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Abstract: The advent of convolutional neural networks (CNNs) has accelerated the progress of
computer vision from many aspects. However, the majority of the existing CNNs heavily rely on
expensive GPUs (graphics processing units). to support large computations. Therefore, CNNs have
not been widely used to inspect surface defects in the manufacturing field yet. In this paper,
we develop a compact CNN-based model that not only achieves high performance on tiny defect
inspection but can be run on low-frequency CPUs (central processing units). Our model consists of
a light-weight (LW) bottleneck and a decoder. By a pyramid of lightweight kernels, the LW bottleneck
provides rich features with less computational cost. The decoder is also built in a lightweight way,
which consists of an atrous spatial pyramid pooling (ASPP) and depthwise separable convolution
layers. These lightweight designs reduce the redundant weights and computation greatly. We train
our models on groups of surface datasets. The model can successfully classify/segment surface
defects with an Intel i3-4010U CPU within 30 ms. Our model obtains similar accuracy with
MobileNetV2 while only has less than its 1/3 FLOPs (floating-point operations per second) and
1/8 weights. Our experiments indicate CNNs can be compact and hardware-friendly for future
applications in the automated surface inspection (ASI).
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1. Introduction

For a long time, product quality control relies on manual examination in the manufacturing
field. In the past several decades, automated surface inspection (ASI) have become more widespread
as hardware and software technologies have developed rapidly. To lower labor costs and enhance
examination efficiency, more factories start to employ embedded machines for product inspection.
ASI platforms use special light sources and industrial cameras to capture the images of the product
surface, and machine/computer vision technologies to filter out defective products, which can reduce
labor greatly. High-performance cross-product ASI algorithms are urgently needed in manufacturing.

Common surfaces in the manufacturing industry include steel [1,2], glass [3], fabric [4],
wood board [5,6], and so forth. Most proposed defect inspection algorithms for these surfaces
are traditional classification or segmentation methods. For traditional classification methods,
for example, Gabor [7], LBP (local binary pattern) [8], GLCM (gray-level co-occurrence matrix) [9]
and HOG (histogram of oriented gridients) [10] features of the defects are extracted, then the
defects are classified by machine learning classifiers, such as SVM (support vector machines) [1],
Random Forests [11], AdaBoost [10], and so forth. Traditional segmentation methods would partition
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pixels into regions, with the intention to emphasize the regions corresponding to surface defects. For
example, Reference [6] firstly preprocesses images using convex optimization, then segments wood
defects with Otsu segmentation method. Reference [12] segments fabric defects by the Sobel and the
watershed algorithm.

These traditional methods involve image preprocessing, feature extraction, feature reduction,
and classifier selection, which needs the experience of experts. Besides, most surface defects are tiny
and very similar to their background, even the inspection for a single type of defect can be very
difficult for these traditional methods. Although traditional algorithms are designed for specific
surfaces, effective measures such as recall, precision, and accuracy can barely achieve the standard of
industrial applications. This long-existing bottleneck has been restraining the growth of ASI.

Convolutional neural networks (CNNs) greatly stimulate the development of ASI [3,13–15]
as deep learning methods in computer vision are achieving the state-of-the-art in recent years.
As end-to-end solutions, CNNs also simplify the procedures of ASI. For example, a fully convolutional
network (FCN) can segment surface defects by supervised learning [16], without any extra pre-process
or post-process.

A notorious limitation of CNNs is computation. In many cases, expensive GPUs with high
computing capabilities are necessary to support large workloads. However, in considering
manufacturing cost, most core computing resources of ASI platforms are mainly the low-power
CPUs of industrial personal computers (IPC), or even FPGAs (field programmable gate array). To take
advantage of CNNs in ASI while continuing to use these low computing capability processor units,
converting into compact CNNs is a workable option. Meanwhile, a CNN with high performance needs
large datasets to train, while there exist few online datasets for surface defect images.

