
sensors

Article

Seismic Model Parameter Optimization for
Building Structures

Lengyel Károly † , Ovidiu Stan †,* and Liviu Miclea †

Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca,
Memorandumului Str. 28, 400014 Cluj-Napoca, Romania; Karoly.Lengyel@student.utcluj.ro (L.K.);
Liviu.Miclea@aut.utcluj.ro (L.M.)
* Correspondence: ovidiu.stan@aut.utcluj.ro
† These authors contributed equally to this work.

Received: 18 February 2020; Accepted: 29 March 2020; Published: 1 April 2020
����������
�������

Abstract: Structural dynamic modeling is a key element in the analysis of building behavior for
different environmental factors. Having this in mind, the authors propose a simple nonlinear
model for studying the behavior of buildings in the case of earthquakes. Structural analysis is a
key component of seismic design and evaluation. It began more than 100 years ago when seismic
regulations adopted static analyzes with lateral loads of about 10% of the weight of the structure.
Due to the dynamics and non-linear response of the structures, advanced analytical procedures were
implemented over time. The authors’ approach is the following: having a nonlinear dynamic model
(in this case, a multi-segment inverted pendulum on a cart with mass-spring-damper rotational joints)
and at least two datasets of a building, the parameters of the building’s model are estimated using
optimization algorithms: Particle Swarm Optimization (PSO) and Differential Evolution (DE). Not
having much expertise on structural modeling, the present paper is focused on two aspects: the
proposed model’s performance and the optimization algorithms performance. Results show that
among these algorithms, the DE algorithm outperformed its counterpart in most situations. As for
the model, the results show us that it performs well in prediction scenarios.

Keywords: structural dynamic modeling; optimization; DE; PSO; parameter estimation; extended
Kalman filter; inverted pendulum

1. Introduction

Structural dynamic modeling of buildings has come a long way in the last 50 years, due to the
competition of software development companies and the increased availability of computational
resources. These technologies have evolved from simulating only prismatic beams to including
geometrical and material nonlinearities [1]. From a control engineering perspective, these models have
a particularly great importance when designing control systems for earthquake hazard mitigation.
Having a good model exclusively for the above mentioned purpose can significantly improve the
behavior of these systems [2].

The civil engineering field is imaginative, and it ranges from water-resources to structural design
and analysis. Generally speaking, the problems in this field are unstructured and imprecise, influenced
by a designer’s intuitions and past experiences. The conventional computing methods based on
analytic or empirical relationships take time and are labor intensive when they are presented with
real life problems. In addition, Soft Computing techniques (SC) based on the reasoning, intuition,
conscience, and knowledge of an individual can be easily empowered to study, model, and analyze
such problems [3,4].

Sensors 2020, 20, 1980; doi:10.3390/s20071980 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2170-6999
https://orcid.org/0000-0002-2006-9633
http://www.mdpi.com/1424-8220/20/7/1980?type=check_update&version=1
http://dx.doi.org/10.3390/s20071980
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 1980 2 of 33

Unlike conventional computing technology based on exact solutions, in SC, either independent or
mutually complementary work supports engineering activities by utilizing the human mind’s cognitive
behavior to achieve cost-effective solutions aimed at exploiting the trivial and uncertain nature of
the problem in a given tolerance of imprecision to achieve a quick solution to a problem [5]. As a
multidisciplinary field, SC employs a variety of complementary tools, including statistical, probability,
and optimization tools.

According to Falcone et al., SC should be divided into two main domains [5]. The first one,
approximate thinking, collects a set of knowledge-driven methods that sacrifice health or completeness
in order to achieve a substantial speed of thinking. The second one, randomized search, is also a family
of digitally optimized techniques, such as direct search, free derivative search, or black-box search,
which work by moving iteratively to better positions in the search space, which are sampled from a
surrounding hyper sphere.

Earthquake engineering can be described as the civil engineering branch devoted to reducing
the risks of an earthquake. An earthquake is the moment when the Earth’s surface is shaking, which
is caused by moving interactions on the boundary of a plate [6]. The sudden release of energy,
called seismic waves, kills thousands of people and destroys many buildings. In this narrow context,
earthquake engineering examines problems that occur when the earthquake occurs and seeks methods
that minimize the damage caused by its activities. The first leads to the prediction of an earthquake,
while the second leads to the optimal design of objects’ seismic performance. A whole range of
earthquake engineering problems have arisen that are suitable to solve by SC [7,8]. The focus of SC in
earthquake engineering is on solving two types of problems: the search for the best seismic structural
design (system analysis); data analysis for earthquake prediction (modeling and simulation). In order
to achieve earthquake safety, seismic design optimization addresses passive and active structures [9].

The goal of this project is to measure the performances of different variants of DE and PSO in
optimizing the parameters in a proposed seismic model for building structures that is lightweight
enough to be used for different applications that require easy computation and reliability. The authors
will analyze the convergence speed and other indicators of the algorithms’ performance and will
compare the two algorithms in this use case. The achieved model will also be tested in two scenarios:
simulation and prediction. The prediction will be performed using an extended Kalman filter.

The proposed model is a multiple segment inverted pendulum on a cart with mass-spring-damper
rotational joints, as illustrated in Figure 1.

Figure 1. Three segment inverted pendulum on a cart with mass-spring-damper joints.

Sensors 2020, 20, 1980 3 of 33

The bibliographic search for this project can be divided into the following sections, regarding the
field in which it was performed:

• System identification and parameter estimation
• Kinetic modeling
• Kalman filter
• Optimization

1.1. Context

Most buildings are deformed significantly when strong earthquakes affect them. One of the factors
contributing to quantitative thinking beyond the elastic response of structures is the gap between
measured ground speed and the seismic design forces defined in codes [10]. There is however a
long way to go prior to more advanced seismic codes for the explicit nonlinear analysis. The use
of force reducing factors was initially the most popular approach, and today, this approach is still
popular. Although this concept of taking inelastic behavior into account has been useful for many
decades in linear analysis, it is only possible to give a realistic assessment of structural behavior in the
inelastic range through non-linear analysis. A gradual implementation of nonlinear analyses, which
should be explicitly able to simulate the second fundamental feature of a structured answer to strong
seismic movement of the Earth, namely the inelastic behavior, characterizes present developments of
the analysis processes in seismic codes. Data on the structure need to be known for such nonlinear
analyses, which makes them well suited for analyzing existing structures. For newly designed
structures, a preliminary design must be carried out before a nonlinear analysis is started [11].

1.2. System Identification and Parameter Estimation

Due to the uncertainty, time-lagging, multi-variable couplings, and the limitations between the
input and output, traditional model control methods are becoming increasingly difficult to control
complex processes correctly in the rapid development of modern industry. Due to the complex
structure, different parameters and time variations for industrial applications, this is a challenge
for traditional identification methods, particularly in multivariate systems. Methods for identifying
multi-variable systems date back to the 1960s, but the majority of methods for identifying them require
noise-free observations. Together with their high calculation costs, this makes them difficult to apply
in practice [12]. In view of the above problems, many scientists proposed that a polynomial matrix be
substituted for the state space model, to define the multi-variable system [13].

Some researchers then proposed the Hankel matrix-based methods for row subspace identification.
The first step in this method is to obtain the system’s increased observability matrix (or status sequence)
and then calculate the parameter matrix of each sub-space. Multi-variable output error status [13],
sub-space state-space identification numerical algorithms [14], and canonical variate analyses [15] are
the main representative techniques.

Input signal selection is an important factor in system identification, as stated in [16], where the
authors discussed the importance of the input signal selection and explained, briefly, a few types of
input signals for system identification. The discussed signals were: the step, pseudo random binary
sequence, auto-regressive moving average process, and sum of sinusoids. Based on this information
and from prior knowledge, our choices for identifying signals were the step and PRBS signals. In the
same book, in Chapter 1, the authors discussed the influence of data feedback on the identification
performances. This is of great importance, because our system has strong feedback. They concluded
that by having feedback in a system, it can make it unidentifiable. However, by having a reference
signal, the previously mentioned problem disappears, affecting the identification performance.

