X 78.39
5 X X 79.68

6 X X X 83.63
7 X X X 81.74
8 X X X 87.37
9 X X X 88.24
10 X X X 81.71
11 X X X 83.04

12 X X X X 89.74
13 X X X X 87.57
14 X X X X 87.34
15 X X X X 86.99

16 X X X X X 90.23

Mean 82.87 86.10 85.48 85.78 85.49

(a) (b)

Figure 3. (a) Precision and Recall, (b) True Negative Rate (TNR) and False Negative Rate (FNR).

The precision and TNR were maximum for the image artifacts and weather effects categories.
This was because occlusion and low resolution images were present in the image artifacts category,
and the FP and FN reduced; whereas for weather effects, more images of empty fields with snow
and shadow were added in the training data. Snow and shadow could sometimes resemble humans
and be detected as persons. Therefore, with the addition of the weather effect category, FNR and TNR
both improved.

Herrmann et al. concluded that an inverted thermal dataset had a resemblance to the grayscale
of RGB data. Therefore, the domain adaptation was quicker when pretrained RGB weights were used.
In our results, we could also observe a similar response in terms of recall.

We can see in Figure 3a that every time the heat effects category was added, recall improved.
However, at the same time, precision and TNR reduced. All the other categories in Table 2, except heat
effects, had images with persons in the dark background. Therefore, the heat effect category, which
was 8% of the complete training dataset, acted as noise. In particular, similar temperature images
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had the most effect on reducing TNR. Any lesser contrast noise could be detected as FP. This problem
could be solved by generalizing the dataset in a single domain by detecting the heat category events.
Results also suggested that converting the whole dataset into inverted thermal images might be more
beneficial, as this would help improve the recall and model adaptation.

To select which category to include in training, it still depended on the target application.
For example, if we compared Combinations 12 and 16, the increase in the F1 score was only 0.49%
by including the data from the weather effect category. To show the effect of including the weather
effect data, a few test images are shown in Figure 4. Figure 4a,b is from our dataset, and Figure 4c–d
were taken from the publicly available CVC-09 database. Figure 4a,c,e was tested with Combination
16, where the weather effect was included; whereas Figure 4b,d,f is the results of the same images
when the weather effect was not included, i.e., Combination 12. it can be seen that without the weather
effect, TN and FN were better; however, with its inclusion, TP improved, but the FPR also increased.
For example, if we needed the system for surveillance, then it would be important to avoid an FN
event. In such cases, weather effects data would be required for training. Occupancy analysis has
similar requirements.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Example images for qualitative assessment. (a,c,e) are the results for Combination 16,
while (b,d,f) are the results for the same images from Combination 12. The images (a,b) are from
our test data, and the images (c–f) are from OSU-T [18]. In these images, highlighted red boxes
are incorrect detections.
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4.3. Results on Publicly Available Datasets

We picked three public datasets to test the generalization of our trained weights for person
detection. The datasets consisted of three different diverse datasets from Table 1: CVC-09 [26],
OSU-T [18], and BU-TIV-atrium [46].

OSU-T was recorded outdoors with different weather conditions, as mentioned in Table 1.
it consisted of 284 images. The data were captured from a far top viewpoint. CVC-09 was recorded
from a camera in a car while driving. The images were divided into two subsets for day and night.
CVC-09 (day) consisted of 2881 test images and 4223 training images, out of which 1112 were negative
frames and 3111 positive frames. CVC-09 (night) consisted of 2883 test images and 3200 training
images, out of which 1001 were negative frames and 2199 positive frames. BU-TIV was recorded
indoors with a near top viewpoint. it had three sequences of videos with Views 1, 2, and 3. we chose
its View 1 for our tests, which consisted of 3482 images.

Tests on publicly available datasets were performed in two sessions. Firstly the images were
tested using the weights obtained from Combination 16, shown in Table 3. In the second session,
tests were performed by adding 5% of the data from the public dataset to the Combination 16 dataset
and retraining it.

For training the second session test, from OSU-T and BU-TIV, we added 5% of the whole data
in training corresponding to 14 and 174 images, respectively, and from CVC-09 (day and night),
5% of the training data was added to the training set corresponding to 211 and 160 images,
respectively. The number of iterations for learning was 100 to avoid overfitting due to a small
number of training images.

Results of this experiment are presented in Figure 5. Blue bars are the results obtained from
Combination 16 weights, and red bars are the results obtained after retraining Combination 16
with 5% of the public dataset. it can be seen that by using the weights from Combination 16,
the performance was not good, and in the case of BU-TIV, the algorithm failed to detect anything.
In BU-TIV, the viewpoint was different, and people appeared larger than in our dataset. However,
with only 5% of training data and with 100 iterations, a significant increase in precision could be seen.
The highest precision was obtained for BU-TIV and the lowest for the CVC data, with an average
precision of 0.69%. In BU-TIV and OSU-T, there were no other heated objects present other than
humans, and in OSU-T, the viewpoint was very similar to our dataset; therefore, good precision results
were achieved.

(a) (b)

Figure 5. (a) Precision and (b) recall measures of different training weights on publicly available
datasets. Here, the blue bars are the results tested by our thermal training weights, and orange bars
are the results tested by our thermal training weights and further training by adding only 5% of the new
dataset for 100 iterations.

In the CVC dataset, a significant difference between day and night results was observed.
During the day, the temperatures of car bodies, tires, and other objects increased. Their pattern
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became similar to human body features, which increased FPR and decreased precision. Example
results from all datasets used for evaluations are shown in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Example images for qualitative assessment. The images (a) and (b) are from our test
data. The results of images (a,b) are obtained from Combination 16, shown in Table 4. Image (c)
is from CVC-day [26], image (d) from CVC-night [26], image (e) from OSU-T [18], and image (f) from
BU-TIV-atrium [46]. The contrast of (f) is adjusted for better visualization. In these images, highlighted
red boxes are wrong detections.
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5. Conclusions

In this work, we reviewed publicly available thermal datasets that could be used for person
detection, and we documented the lack of diversity in these datasets. we also studied and presented
a new thermal dataset and found nine different phenomena that could occur in outdoor soccer fields.
The phenomena were further categorized into four categories. The impact of each category was
studied for model generalization using transfer learning. Results showed that each category benefited
the model generalization differently. The results showed that depending on the application, categories
could be selected intelligently to obtain the desired results. The weights obtained from our dataset
were further tested on three publicly available datasets. For a relatively small amount of training data
from a new domain and with few iterations, good performance was achieved for person detection.
Results showed that our weights could be used for model adaptation for a new domain. This will help
researchers save the effort of annotating large datasets and also the time for training a new network
from scratch. Moreover, with weights for YOLOv3, our new dataset is made publicly available
for further research.
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