To address these limitations, this work introduces our novel lightweight CNN, the compact
design remarkably reduces the number of weights and computation while still achieving a high
performance. We also investigate the availability of a generic solution for ASI. That is, we apply our
compact model to multiple types of surfaces. Following proper training strategies, our model has
satisfactory results for different materials with small training sets. It is worth pointing out that the
defect pixels only take a small proportion of the whole image, therefore, the backpropagation gradient
of defects will be overwhelmed by the background gradient, and subsequently cause low accuracy.
Moreover, the images with defects are usually far less than the non-defect, the networks do not have
sufficient data to learn the defect features, resulting in accuracy significantly decreases. To tackle this
problem, we apply the gradual training strategy where the defective regions are intentionally enlarged
with specific scales. Our main contributions are:

• Propose an application-oriented deep neural network for cross-product ASI. Our model obtains
the state-of-the-art in both classification and segmentation.

• Modify the residual bottleneck with small kernels and depthwise convolution, build a lightweight
backbone and decoder. Our model significantly reduces the number of weights, computation and
time cost.

• Obtain ∼5% true positive rate improvement on tiny defect detection, by training our model with
gradual training and a fine-tuned strategy.

2. Related Work

2.1. Compact Design

Intuitively, increasing parameters, computation or the convolution layer may improve the
accuracy of CNN models. Table 1 reveals the performance result of the well-known models trained
on ImageNet (ILSVRC-2012-CLS) [17]. In the table, W is the number of weights (M, or ×106); F is
the FLOPs (×106) evaluated with TensorFlow [18], which accumulates the computation including
convolution, pooling, regularization, batch normalization, and all other operations defined in the graph.
The statistics seemingly indicate that a model with more FLOPs and weights is more likely to obtain
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higher accuracy. However, we observe some cases against this assumption—(1) Inception-V4 [19]
still slightly outperforms ResNetV2-200 although it only has the 1/2 FLOPs and the 2/3 weights of
ResNetV2-200 [20]. (2) MobileNetV2@1.4 has much fewer weights than VGG-16 while it achieves
a higher accuracy by 4%.

Interestingly, many compact deep neural network (DNN) models can still achieve an excellent
performance on image classification, such as SquezeNet [21], Compact DNN [22], MobileNetV1 [23],
ShuffleNet [24], and MobileNetV2 [25]. Some popular applications of object recognition include
gesture recognition [26], handwritten Chinese text recognition [27] and traffic sign classification [28].
Now, the demand for compact models on these applications prompts an increase. Compact models
use specific convolution methods to reduce redundant weights, for example, 1 × 1 convolution,
group convolution, and depthwise separable convolution. Compact models are also used in
surface defect inspection, for instance, Reference [29] introduces a compact CNN to perform defect
segmentation and classification simultaneously.

Table 1. The top-1 accuracy of the models on the ImagNet. F refer to FLoating-point OPerations
(FLOPs) and W to Weights. bold means the best performance.

Model Layers F (M) W (M) Top-1 Acc (%)

AlexNet 8 1386 49.43 57.2
VGG-16 16 9040 138.35 71.5

ResNetV2 50 7105 25.57 75.6
ResNetV2 101 14,631 44.58 77.0
ResNetV2 200 29,165 64.73 79.9