Extensive research has also been done on PSO’s performance compared to that of GA. One
example is [17], where the authors discussed the performance of the PSO algorithm compared to
that of Genetic Algorithms (GA) in system identification. Their case was a nonlinear mode,l and
the experiment was performed online. They concluded that this type of algorithm is an efficient

Sensors 2020, 20, 1980 4 of 33

tool in nonlinear system identification, producing similar and better results than GA, having the
advantage of low computational cost and faster convergence. Worden et al. also recently arrived at the
same conclusion about nonlinear system identification [18]. The identification of non-linear systems
involves much more than linear identification. The following aspects contribute to this observation:
non-linear models live in a multiplex system of a greater size, while linear models live in easier
to characterize simple hyperplanes; in non-linear system identification, structural model errors are
frequently inevitable, and this affects the three main choices: experiment design, model selection,
and cost-function selection; entering noise before non-linearity requires new numerical tools to solve
the problem of optimization [19]. Moreover, extensive research has been done to compare parameter
estimation capabilities to PSO variations like PSO, APSO, and Quantum behaved PSO (QPSO) [20,21].
The nonlinear model types on which the experiments are performed are the Hammerstein and Wiener
models. Their conclusion was that using swarm intelligence, such as modifying the original algorithm,
improved the parameter estimation performance. Other variations of the PSO algorithm have been
studied for system identification; for example, the PSO-QI algorithm was discussed in [22], where the
authors of the paper analyzed the use of the PSO-QI algorithm for system identification, which was
compared to to the classic PSO and DE. They concluded that for system identification, the modified
algorithm was the best among the three because of its fast convergence.

Research has also been done when using DE for system identification and parameter estimation in
systems. The work in [23] discussed the optimal approximation of linear systems using a Differential
Evolution (DE) algorithm. The authors incorporated a search space expansion scheme in order to
overcome the difficulty of specifying proper intervals for initializing the DE search. Besides PSO, DE
variations have also been studied for these tasks, for example in [24], where the authors discussed a
hybrid DE algorithm for nonlinear parameter estimation of kinetic systems. In this article, the authors
combined the DE algorithm with the Gauss–Newton method. Basically, the DE was used to provide a
good initial point for the Gauss–Newton algorithm, which then found the absolute minimum. Their
conclusion was that this approach was an effective one for this kind of task.

1.3. Kinematic and Kinetic Modeling

Kinematics refers to the study of object movement without taking into account the forces acting on
it. An n segmented inverted pendulum can be considered as a kinematic chain (parts serially connected
by joints). Each element can be defined as a rigid body defining a geometric relationship between
two joints [25]. Based on these assumptions and on Natsakis’ course [26], an n segmented inverted
pendulum kinematic model can be looked at as a one degree of freedom joint series of n elements
connected on n− 1 links with the length considered to be zero. The axis of a joint is determined by the
rotation of link i in relation to link i− 1. The distance between two different axes can be measured by
determining the common perpendicular on them. If two axes are parallel, they can describe an infinite
number of common perpendiculars, but all with the same length.

The forward kinematics model describes the relation between variable orientation or displacement
inputs for each joint and the position and orientation of the end effector, represented in a 4 × 4
homogeneous transformation matrix. There are several approaches for computing the forward
kinematics model, but in this paper, we will discuss the Denavit–Hartenberg convention [27,28].
The coordinate system for each link is defined by the following rules: the rotation axis of the joint
represents the Z axis; the perpendicular on the plane formed by the current joint Z axis and the
following joint Z axis represents the current joint X axis. The convention is based on four parameters,
set out in Table 1 after defining the coordinate system.

Sensors 2020, 20, 1980 5 of 33

Table 1. Denavit–Hartenberg parameters.

No. Symbol Description

1 ri−1 the distance between axes Zi−1 and Zi measured on the Xi−1 axis
2 αi−1 the angle between axes Zi−1 and Zi measured around Xi−1
3 di the distance between axes Xi−1 and Xi measured on the Zi axis
4 Θi the angle between axes Xi−1 and Xi measured around the Zi axis

Olav et al. proposed the Lagrangian approach to determine the kinetic model [29], but the
advantages [30] and limitations of this type of model [31] can be easily found in the literature.

1.4. Kalman Filter

In 1960, R. E. Kalman introduced his famous discrete data filtering technique [32]. The Kalman
filter is basically a set of mathematical equations that provides an efficient way of computing the least
squares problem using a recursive method. It is very powerful, because it can estimate the future, the
present, and the past states of a system, even if its true nature is unknown. The original algorithm is
suitable for linear state space models. For nonlinear state space models, the extended Kalman filter
was introduced. This algorithm linearizes the operation around a current estimate with the help of
partial derivatives [33].

The Kalman filter, even though it was introduced in 1960, is widely used and lately has provided
one of the most common ways to minimize the disadvantages [34] associated with strap-down inertial
navigation systems [35]. The filtering method requires an accurate dynamic model [36] and observed
integration model, including an inertial sensor error stochastic model and a priori details on content
regression coefficients between the two systems [37]. However, there are several inconsistencies, as
follows: the difference in the linearization approach; precise stochastic modeling that cannot accurately
model sensors; the need for stochastic parameters to be adjusted. Each needs a new a priori sensor
system and information [38]. In addition, some filtering methods [39,40] were successfully applied.

In the fine alignment process, the error of the inertial sensors is estimated and compensated using
the optimum estimation algorithm in order to improve the accuracy of the initial attitude matrix. The
most frequently used estimates are based on a Kalman filter, which can handle only linear systems and
requires accurate information about noise statistics [41].

Petritoli et al. concentrated on the well-known data fission with integrity monitoring, low cost
sensors, and a low energy consumption computer; however, they did not take into account the aging
effects of such low cost sensors in depth [42].

The Kalman filter is relatively less mathematically complicated and easier to deploy compared
to the other filters, such as the particle filter. However, the capacity of the Kalman filter to position
nonlinear integrated systems accurately is limited [42,43]. However, for example, there are also some
advantages of using this approach [44]. Eom et al. established a method for the improvement of
physical estimates using multiphysical models and Kalman data fusion filters by processing raw
measurements within a sensor [45].

1.5. Optimization

Optimization is the most appropriate solution, with a set of restrictions. It is in the nature of
humans to try to find an optimal solution for each problem. Due to advances in computing technology
and algorithms, large optimization problems can be very easily solved. However, there still exist a
great number of problems whose search is very broad, and the classical optimization techniques cannot
trace these problems. Metaheuristics are highly useful and always provide an optimum solution to
solve these difficult optimization problems [46].

Sensors 2020, 20, 1980 6 of 33

1.5.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the optimization methods used in this project
and was first presented in [47] by Kennedy and Eberhart. PSO is a swarm intelligence evolutionary
algorithm that simulates bird and fish predatory behavior, and due to PSOs being simple in structure,
strong maneuverability, easy implementation and other characteristics, they have attracted much
attention from scientists and researchers. proposed a new optimization algorithm called particle
swarm optimization, which according to the authors, lied somewhere between genetic algorithms and
evolutionary algorithms. They proposed a very simple, but effective algorithm that could optimize
a wide variety of functions. The developments, applications, and resources of the PSO algorithm,
based on a computer science and engineering perspective, were described in [48]. This work also
briefly described the inertia weight parameter and the possible need for a constriction factor. PSO has
so far been applied successfully in many areas [49–52], and some improved PSO versions have also
been studied [52–56]. Basically, the PSO algorithm has been used to find an optimum search space in
complex areas by interacting with people in a particle population [57]. A number of problems such as
artificial neural network training [58], fuzzy logic control [59], or pattern classification [60] have been
successfully addressed.

In [61], a modification of the PSO algorithm was proposed, called adaptive particle swarm
optimization, which will be implemented in this project. Their modified algorithm enables automatic
control of certain algorithm parameters such as inertia weights and acceleration constants. Other
modifications of the original algorithm have been discussed. For example, the work in [62] discussed a
modification of the PSO algorithm called the quantum behaved PSO, which relies on the QPSO, but
in addition, uses a recombination operator based on interpolation, which generates a new vector of
possible solutions. In this article, the author also briefly described the classical QPSO algorithm, which
will be implemented in this project with the proposed modifications

Parameter selection has also been subject to extensive research. In [63], the author discussed
different parameter selection methods for the PSO algorithm, including previous proposals from
researchers, while the work in [64] also discussed the best PSO parameters for different situations.

Shi and Eberhart [65] were the ones that first introduced the basic evolution equations of the
algorithm with the inertial weight as the relatively important PSO control parameter, and some
research has since been undertaken on the inertia weight’s influence on optimization performance. In
accordance with Bayesian theory, Zhang et al. designed an adaptive adjustment strategy for the weight
of inertia [66], while at the same time fully applying its historical position. Although the convergence
accuracy of this enhanced PSO was greater, the rate of convergence was slow.

1.5.2. Differential Evolution

In [67], the authors proposed a new global optimization method called differential evolution.
They concluded that this algorithm was superior to Adaptive Simulated Annealing (ASA), as well as
the Annealed Nelder–Mead approach (ANM). It was also superior in terms of the ease of use, since
only two parameters had to be chosen from a well-defined interval. DE also has its variations, one
being the EDE, which is different in terms of the trial population generation.

DE is a search algorithm based on a population that works with a collection of solutions
modified over the generations to find better solutions through selection, generation, and replacement
schemes [46,68]. DE is an evolutionary approach to complex problems with optimization. The DE
is a simple and popular stochastic algorithm based on the population. When measured against the
benchmark problem and actual performance optimization issues, DE outperformed other competitive
evolutionary algorithms. DE’s main drawback, like other stochastic optimization algorithms, is early
convergence and stagnation at suboptimal points. Unlike many other evolutionary computation
techniques, basic DE is a very simple algorithm, whose implementation in any standard programming
language requires just a couple of lines of code. However, while optimizing a wide range of objective

Sensors 2020, 20, 1980 7 of 33

functions, DE shows remarkable performance in terms of ultimate precision, computational speed,
and robustness [69].

2. Materials and Methods

2.1. Quanser Shake Table II

The Quanser Shake Table II (STII) is a shake table device for training, which had originally been
developed by the University Consortium on Instructional Shake Tables (UCIST). It can be used for
educational [70] and research purposes in various topics such as mechanical, aerospace [71] and civil
engineering structural dynamics [72], vibration isolation [73], and feedback control [74].

The STII (as shown in Figure 2) [75] has a maximum load of 7.5 kg at an acceleration of 2.5 g
(24.525 m/s2). The staßge is dispatched on two metal shafts with a hard ground with linear rows
that allow smooth linear movements with low path deflection. From the center, the stage is able to
move ±7.62 cm or ±3 inches (total journey of 15.24 cm). A robust ball screw is connected to a 400
Watt three phase brushless DC actuator. The electric motor has a built-in high-resolution encoder for
measuring the stage position at a resolution of 3.10 µm. To measure the step acceleration directly, an
analog accelerometer is mounted directly on the stage. Figure 2 lays out the components given in
Table 2. Figure 2a provides a cornered perspective of the back, while Figure 2b provides a front view
of the shake table.

(a) Back corner view (b) Front view
Figure 2. Shake Table II components.

Table 2. Shake Table II components.

ID Number Component ID Number Component

1 Stage 9 Sensor circuit board
2 Base plate 10 Right limit sensor
3 DC motor 11 Home position sensor
4 Lead screw 12 Left limit sensor
5 Ball nut 13 Motor leads connector
6 Manual adjustment knob 14 Motor encoder and Hall sensors’ connector
7 Linear guide 15 Accelerometer
8 Linear bearing block 16 Accelerometer connectors

2.2. Initial Data

The experiments were performed on a Quanser Shake Table II. The balsa structure was tested
on the above mentioned shake table for a given earthquake, and the logged data were the table
acceleration reference, the actual acceleration of the table, and the accelerations of the top of the
structure. An illustration of the balsa structure, while being tested, can be seen in Figure 3.

Sensors 2020, 20, 1980 8 of 33

Figure 3. Shake Table II in action.

The sampled data came with a sampling rate of 500 Hz, and both earthquakes, which can be seen
in Figures 4 and 5, were the ones proposed in the Seismic Design Competition 2019 organized by the
EERI Student Leadership Council https://slc.eeri.org/2019-seismic-design-competition/..

Figure 4 represents Ground Motion 1 of a recorded earthquake. Figure 4a depicts the table
acceleration reference, which was the desired displacement of the table, while Figure 4b is the actual
table acceleration that was measured with an accelerometer. Figure 5 depicts Ground Motion 2, which
is a different, more aggressive earthquake.

The measurements were collected using the Quanser Shake Table II equipment, including both
the hardware and software part. The parameters were set to the ones recommended in [75]. The shake
table controller also needed the velocity and position setpoints, so for our experiments, we generated
data structures from the raw data, which contained:

• Sampling time
• Top accelerations
• Actual table’s acceleration
• Table’s acceleration reference
• Table’s velocity reference
• Table’s position reference

https://slc.eeri.org/2019-seismic-design-competition/

Sensors 2020, 20, 1980 9 of 33

(a) Table’s acceleration reference

(b) Actual table acceleration

(c) Structure’s top acceleration

Figure 4. Ground Motion 1.

Sensors 2020, 20, 1980 10 of 33

(a) Table’s acceleration reference

(b) Actual table acceleration

(c) Structure’s top acceleration

Figure 5. Ground Motion 2.

Sensors 2020, 20, 1980 11 of 33

2.3. Shake Table Controller

The shake table controller design was described in [75]. According to pages 13–15, the controller
consisted of a proportional derivative and feed forward controller.

2.3.1. Table Model

The actual table’s transfer function can be written in the following format:

H(s) =
X(s)
I(s)

=
1

K f s2 (1)

where X(s) is the table displacement, I(s) is the motor current, and:

K f =
MtPb

Kt
(2)

is the model gain, where Mt is the total mass being moved by the motor, Pb is the pitch of the ball
screw, and Kt is the current-torque coefficient [75].

Since our Lagrangian model, which is discussed later, needed force at the input, the model transfer
function becomes:

H(s) =
X(s)
F(s)

=
1

Mts2 (3)

2.3.2. Table Controller

As described in [75], the proportional derivative plus feed forward controller had the
following form:

I(s) = Kpe(s) + Kde(s)s + K f e(s)s2 (4)

where Kp, Kd, and K f are the PD+FF controller gains. Considering that the feed forward element
was zero and substituting Equation (1), in order to find the closed-loop transfer function, the
equation becomes:

K f s2X(s) = Kp(Xd(s)− X(s)) + Kds(bsdXd(s)− X(s)) (5)

where bsd is the velocity weight coefficient and Xd is the table position reference, which yields the
closed-loop transfer function:

H(s) =
X(s)
Xd(s)

=
Kp + Kdbsds

K f (s2 + Kd
K f

s + Kp
K f
)

(6)

which is equivalent to a standard second order system if bsd = 0:

H(s) =
ω2

s2 + 2ζωs + ω2 (7)

The shake table used in our experiments was calibrated to have a natural frequency of ω = 15 · 2 ·π
and a damping factor of ζ = 0.75. To match this, we needed the following control gains: Kp = K f ω2

and Kd = 2ζωK f . Since K f = 0.5492, we obtained Kd = 77.6344 and Kp = 4.8779.
To match the closed-loop system described above for our system, the controller is written in the

following form:

F(s) = Kpe(s) + Kde(s)s + K f e(s)s2 (8)

where substituting Equation (3) and considering the feed forward element to be zero, it becomes:

Mts2X(s) = Kp(Xd(s)− X(s)) + Kds(bsdXd(s)− X(s)) (9)

Sensors 2020, 20, 1980 12 of 33

yielding the closed-loop transfer function:

H(s) =
X(s)
Xd(s)

=
Kp + Kdbsds

Mt(s2 + Kd
Mt

s + Kp
Mt

)
(10)

Considering the velocity weight coefficient to be zero, the transfer function matches the standard
second order system described in Equation (7). In order to match the same natural frequency and
damping factor as stated above, the following control gains were necessary: Kp = Mtω

2 and Kd =

2ζωMt. Since K f = Mt = 7.74 (the mass of the table), we obtained Kd = 1094.21 and Kp = 68,751.66.

2.3.3. Filters

In the shake table laboratory guide [75], it was also stated the that direct derivatives from the
encoder were not taken in order to avoid noisy signals; instead, the table displacement was filtered
with the following second order filters to obtain the stage’s velocity and acceleration:

H f 1(s) =
Ẋ f (s)
X(s)

=
ω2

ds
s2 + 2ζdωds + ω2

d
(11)

H f 2(s) =
Ẍ f (s)
X(s)

=
ω2

f s2

s2 + 2ζ f ω f s + ω2
f

(12)

where ωd = 2 · π · 50, ζd = 0.9, ω f = 2 · π · 25, ζ f = 0.9, Ẋ f (s) is the filtered velocity and Ẍ f (s) is the
filtered acceleration.