Inception-V4 - 12,479 42.65 80.2
MobileNetV2@1.4 53 1189 6.11 75.0

2.2. Transfer Learning

Transferring the knowledge from a large scale source dataset to a small one has proved to be
a meaningful practice. Reference [30] tried to investigate the best approach for transferring knowledge.
In their experiment, 13 ImageNet classifiers were trained via three different methods—(1) random
initialization; (2) fine-tuned from ImageNet-pretrained weights; (3) freeze CNN as fixed feature
extractors. Then these classifiers were assigned to 12 small datasets. The study shows that fine-tuned
models significantly outperform others. At the same time, those models that achieve higher accuracy
on ImageNet also exceed others on different datasets. A considerable large source dataset is a key factor
of using transfer learning to improve the target dataset. In DeeplabV3+ [31], the source dataset for
model pre-training is JTF-300M [32], which is 300 times larger than ImageNet. Using this super large
dataset, researchers pretrain a 65-layer Xception [33] model, then fine-tune a segmentation model based
on PASCAL VOC 2012. The result suggests these strategies have remarkably leveraged performance,
their model won the best-recorded mIOU (Mean Intersection over Union). In the practice of surface
inspection [15], a fine-tuned ImageNet pretrained VGG-16 is used as a patch classifier on surface defect
inspection. The experiment shows that fine-tuning all layers is the best valid way for models to achieve
high accuracy. Training neural networks with the fine-tune strategy can gain much better results than
with random initialization. Based on these studies, we opt to utilize the fine-tune strategy.

2.3. Model Compression

Deep neural networks are computationally expensive and memory expensive, while hardware
resources are very limited in reality. For example, in mobile applications, the application size and
graphics computing resources are constrained. To address this issue, model compression has been
introduced to help models easier to deploy embedded systems by reducing redundant parameters
and computation [34]. In early work, pruning [35] reduces the number of redundant connections;
quantization [36,37] compresses the floating-point operations by quantifying 32-bit floating-point
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parameters to 16-bit, 8-bit or even 1 bit fixed-point; Low-rank decomposition [38] removes the
redundancy in the convolution kernels through computing the low-rank tensor decomposition;
Knowledge distillation [39] trains small student network with the knowledge of a large teacher network.
These model compression methods can significantly reduce parameter size, computation cost and
running time. More practical approaches and suggestions can be seen in Reference [40].

3. Architecture

The network architecture of our lightweight (LW) CNN consists of a LW bottleneck,
classifier network, and segmentation decoder.

3.1. Depthwise Convolution

We call the regular convolution in deep learning as the standard convolution. Figure 1a shows the
basic operations of standard convolution. In a standard convolution layer with Cin input channels and
Cout output channels, each output feature map is the sum of the Cin input feature maps convoluted by
Cin corresponding kernels. Many famous models such as Alexnet [41], VGG [42], and ResNet [20,43]
use the standard convolution. The number of weights of standard convolution is:

Wstd = Cin × kW × kH × Cout, (1)

where kW × kH is the kernel size. To generate output feature maps with size fW × fH , the computational
cost is:

MACsstd = Cin × kW × kH × Cout × fW × fH , (2)

where kW × kH is the kernel size and fW × fH is the output feature map size. MACs is
Multiply-ACcumulate operations. The value of FLOPs evaluated by TensorFlow is roughly twice
larger than of MACs.

kW×kH   kernel

conv sum
conv

(a) Standard convolution

Depthwise

kW×kH   kernel 1×1   kernel

Pointwise  

conv sum
Input Output Input Output

(b) Depthwise separable convolution

Figure 1. Standard convolution and depthwise convolution operations. A depthwise separable
convolution is combined by a depthwise convolution and a 1 × 1 convolution (pointwise conv).

Figure 1b displays the basic operations of depthwise convolution and depthwise separable
convolution. Distinct from standard convolution, each output feature map of depthwise convolution
is only the result of an input feature map convoluted by a single convolution kernel. The number of
weights of a depthwise convolution is:

Wdw = kW × kH × Cout. (3)
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The computational cost of a depthwise convolution layer is:

MACsdw = kW × kH × Cout × fW × fH . (4)

Depthwise convolution is the key component of our backbone. It reduces the weights and
computational cost by Cin times. Depthwise separable convolution is the operation of depthwise
convolution followed by a 1 × 1 convolution (pointwise convolution). In modern networks,
depthwise separable convolution has been widely applied and achieved excellent performance, such as
Xception [33] and MobileNets [23,25]. We also use the depthwise separable convolution in our decoder.