2.3.4. Discretization

The controller Equation (8) can also be written in the following form:

F(s) = Kp(Xd(s)− X(s)) + Kd(Ẋd − X(s)H f 1(s)) + K f (Ẍd(s)− X(s)H f 2(s)) (13)

that is:

F(s) = Kp(Xd(s)− X(s)) + Kd(Ẋd(s)− Ẋ f (s)) + K f (Ẍd(s)− Ẍ f (s)) (14)

and by applying the z-transformation:

F(z) = Kp(Xd(z)− X(z)) + Kd(Ẋd(z)− Ẋ f (z)) + K f (Ẍd(z)− Ẍ f (z)) (15)

Furthermore, by applying the z-transform to Equations (11) and (12) with the zero order hold
method and a sampling interval of 0.002 s, we obtain:

H f 1(z) =
110.7z− 110.7

z2 − 1.094z + 0.3227
(16)

H f 2(z) =
2.467 · 104z2 − 4.834 · 104z + 2.366 · 104

z2 − 1.889z + 0.8931
(17)

which are equivalent to:

Ẋ f (z) = 1.094Ẋ f (z)z−1 − 0.3227Ẋ f (z)z−2 + 110.7X(z)z−1 − 110.7X(z)z−2 (18)

Sensors 2020, 20, 1980 13 of 33

Ẍ f (z) = 1.889Ẍ f (z)z−1 − 0.8931Ẍ f (z)z−2 + 2.467 · 104X(z)

−4.834 · 104X(z)z−1 + 2.366 · 104X(z)z−2
(19)

These yield the final controller’s equation:

F(k) = Kp(Xd(k)− X(k)) + Kd(Ẋd(k)− Ẋ f (k)) + K f (Ẍd(k)− Ẍ f (k)),

Ẋ f (k) = 1.094Ẋ f (k− 1)− 0.3227Ẋ f (k− 2) + 110.7X(k− 1)− 110.7X(k− 2)

Ẍ f (z) = 1.889Ẍ f (k− 1)− 0.8931Ẍ f (k− 2) + 2.467 · 104X(k)−
4.834 · 104X(k− 1) + 2.366 · 104X(k− 2)

(20)

A block diagram of the shake table controller can be seen in Figure 6.

Figure 6. Controller’s block diagram.

2.4. Forward Kinematics

2.4.1. Denavit–Hartenberg Parameters

For a multi-segment inverted pendulum on a cart, as seen in Figure 7, the Denavit-Hartenberg
(DH) parameters can be seen in Table 3, where qi i = 0, 1, ..., n are the joints and li i = 0, 1, ..., n are the
segment lengths.

Sensors 2020, 20, 1980 14 of 33

Table 3. Denavit-Hartenberg (DH) parameters.

qi d r α θ

q0 - 0 −π
2

−π
2

q1 0 0 π
2 -

q2 0 l1 0 -
qn 0 ln 0 -

Figure 7. N segment inverted pendulum on a cart with mass-spring-damper joints.

2.5. Forward Kinematic Model

According to [26], having the DH parameters, the direct geometric model [26] is:

Ri+1
i = Rot(x, αi) · Trans(x, ri) · Rot(z, θi) · Trans(z, di) (21)

that is:

Ri+1
i =

cos θi − sin θi 0 ri

sin θi cos αi cos θi cos αi − sin αi −di sin αi
sin θi sin αi cos θi sin αi cos αi di cos αi

0 0 0 1

 (22)

Sensors 2020, 20, 1980 15 of 33

In our case, it simplifies to:

R1
0 =

0 1 0 0
0 0 1 q0

1 0 0 0
0 0 0 1

 R2
1 =

cos q1 − sin q1 0 0

0 0 −1 0
sin q1 cos q1 0 0

0 0 0 1

Ri+1
i =

cos qi − sin qi 0 li−1
sin qi cos qi 0 0

0 0 1 0
0 0 0 1

(23)

for i = 2, 3, ..., n.

2.5.1. Inverse Kinematics Model and the Jacobian

The inverse kinematics model and the Jacobian will not be calculated analytically, because this
is too complex and not the purpose of this project; however, we will mention them in the upcoming
sections. A brief description [26] of the inverse kinematics model is Equation (24), whereas Equation (25)
is that for the Jacobian.

q = R0
i (Px, Py, Pz)

q = [q1, q2, ..., qi]
T

i = 1, 2, ..., n

(24)

ξ = Jq̇

ξ = [ẋ, ẏ, ż, ω̇x, ω̇y, ω̇z]
T

(25)

where ξ denotes the linear and angular velocities of the end-effector, in our case the top of our model,
and q denotes the joint positions.

2.6. Dynamic Modeling

The dynamic model of the kinematic chain described above was obtained using a
Lagrangian-based approach, because it is suitable for complex kinetic chains. This type of
dynamic model is based on substituting the Lagrangian of the system, Equation (26), into Equation (27):

L = K− P (26)

d
dt

∂L
∂q̇
− ∂L

∂q
= τ (27)

Equation (27) can also be written in a more condensed form [26]:

Sensors 2020, 20, 1980 16 of 33

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ

D(q) =
n

∑
i=1

[mi JT
vi Jvi + JT

ωiRi IiRT
i Jωi]

Ckj(q) =
n

∑
i=1

1
2
(

∂dkj

∂qj
+

∂dki
∂qj
−

∂dij

∂qk
)

G(q) =
∂P
∂q

P =
n

∑
i=1

ghimi

(28)

where Ii is the inertia tensor matrix of a joint and hi is the height of the joint related mass. The D
matrix contains the terms related to the inertia of the system; C contains the terms related to the
centrifugal and Coriolis terms; and the G matrix contains the terms related to the potential energies
of the system; in our case, gravity. However, our system contained elastic and viscous damping
forces due to the mass-spring-damper joint, which is why we introduced the K and B matrices, so that
Equation (28) becomes:

D(q)q̈ + C(q, q̇)q̇ + G(q) + Kq + Bq̇ = τ

K =

0 0 ... 0
0 k1 ... 0
.
.
.
0 0 ... kn

B =

0 0 ... 0
0 b1 ... 0
.
.
.
0 0 ... bn

(29)

where ki are the elastic coefficients and bi are the viscous damping coefficients, i = 1, ..., n. This can be
written in a more usable format:

q̈ = D−1(q)(τ − C(q, q̇)q̇− G(q)− Kq− Bq̇) (30)

In our project matrices, D, C, and G not only depended on q and q̇, but also on l, the segment
lengths, and m, the segment’s weights, because these are also parameters that have to be estimated later.

Sensors 2020, 20, 1980 17 of 33

2.6.1. Continuous Model

Equation (30) can also be written in a state-space format, which will be used later on for
the simulation:

ẋ = A(q, q̇, m, l)x + B(q, m, l)u−
[
01×n G(q, m, l)

]T

x = Cx + Du

x =
[
q0 q1 . . qn q̇0 q̇1 . . q̇n

]T

A(q, q̇, m, l) =

[
0n×n In

−D−1(q, m, l)K −D−1(q, m, l)(C(q, q̇, m, l) + B)

]

B(q, m, l) =

[
0n×1

D−1(q, m, l)

]

C = In×n

D = 0n×1

(31)

2.6.2. Discrete Model

By considering the approximation of the derivative:

ẋ ≈ xk+1 − xk
Ts

(32)

we can write:

xk+1 = xk + Ts ẋ (33)

that is:

xk+1 = xk + Ts(A(q, q̇)x + B(q)u−
[
01×n G(q)

]T
) (34)

where Ts is the sampling time.

2.7. Objective Function

Having the model of the controller and the dynamic model of the multi-segment inverted
pendulum on a cart, we could simulate the behavior of our model for any given input set. However,
our model was only an analogy to a real structural behavior, so we could not approximate non-zero
initial conditions, this being an important criterion. A brief description of the objective function
algorithm can be seen in Algorithm 1.

Sensors 2020, 20, 1980 18 of 33

Algorithm 1: Objective function.
Input : k, b, m, l, data, K
Output : f it

1 initialize states, xt, vt, at, xr, e, c;
2 for ui ∈ data do

3 τ ←
[
ci−1 0n

]T

4 statesi ← Discrete_Model(τ, statesi−1, k, b, m, l)

5

[
qi q̇i

]T
= statesi

6 xi
t = qi

0;
7 vi

t = 1.094vi−1
t − 0.3227vi−2

t + 110.7xi−1
t − 110.7xi−2

t
8 ai

t = 1.493ai−1
t − 0.5681ai−2

t + 2.467 · 104xi
t − 4.834 · 104xi−1

t + 2.366 · 104xi−2
t

9 ei =
[

xi
u vi

u ai
u

]T
−

[
xi

t vi
t ai

t

]T

10 ci = K · e
11 xi

r = Trans f ormation_Matrix(qi)

12 end

13 ar =
d2xr
dt2

14 a′t =
d2xt
dt2

15 f it = ‖y1−ar‖
‖y1−y1‖

+
‖y2−a′t‖
‖y2−y2‖

The fit of the objective function was the sum of the normalized mean squared error of the table
and roof accelerations between the model and data.

2.8. Prediction

One goal of our project was to test our model for prediction and state estimation. Our choice was
the extended Kalman filter, because of its performance and ease of implementation.

2.8.1. Extended Kalman Filter

The extended Kalman filter is presented in Algorithm 2.

Algorithm 2: Extended Kalman filter.
Input : data, model_parameters
Output : xpred

1 for uk ∈ data do
2 K = PpredCT(CPCT + R)−1

3 x̂k = xpredk−1 + K(y(k− 1)− Cxpredk−1)

4 P = (I − KC)Ppred

5 xpredk = Discrete_Model(x̂k−1, uk−1)

6 Fk =
∂Discrete_Model

∂x |x̂k−1,uk−1

7 Ppred = FkPFT
k + Q

8 end

2.9. Optimization Stopping Criterion

The stopping criterion used in these optimization algorithms for this project were very simple.
Since we have been talking about the model fitness of some data and the objective value of the function
was the normalized mean squared error, we could formulate the stopping criterion based on this value.

Sensors 2020, 20, 1980 19 of 33

For example, if we wanted a fit greater than or equal to 90%, the NMSE should be less than or equal to
0.1. This stopping criterion was simple and straightforward; however, our algorithm could be caught
in an infinite loop if the population converged to a local minimum. That is why another criterion was
inserted: the maximum number of generations or iterations. In this project, the stopping criterion
consisted of a maximum number of 500 or 1000 generations and a fit of 90%.

2.10. Optimization Constraint Handling

The constraints presented in this project were linear constraints of the following form: A · x ≤ B,
where A is nc× dim, nc being the number of constraints and dim the dimension of the problem or the
number of parameters to be optimized.

The constraint handling technique was also simple and straightforward and consisted of
Algorithm 3.

Algorithm 3: Constraint handling.

1 if A · x ≤ B then
2 x is in the feasible domain
3 else
4 x is not in the feasible domain
5 end

In our case, x was in the feasible domain, which meant that the function would be evaluated in x,
and in the case of PSO, it had the chance of being the global attractor, while in DE, it meant that it had
the chance of being present in the next generation of candidates. X not being in the feasible domain
meant that the function would not be evaluated at that point, so in the case of PSO, it would never
have the chance of being the global attractor, while in DE, this meant that it would not survive to the
next generation.

2.11. Particle Swarm Optimization

The traditional particle swarm optimization algorithm was one of the optimization algorithms
used in this project. A brief description of the algorithm is presented in Algorithm 4.

The Ackley function, seen in Figure 8, is a widely used benchmark function for optimization
algorithms, because it has many local minimum points. Figure 9 presents the evolution of candidates of
the PSO algorithm on the Ackley function. The algorithm parameters were set to ω = 0.749, c1 = 1.494,
and c2 = 1.494 with a population size of 20. The candidates were generated in the interval of [−32, 32]
for each dimension, and no constraints were used. As illustrated in Figure 8, the direction gradient
and forward direction were different when the dimension of the Ackley function increased [12]. The
global algorithm convergence speed could be detected by this function.

The evolution of the candidates, presented on Figure 9, is illustrated in three subfigures. Figure 9a
represents the initial candidate positions, which should be randomly distributed. Knowing that the
minimum of Ackley’s function is in [0, 0], it is clear in Figure 9b that by the 15th iteration, the candidates
were approaching this point. Figure 9c represents the candidates position in the 50th iteration, and it
was clear that only a few candidates did not manage to find the minimum.

Sensors 2020, 20, 1980 20 of 33

Figure 8. Three-dimensional graph of the Ackley function.

The variables are the following: f is the objective function; lim is a vector of the initial particle
limits; A, B are the constraint matrices; dim is the number of dimensions; n is the number of particles;
xi is a particle; pi is xi’s best known position; g is the global best position; c1 is the cognitive component;
c2 is the social component; and ω is the inertia weight.

The inertia weight, social component, and cognitive component were selected from [63], in which
different proposals were discussed. This paper discussed four scenarios, which can be seen on Table 4.
The population size, according to [76], was not so sensitive to the problems; however a population
between 20 and 50 is usually used, except for applications with special needs in this matter.

Table 4. Proposed PSO parameters.

ω c1 c2

Clerc and Kennedy 0.729 1.494 1.494
Trelea 0.6 1.7 1.7

Carlisle and Dozier 0.729 2.041 0.948
Jiang, Luo, and Yang 0.715 1.7 1.7

Sensors 2020, 20, 1980 21 of 33

(a) Iteration No. 1

(b) Iteration No. 15

(c) Iteration No. 50
Figure 9. PSO swarm behavior on Ackley’s function.

Sensors 2020, 20, 1980 22 of 33

Algorithm 4: Particle swarm optimization.
Input : f , lim, A, B, dim, n, c1, c2, ω, itmax

Output : g
1 initialize fg

2 for xi ∈ 1, 2, ..., n do
3 while A · xi <= B do
4 xi = limlo + limup · rand()
5 end
6 pi = xi
7 if f pi < f g then
8 f g = f pi
9 g = pi

10 end
11 vi = −|limup − limlo|+ 2 · |limup − limlo| · rand()
12 end
13 while i < itmax do
14 for i ∈ 1, 2, ..., n do
15 for d ∈ 1, 2, ..., dim do
16 rg = rand()
17 rp = rand()
18 vi,d = ωvi,d + c1rp(pi,d − xi,d) + c2rg(gd − xi,d)

19 end
20 xi = xi + vi

21 end
22 for i ∈ 1, 2, ..., n do
23 if A · xi <= B then
24 f x = f (xi)

25 if f x < f pi then
26 f pi = f x
27 pi = xi
28 if f pi < f g then
29 f g = f pi
30 g = pi

31 end
32 end
33 end
34 end
35 end

2.12. Differential Evolution

As stated in the previous section, in [67], a new global optimization method was proposed
called differential evolution. A brief description of the algorithm is presented in Algorithm 5, where
f is the objective function, lim is a vector containing the initial candidate region, A and B are the
constraint matrices, dim is the dimension of the objective function, n is the population size, F is the
differential weight, Cr is the crossover probability, and itmax is the maximum number of iterations.
In the algorithm, xi denotes the ith member of the population and si denotes the ith member of the
trial population, whereas g is the global best. In this algorithm, the global best did not influence the

Sensors 2020, 20, 1980 23 of 33

candidates behavior; it was present only for storing and returning the best possible solution.

Algorithm 5: Differential evolution.
Input : f , lim, A, B, dim, n, F, Cr, itmax

Output : g
1 initialize fg

2 for xi ∈ 1, 2, ..., n do
3 while A · xi <= B do
4 xi = limlo + limup · rand()
5 end
6 f xi = f (xi)

7 if f xi < f g then
8 f g = f xi
9 g = xi

10 end
11 end
12 while i < itmax do
13 for i ∈ 1, 2, ..., n do
14 a = rand ∈ 1, 2, ..., n
15 b = rand ∈ 1, 2, ..., n
16 c = rand ∈ 1, 2, ..., n
17 R = rand ∈ 1, 2, ..., n
18 for d ∈ 1, 2, ..., dim do
19 r = rand ∈ [0, 1]
20 if R = d||r < Cr then
21 si,d = xa,d + F · (xb,d − xc,d)

22 else
23 si,d = xi,d
24 end
25 end
26 end
27 for i ∈ 1, 2, ..., n do
28 if A · si <= B then
29 f si = f (si)

30 if f si < f xi then
31 f xi = f si
32 xi = si
33 if f xi < f g then
34 f g = f xi
35 g = xi

36 end
37 end
38 end
39 end
40 end

The parameter selection for this algorithm could be performed in many different ways, the
best one being a process of meta-optimization. This meant optimizing the algorithm using another
optimization algorithm. However, this was not as simple as it seemed, because these algorithms

Sensors 2020, 20, 1980 24 of 33

were stochastic; therefore, they would always find the minimum of the function in a different number
of iterations. This was why in this project, the selected parameters would be the ones proposed in
previous research. As stated in [77], one scenario was choosing a population size between 5 · dim
and 20 · dim with a differential weight F of 0.5. Another scenario, according to [78], was to select
a population size between 3 · dim and 8 · dim with a differential weight of 0.6 and the crossover
probability bounded between [0.3,0.9]. Furthermore, in [79], it was advised that F ∈ [0.4, 0.95], and
as for the crossover probability, it should lie in the range [0, 0.2] if the variables were separable and
within [0.9, 1] when the function variables were dependent. In this project, the above mentioned three
scenarios were tested.

3. Results

This section discusses the performances of the optimization algorithms, as well as the proposed
model using the best parameters obtained after optimization.

The fit is discussed in percentages, using the normalized mean squared error formula.

3.1. Optimization Algorithms

3.1.1. Particle Swarm Optimization

The tested parameters were the ones proposed in Table 4, for a population of 50, respectively
20. Figure 10 illustrates the value of the objective function over the iterations. The mean number of
iterations, standard deviation and success rate can be seen on Tables 5 and 6.

Table 5. PSO performance for n = 50.

Mean Iterations Standard Deviation Success Rate

Clerc and Kennedy 116.32 42.24 100%
Trelea 90.13 43.0137 100%

Carlisle and Dozier 110.49 43.394 100%
Jiang, Luo, and Yang 150.2323 63.0657 99%

Table 6. PSO performance for n = 20.