3.2. LW Bottleneck

The deep bottleneck architecture of ResNet is introduced in Reference [20,43]. Figure 2a shows
the structure of ResNet bottleneck. It substantially increases the feature map number, while decreasing
the number of weights and the computational cost. Layer dimensionality impacts the manifold of
interest in neural networks. In ResNet, the number of channels experiences a series of changes.
Firstly, the network has high-dimensional inputs. Afterward, the number of channels significantly
shrinks in the first pointwise convolution operation, then stays the same in the following standard
convolution layer, and finally expands back to the input size in the next pointwise convolution.
This structural design effectively reduces the computational cost of 3 × 3 standard convolution.
Figure 2b shows the basic structure of MobileNetV2 invert residual bottleneck. On the contrary,
the invert residual bottleneck has low-dimensional inputs, and the number of channels firstly expands
then shrinks. The depthwise convolution is much lighter than standard convolution, making the
thicker 3 × 3 convolution possible, and this structure proved to be more efficient in running memory
and slightly increased the model accuracy.
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Figure 2. Our bottleneck structure (c) Vs ResNet (a) and MobileNetV2 (b). LW(LightWeight)
Dwise(Depth-wise) convolution collecting rich features in difference size of receptive fields, building a
LW pyramid. Different color in (c) means different convolution kernel size.

Despite the depthwise convolution shrinking a remarkable number of weights, we attempt to
reshape kernels for more performance improvement. In the LW bottleneck, the first layer has multiple
parallel depthwise convolutions that will generate feature maps in different receptive fields, which is
also equivalent to expanding channels to the next layer. Previous research has shown that the 5 × 1
and 5 × 1 convolutions can provide wider receptive fields and reduce weights with lager kernel
techniques [44]. Based on the studies, some 3 × 3 kernels will be replaced with 1 × k and k × 1 to avoid
redundant computation, and k will include 5. Specifically, the types of kernels are 5 × 1, 1 × 5, 3 × 1,
1 × 3, 2 × 1, 1 × 2, 2 × 2, and 3 × 3. Each kernel forms a depthwise convolution path, then the feature
maps of the paths are concatenated. Afterward, a pointwise convolution is used to shrink the channels.
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The multiscale kernels build a pyramid with different receptive field sizes, which is structurally similar
to the ASPP [31,45]. In a LW bottleneck, the number of weights is:

WLW = [5 + 5 + 3 + 3 + 2 + 2 + 2 × 2 + 3 × 3]

× Cin + 8 × Cin × 1 × 1 × Cout

=(33 + 8 × Cout)× Cin

(5)

and a MobileNetV2 bottleneck with a expansion factor 6 is:

WMB =Cin × 1 × 1 × 6 × Cin + 6 × Cin × 3 × 3

+ 6 × Cin × 1 × 1 × Cout

=(54 + 6 × Cin + 6 × Cout)× Cin.

(6)

In our network design, we hold the condition Cout ≤ 2 × Cin, thus WLW < WMB.
Relu activation function is widely used for non-linear transformation and training acceleration [41].

Relu6 [46] is more robust when combining with low-precision computation. However, non-linearity
will lead to significant information loss in the case of low-dimensional input [25]. Based on these
studies, we only use Relu6 after the depthwise convolution but drop non-linear transformation after
the pointwise convolution. We use stride rather than pooling in the depthwise convolution to enlarge
the receptive field and reduce the feature dimension, since it is proved that fewer computational cost
while no impact on the accuracy in using stride than pooling [47]. Residual shortcuts will be applied to
prevent vanishing gradient once the input and output of the bottleneck have the same tensor shapes.