Mean Iterations Standard Deviation Success Rate

Clerc and Kennedy 184.5 87.33 100%
Trelea 163.9596 88.5733 99%

Carlisle and Dozier 206.1837 98.2121 98%
Jiang, Luo, and Yang 230.8936 91.3517 94%

Sensors 2020, 20, 1980 25 of 33

Figure 10. Objective value evolution for PSO.

3.1.2. Differential Evolution

The differential evolution algorithm was tested for a population of 64 (8 · dim) 100 times for the
parameters seen in Table 7. The evolution of the objective value can be seen in Figure 11.

Figure 11. Objective value evolution for DE.

Table 7. DE performance for n = 64.

F CR Mean Iterations Standard Deviation Success Rate

0.4 0.9 51.1194 7.6228 100%
0.6 0.9 95.2239 12.8261 100%
0.8 0.9 224.4478 27.1624 100%
0.9 0.9 353.1940 42.0434 100%

3.2. Proposed Model Fitness for Prediction

As seen in Figures 12 and 13, the Kalman filter tried to estimate the top displacement of the
structure correctly; however, this was not implemented as it should be. As stated, our discrete model
returned only angular positions and velocities, but in the dataset, we only had linear accelerations

Sensors 2020, 20, 1980 26 of 33

on one axis, which when filtered and integrated, gave us linear positions. The error was calculated
between the dataset and the result obtained from the forward kinematic model. However, it would
only work correctly if the error was calculated between the dataset and the actual unmodified states of
the model.

Figure 12. Prediction for Ground Motion 1.

Figure 13. Prediction for Ground Motion 1, zoomed in.

3.3. Proposed Model Fitness for Simulation

As seen in Figure 14, our model returned an acceptable value for Ground Motion 1. Figure 15
zooms in on the previously mentioned figure for a better visualization. Unfortunately, this could not
be said about Ground Motion 2, the reason being that the input was much larger in this case. The
performances can be seen on Figures 16 and 17.

Sensors 2020, 20, 1980 27 of 33

Figure 14. Best fit for Ground Motion 1.

Figure 15. Best fit for Ground Motion 1, zoomed in.

Sensors 2020, 20, 1980 28 of 33

Figure 16. Best fit for Ground Motion 2.

Figure 17. Best fit for Ground Motion 2, zoomed in.

Sensors 2020, 20, 1980 29 of 33

4. Discussion

4.1. Optimization Algorithms

Having discussed the results in the previous section, it was clear that the DE algorithm
outperformed its PSO counterpart. The small standard deviation from the mean value is to be
noted. Having the figures and tables above, further discussion of these results is not necessary.

4.2. Proposed Model

The most important conclusion that can be drawn is that this kind of model, where material
nonlinearity was not included, will never have an extraordinary performance for every input range. For
smaller inputs, it could nicely approximate the dynamics of a balsa structure, but this also happened
because the material behaved linearly for this magnitude of stress.

On the other hand, taking a look at Figures 14 and 16, one can also observe that for Ground Motion
1, it closely followed the structure dynamics, while for Ground Motion 2, it returned an especially
poorly fit value. However, looking closely at Ground Motion 2, one can see that it revealed that
the model followed the building dynamics, but it was out of phase. A good model would perform
approximately the same for every input range. This confirmed that something was missing from our
model, which could be the material elastic or damping nonlinearity.

As for the prediction, the extended Kalman filter nicely predicted the displacement of the top
of the system; however, this was not entirely correct. Since in our data, we only had accelerations
in the shake axis, we could not directly approximate the states. The first reason was that, as stated
before, the data contained some low frequency noise, and the accelerations when integrated yielded
extremely unreal displacements. This is why the data were filtered with a second order Butterworth
high pass filter at 0.8 Hz, as recommended by the manufacturer. The second reason was that, since
we only had acceleration on the y-axis and did not have this on the z-axis, we could not compute
the equivalent angular positions from those data to calculate the error, since our model’s states were
angular positions and velocities. In the algorithm, the error was calculated between the integrated data
and the position calculated from the transformation matrix. This was not entirely accurate, because the
extended Kalman filter worked properly only if the error was calculated from the states of the system.

Author Contributions: Conceptualization, L.K. and O.S.; software, L.K.; investigation, L.K.; writing, original
draft preparation, L.K. and O.S.; validation, O.S.; funding acquisition, O.S.; formal analysis, L.M.; supervision,
L.M.; project administration, L.M. All authors read and agreed to the published version of the manuscript.

Funding: The research presented in this paper was supported by the Robots and Society Cognitive Systems for
Personal Robots and Autonomous Vehicles (ROBIN) (PN-III-P1-1.2-PCCDI-2017- 0734) project.

Acknowledgments: Special thanks to the 2019 Seismic Design Competition (SDC) team of the Technical University
of Cluj-Napoca for giving access to the shake table data, especially to Bács Béla, as well as to Lucian Busoniu,
Zsofia Lendek, and Tassos Natsakis from the Technical University of Cluj-Napoca for their excellent course
material in domains related to this project.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 1980 30 of 33

Abbreviations

The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
APSO Adaptive Particle Swarm Optimization
QPSO Quantum Particle Swarm Optimization
Q-PSO Quantum behaved Particle Swarm Optimization
PSO-QI Quantum Infused Particle Swarm Optimization
DE Differential Evolution
EDE Elitist Differential Evolution
P Proportional
PD Proportional derivative
FF Feed forward
GA Genetic algorithm
NMSE Normalized mean squared error

References

1. Foutch, D.A.; Yun, S.Y. Modeling of steel moment frames for seismic loads. J. Constr. Steel Res. 2002,
58, 529–564. doi:10.1016/S0143-974X(01)00078-5.

2. Dyke, S.J.; Spencer, B.F.; Sain, M.K.; Carlson, J.D. Modeling and control of magnetorheological dampers for
seismic response reduction. Smart Mater. Struct. 1996, 5, 565–575. doi:10.1088/0964-1726/5/5/006.

3. Pratihar, D.K. Soft Computing: Fundamentals and Applications; Alpha Science International Ltd.: Oxford, UK,
2014; ISBN-13: 978-1783322053.

4. Sharma, D.; Chandra, P. A comparative analysis of soft computing techniques in software fault prediction
model development. Int. J. Inf. Technol. 2019, 11, 37–46. doi:10.1007/s41870-018-0211-3.

5. Falcone, R.; Lima, C.; Martinelli, E. Soft computing techniques in structural and earthquake engineering: A
literature review. Eng. Struct. 2020, 207, 110–269. doi:10.1016/j.engstruct.2020.110269.

6. Shabariram, C. P.; Kannammal, K. E. Earthquake prediction using map reduce framework. In Proceedings
of the International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India,
5–7 January 2017; pp. 1–6. doi:10.1109/ICCCI.2017.8117745.

7. Sun, B.; Hu, H.; Chen, X. State of the Earthquake Field Disaster Investigation Information Service System. In
Proceedings of the 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA),
Harbin, China, 11–14 January 2019; pp. 1–5. doi:10.1109/SPAWDA.2019.8681791.

8. Huang, J.; Wang, X.; Yong, S.; Fenh, Y. A Feature Engineering Framework for Short-term Earthquake
Prediction Based on AETA Data. In Proceedings of the IEEE 8th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 563–566.
doi:10.1109/ITAIC.2019.8785773.

9. Pohsie, G.H.; Chisari, C.; Rinaldin, G.; Amadio, C.; Fragiacomo, M. Optimal design of tuned mass dampers
for a multi-storey cross laminated timber building against seismic loads. Earthq. Eng. Struct. Dyn. 2016,
45, 1977–1995. doi:10.1002/eqe.2736.

10. Kattamanchi, S.; Tiwari, R.K.; Ramesh, D.S. Non-stationary ETAS to model earthquake occurrences affected
by episodic aseismic transients. Earth Planets Space 2017, 69, 157. doi:10.1186/s40623-017-0741-0.

11. Alcalde, J.; Bond, C.E.; Johnson, G.; Butler, R.W.H.; Cooper, M.A.; Ellis, J.F. The importance of structural
model availability on seismic interpretation. J. Struct. Geol. 2017, 97, 161–171. doi:10.1016/j.jsg.2017.03.003.

12. Jiang, M.; Jin, Q. Multivariable System Identification Method Based on Continuous Action Reinforcement
Learning Automata. Processes 2019, 7, 546. doi:10.3390/pr7080546.

13. Nakayama, M.; Oku, H.; Ushida, S. Closed-loop identification for a continuous-time model of a multivariable
dual-rate system with input fast sampling. IFAC Pap. 2018, 51, 415–420. doi:10.1016/j.ifacol.2018.03.071.

14. Gumussoy, S.;Ozdemir, A.A.; McKelvey, T.; Ljung, L.; Gibanica, M.; Singh, R. Improving linear state-space
models with additional n iterations. IFAC Pap. 2018, 51, 341–346. doi:10.1016/j.ifacol.2018.09.158.

15. Pilario, K.E.S.;Cao, Y.; Shafiee, M. Mixed kernel canonical variate dissimilarity analysis for incipient
fault monitoring in nonlinear dynamic processes. Comput. Chem. Eng. 2019, 123, 143–154.
doi:10.1016/j.compchemeng.2018.12.027.

https://doi.org/10.1016/S0143-974X(01)00078-5
https://doi.org/10.1088/0964-1726/5/5/006
https://doi.org/10.1007/s41870-018-0211-3
https://doi.org/10.1016/j.engstruct.2020.110269
https://doi.org/10.1109/ICCCI.2017.8117745
https://doi.org/10.1109/SPAWDA.2019.8681791
https://doi.org/10.1109/ITAIC.2019.8785773
https://doi.org/10.1002/eqe.2736
https://doi.org/10.1186/s40623-017-0741-0
https://doi.org/, DOI: 10.1016/j.jsg.2017.03.003
https://doi.org/10.3390/pr7080546
https://doi.org/10.1016/j.ifacol.2018.03.071
https://doi.org/10.1016/j.ifacol.2018.09.158
https://doi.org/10.1016/j.compchemeng.2018.12.027

Sensors 2020, 20, 1980 31 of 33

16. Soderstorm, T.; Stoica, P. System Identification; Cambridge University Press: Cambridge, UK, 1989.
doi:10.1017/S026646660000880X.

17. Panda, G.; Mohanty, D.; Majhi, B.; Sahoo, G. Identification of nonlinear systems using particle swarm
optimization technique. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore,
25–28 September 2007; pp. 3253–3257. doi:10.1109/CEC.2007.4424889.

18. Worden, K.; Barthorpe, R.J.; Cross, E.J.; Dervilis, N.; Holmes, G.R.; Manson, G.; Rogers, R.J. On evolutionary
system identification with applications to nonlinear benchmarks, Mechanical Systems and Signal Processing.
Mech. Syst. Signal Process. 2018, 112, 194–232. doi:10.1016/j.ymssp.2018.04.001.

19. Schoukens, J.; Ljung, L. Nonlinear System Identification A User-Oriented Roadmap. IEEE Control. Syst.
Mag. 2019, 39, 28–99.

20. Liu, J.; Xu, W.; Sun, J. Nonlinear System Identification of Hammerstien and Wiener Model Using Swarm
Intelligence. In Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai,
China, 20–23 August 2006; pp. 1219–1223. doi:10.1109/ICIA.2006.305921.

21. Hou, Z.-X. Wiener model identification based on adaptive particle swarm optimization. In Proceedings of
the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008;
pp. 1041–1045. doi:10.1109/ICMLC.2008.4620558.

22. Luitel, B.; Venayagamoorthy, G.K. Particle swarm optimization with quantum infusion for system
identification. Eng. Appl. Artif. Intell. 2010, 23, 635 – 649. doi:10.1016/j.engappai.2010.01.022.

23. Cheng, S.-L.; Hwang, C. Optimal approximation of linear systems by a differential evolution algorithm.
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 2001, 31, 698–707.

24. Zhao, C.; An, A.; Xu, Q. A hybrid differential evolution algorithm for nonlinear parameter estimation of
kinetic systems. In Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan,
China, 23–25 May 2012; pp. 1696–1700. doi:10.1109/CCDC.2012.6244271.

25. Lazea, G.h.; Lupu, E.; Dobra, P. Control Systems and Integrated Manufacturing; Editura Mediamira: Cluj,
Romania, 1998. ISBN 973-9358-22-5.

26. Natsakis, T. Robotic Systems Control. Available online: https://natsakis.com/course/robotic-systems-
control/ (accessed on 22 December 2019).

27. Gaidhani, A.; Moon, K.S.; Ozturk, Y.; Lee, S.Q.; Youm, W. Extraction and Analysis of Respiratory Motion
Using Wearable Inertial Sensor System during Trunk Motion. Sensors 2017, 17, 2932. doi:10.3390/s17122932.

28. Chiang, M.-H.; Lin, H.T. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial
Pneumatic Actuators Combined with a Stereo Vision System. Sensors 2011, 11, 11476–11494.

29. Egeland, O.; Gravdah, J.T. Modeling and Simulation for Automatic Control; Norwegian University of Science
and Technology: Trondheim, Norway, 2013; ISBN 82-92356-01-0.

30. Cheng, C.; Huang, H. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian
Systems. IEEE Trans. Cybern. 2016, 46, 3247–3258.

31. Aggarwal, D.; Kumar, V.; Girdhar, A. Lagrangian relaxation for the vehicle routing problem with time
windows. In Proceedings of the International Conference on Intelligent Computing, Instrumentation and
Control Technologies (ICICICT), Kannur, India, 6–7 July 2017; pp. 1601–1606.

32. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Res. Inst. Adv. Stud. Baltim. Md
1960, 82, 35–45.

33. Welch, G.; Bishop, G. An Introduction to the Kalman Filter. 2006. Available online: https://www.cs.unc.
edu/~welch/media/pdf/kalman_intro.pdf (accessed on 12 July 2019).

34. Vanicek, P.; Omerbashich, M. Does a navigation algorithm have to use a Kalman filter? Can. Aeronaut. Space
J. 1999, 45, 292–296.

35. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 3rd ed.; Wiley: New York,
NY, USA, 2001.

36. Agarwal, V.; Arya, H.; Bhaktavatsala, S. Design and development of a real-time DSP and FPGA-based
integrated GPS-INS system for compact and low power applications. IEEE Trans. Aerosp. Electron. Syst. 2009,
45, 443–454.

37. Noureldin, A.; Karamat, T. B.; Eberts, M.D.; El-Shafie, A. Performance enhancement of MEMS-based
INS/GPS integration for low-cost navigation applications. IEEE Trans. Veh. Technol. 2009, 58, 1077– 1096.

https://doi.org/10.1017/S026646660000880X
https://doi.org/10.1109/CEC.2007.4424889
https://doi.org/10.1016/j.ymssp.2018.04.001
https://doi.org/10.1109/ICIA.2006.305921
https://doi.org/10.1109/ICMLC.2008.4620558
10.1016/j.engappai.2010.01.022
https://doi.org/10.1109/CCDC.2012.6244271
https://natsakis.com/course/robotic-systems-control/
https://natsakis.com/course/robotic-systems-control/
https://doi.org/10.3390/s17122932
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

Sensors 2020, 20, 1980 32 of 33

38. Noureldin, A.; Irvine-halliday, D.; Mintchev, M.P. Accuracy limitations of FOG-based continuous
measurement-while-drilling surveying instruments for horizontal wells. IEEE Trans. Instrum. Meas.
2001, 51, 1177–1191.

39. Xu, X.; Xu, X.; Zhang, T.; Li, Y.; Tong, J. A Kalman Filter for SINS Self-Alignment Based on Vector Observation.
Sensors 2017, 17, 264. doi:10.3390/s17020264.

40. Wang, Y.; Sun, F.; Zhang, Y.; Liu, H.; Min, H. Central difference particle filter applied to transfer alignment
for SINS on missiles. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 375–387.

41. Juan, L.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In
Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, Portland, OR, USA, 19–23 June
2004; pp. 325–331. doi:10.1109/CEC.2004.1330875.

42. Petritoli, E.; Giagnacovo, T.; Leccese, F. Lightweight GNSS/IRS Integrated Navigation System for UAV
Vehicles. In Proceedings of the 2014 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy,
29–30 May 2014; pp. 56–61. doi:10.1109/MetroAeroSpace.2014.6865894.

43. Hinüber, V.; Edgar, L.; Reimer, C.; Schneider, T.; Stock, M. INS/GNSS Integration for Aerobatic Flight
Applications and Aircraft Motion Surveying. Sensors 2017, 17, 941.

44. Valade, A.; Acco, P.; Grabolosa, P.; Fourniols, J.-Y. A Study about Kalman Filters Applied to Embedded
Sensors. Sensors 2017, 17, 2810.

45. Eom, K.H.; Lee, S.J.; Kyung, Y.S.; Lee, C.W.; Kim, M.C.; Jung, K.K Improved Kalman Filter Method for
Measurement Noise Reduction in Multi Sensor RFID Systems. Sensors 2017, 11, 10266–10282.

46. Swagatam, D.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution–an updated survey.
Swarm Evol. Comput. 2016, 27, 1–30. doi:10.1016/j.swevo.2016.01.004.

47. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95—International
Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
doi:10.1109/ICNN.1995.488968.

48. Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, South
Korea, 27–30 May 2001; pp. 81–86. doi:10.1109/CEC.2001.934374.

49. Lin, Q.; Liu, S.; Zhu, Q.; Tang, C.; Song, R.; Chen, J.; Coello, A.A.C.; Wong, K.C.; Zhang, J. Particle swarm
optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans.
Evol. Comput. 2018, 22, 32–46.

50. Deng, X.; Sun, X.; Liu, R.; Liu, S. Consensus control of second-order multiagent systems with particle swarm
optimization algorithm. J. Control. Sci. Eng. 2018, 2018, doi:10.1155/2018/3709421.

51. Zhang, S.; Xu, J.; Lee, L.H.; Chew, E.P.; Wong, W.P.; Chen, C. Optimal computing budget allocation for
particle swarm optimization in stochastic optimization. IEEE Trans. Evol. Comput. 2017, 21, 206–219.

52. Liu, Z.; Li, X.; Zhang, H.; Wu, L.; Liu, K. An enhanced approach for parameter estimation: using immune
dynamic learning swarm optimization based on multicore architecture. IEEE Syst. Man Cybern. Mag. 2016,
2, 26–33.

53. Leboucher, C.; Shin, H.S.; Chelouah, R.; Le Menec, S.; Siarry, P.; Formoso, M.; Tsourdos, A.; Kotenkoff, A.
An enhanced particle swarm optimisation method integrated with evolutionary game theory. IEEE Trans.
Games 2018, 10, 221–230.

54. Bonyadi, M.R.; Michalewicz, Z. Stability analysis of the particle swarm optimization without stagnation
assumption. IEEE Trans. Evol. Comput. 2016, 20, 814–819.

55. Zhang, H.; Liang, Y.; Zhang, W.; Xu, N.; Guo, Z.; Wu, G. Improved PSO-based method for leak detection
and localization in liquid pipelines. IEEE Trans. Ind. Inform. 2018, 14, 3143–3154.

56. Ovidiu, S.; Miclea, L.; Sarb, A. Elderly Fall Forecast Based on Adapted Particle Swarm Optimization
Algorithm. Int. J. Model. Optim. 2018, 7, 251–255.

57. Clerc, M.; Kennedy, J. The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional
Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73.

58. Garro, B.A.; Vazquez, R.A. Designing artificial neural networks using particle swarm optimization
algorithms. Comput. Intell Neurosci. 2015, 2015, 369298, doi:10.1155/2015/369298.

59. Borni, A. Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L. Fuzzy logic, PSO based fuzzy
logic algorithm and current controls comparative for grid-connected hybrid system. In Proceedings of the
AIP Conference Proceedings, Paris, France, 23 February 2017; p. 020006, doi:10.1063/1.4976225.

https://doi.org/10.3390/s17020264
https://doi.org/10.1109/CEC.2004.1330875
https://doi.org/10.1109/MetroAeroSpace.2014.6865894
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1155/2018/3709421
https://doi.org/10.1155/2015/369298
https://doi.org/10.1063/1.4976225

Sensors 2020, 20, 1980 33 of 33

60. Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Nguyen-Ngoc, L.; Wahab, M.A. Model Updating for
Nam O Bridge Using Particle Swarm Optimization Algorithm and Genetic Algorithm. Sensors 2018, 18, 4131.
doi:10.3390/s18124131.

61. Zhan, Z.; Zhang, J.; Li, Y.; Chung, H.S. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man,
Cybern. Part B (Cybern.) 2009, 39, 1362–1381. doi:10.1109/TSMCB.2009.2015956.

62. Pant, M.; Thangaraj, R.; Abraham, A. A new quantum behaved particle swarm optimization. In Proceedings
of the GECCO08: Genetic and Evolutionary Computation Conference, Atlanta, GA, USA, 12–16 July 2008;
pp. 87–94. doi:10.1145/1389095.1389108.

63. Stroessner, C. Particle Swarm Optimization & Parameter Selection. Available online:
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Ferienakademie14/slides_papers/\paper_
Christoph_Stroessner.pdf (accessed on 14 June 2019).

64. Pedersen, M.E.H. Good Parameters for Particle Swarm Optimization. no. HL1001, 2010. Available online:
http://shorturl.at/ANY19 (accessed on 15 January 2020).

65. Shi, Y.H.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International
Conferenceon Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

66. Zhang, L.; Tang, Y.; hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia
weight based on Bayesian techniques. Appl. Soft Comput. 2015, 5, 138–149. doi:10.1016/j.asoc.2014.11.018.

67. Storn, R.; Price, K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. doi:10.1023/A:1008202821328.

68. Sharma, V.P.; Choudhary, H.R.; Kumar, S.; Choudhary, V. A modified DE: Population or generation based
levy flight differential evolution (PGLFDE). In Proceedings of the 2015 International Conference on Futuristic
Trends on Computational Analysis and Knowledge Management (ABLAZE) Noida, India, 25–27 February
2015; pp. 704–710.

69. Jain, S.; Kumar, S.; Sharma, V.K.; Sharma, H. Improved differential evolution algorithm. In Proceedings of
the 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future
Directions) (ICTUS), Dubai, United Arab Emirates, 18–20 December 2017; pp. 627–632.

70. Tuhta, S.; Günday, F.; Abrar, O. Experimental study on effect of seismic damper to reduce the dynamic
response of bench-scale steel structure model. Int. J. Adv. Res. Innov. Ideas Educ. 2020, 5, 421–435.
doi:10.1016/j.soildyn.2019.03.031.

71. Tuhta, S.; Günday, F.; Alihassan, A. System Identification of Model Steel Chimney with Fuzzy Logic. Int. J.
Res. Innov. Appl. Sci. 2020, 5, 11–15.

72. Harmanci, Y.E.; Gulan, U.; Holzner, M.; Chatzi, E. A Novel Approach for 3D-Structural Identification
through Video Recording: Magnified Tracking. Sensors 2019, 19, 1229. doi:10.3390/s19051229.

73. Fu, B.; Jiang, H.; Wu, T. Comparative studies of vibration control effects between structures with particle
dampers and tuned liquid dampers using substructure shake table testing methods. Soil Dyn. Earthq. Eng.
2019, 121, 421–435. doi:10.1016/j.soildyn.2019.03.031.

74. Li, S.; Sun, L.; Kong, F. Vibration Control Performance Analysis and Shake-Table Test of a Pounding Tuned
Rotary Mass Damper under the Earthquake. Shock Vib. 2019, 2019, doi:10.1155/2019/4038657.

75. Inc., Q. Shake Table II—Laboratory Guide. User Manual, Markham, Ontario, 2014. Available online:
https://www.quanser.com/ (accessed on 12 June 2019).

76. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22,
387–408. doi:10.1007/s00500-016-2474-6.

77. Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization
Over Continuous Spaces. J. Glob. Optim. 1995, 23, doi:10.1.1.1.9696.

78. Gamperle, R.; Muller, S.D.; Koumoutsakos, P. A Parameter Study for Differential Evolution. Adv. Intell. Syst.
Fuzzy Syst. Evol. Comput. 2002, 10, 293–298.

79. Ronkonnen, J. Continuous Multimodal Global Optimization with Differential Evolution-Based Methods.
Ph.D. Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2009.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.3390/s18124131
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1145/1389095.1389108
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Ferienakademie14/slides_papers/ \ paper_Christoph_Stroessner.pdf
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Ferienakademie14/slides_papers/ \ paper_Christoph_Stroessner.pdf
http://shorturl.at/ANY19
https://doi.org/10.1016/j.asoc.2014.11.018
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.soildyn.2019.03.031
https://doi.org/10.3390/s19051229
https://doi.org/10.1016/j.soildyn.2019.03.031
https://doi.org/10.1155/2019/4038657
https://www.quanser.com/
https://doi.org/10.1007/s00500-016-2474-6
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9696
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Context
	System Identification and Parameter Estimation
	Kinematic and Kinetic Modeling
	Kalman Filter
	Optimization
	Particle Swarm Optimization
	Differential Evolution

	Materials and Methods
	Quanser Shake Table II
	Initial Data
	Shake Table Controller
	Table Model
	Table Controller
	Filters
	Discretization

	Forward Kinematics
	Denavit–Hartenberg Parameters

	Forward Kinematic Model
	Inverse Kinematics Model and the Jacobian

	Dynamic Modeling
	Continuous Model
	Discrete Model

	Objective Function
	Prediction
	Extended Kalman Filter

	Optimization Stopping Criterion
	Optimization Constraint Handling
	Particle Swarm Optimization
	Differential Evolution

	Results
	Optimization Algorithms
	Particle Swarm Optimization
	Differential Evolution

	Proposed Model Fitness for Prediction
	Proposed Model Fitness for Simulation

	Discussion
	Optimization Algorithms
	Proposed Model

	References