3.3. Backbone and Decoder

Table 2 describes our backbone implementation structure in detail. A block is the basic convolution
unit, and it can either be a standard convolution or a bottleneck. In the table, N represents that the
blocks are repeated by N times; S is the stride. S is used in the first depthwise convolution when the
bottleneck blocks are stacked repetitively. Compared with MobileNetV2, our backbone is more compact
in terms of the number of layers and blocks. For example, the MobileNetV2 has 53 convolution layers
and 19 blocks, while our model has 21 and 12. Another improvement is on channel design, which leads
to ∼1 M of weights reduction without hurting model performance. In our design, the output channels
of the last layer are shrunk into 320, which is sufficient enough for surface defect inspection. We also use
the width multiplier parameter for computation and accuracy tradeoff. Width multiplier is a tunable
hyperparameter that is introduced by MobileNet and MobileNetV2 [25], when a multiplier is smaller
than 1, the very last layer of the backbone will not be changed to maintain the accuracy performance.
Width multiplier is used as a tunable hyperparameter for accuracy/performance tradeoffs, which can
change network channels uniformly at each layer as MobileNets do.

Table 2. The backbone of light weight (LW) network with a 3312 × 3 input.

Input Operator Cout S N Block

3312 × 3 3 × 3 Conv2d 32 2 1 1
1662 × 32 1 × 1 Conv2d 16 1 1 2
1662 × 16 LW bottleneck 24 2 2 3–4
832 × 24 LW bottleneck 32 2 2 5–6
422 × 32 LW bottleneck 32 2 1 7
212 × 32 LW bottleneck 64 2 4 8–11
112 × 64 1 × 1 Conv2d 320 1 1 12

After the backbone, the operation procedure for classification and segmentation are different.
In classification, the backbone is followed by a global average pooling layer, then a fully connected layer.
For the segmentation task, a decoder is embedded, which is shown in Figure 3. The decoder consists of
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an Atrous Spatial Pyramid Pooling (ASPP) [31] and three pointwise convolution layers. In this decoder,
the number of feature maps is fixed, and the output is the result of segmentation. The number of output
channels equals the number of semantics, so we set channel number as 2—one for the foreground and
another for the background. Specifically, the ASPP is composed of one pointwise convolution and
three depthwise separable convolution layers. The kernels in depthwise separable convolution have
the same size 3 × 3 , but their atrous rates are different, which are 6, 12, and 18. The shortcut is from
the 4th or the 5th block of the backbone, which corresponds to 1/4 and 1/8 of output size respectively.
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Upsample
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Output

Backbone

Decoder

ASPP

128×4

512

Conv 1×1

128 Seg_classes

Input

Concat
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Figure 3. The proposed segmentation model. The decoder includes an atrous spatial pyramid pooling
(ASPP), a bilinear upsampling, a series of concats and pointwise convolutions.

3.4. Implementation Details

3.4.1. Hyperparameter Settings

The network is implemented with TensorFlow. In both classification and segmentation tasks,
we use softmax cross-entropy as the loss function and Adam optimizer as the adaptive gradient
descent optimizer. The learning rate is 0.0001, which will exponentially decay 10% at every 10,000 steps.
To speed up training, batch normalization layers are attached to each convolution layer, with decay =
0.9997 and epsilon = 0.00001. To avoid overfitting, we use L2 regularization in each convolution layer.
The decay of L2 regularization is 0.0001.

3.4.2. Gradual Training

Training deep neural networks on the surface defect datasets may have the issue of data
imbalance—first, the image data are difficult to collect, because there only exists a small amount
of the products with surface defect; second, the target features is difficult to detect, because the number
of surface defect pixels are much less than background pixels. These characteristics can cause the
background overfitting and the foreground underfitting. In the worst case, the neural network may
predict the defective product as a “perfect product” because all the surface defect pixels may be
“ignored” by the model. Besides, the size of different types of defects varies greatly, the gradient of
tiny defects will be overwhelmed by the gradient of large defects or background gradient, causing the
low accuracy of tiny defects.

We propose a gradual training strategy to address data imbalance. In the early stage of network
training, we only train the images of defective products and zoom into the defect areas. The model
is trained with constant input size, while the zoom ratio is linearly reduced to 1. Later, the images
of perfect products are fed to the model. This strategy has proved to be a valid way to prevent the
network from overfitting. It also improves model accuracy. Details of this training strategy will be
expounded in Section 4.4.
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4. Experiments

4.1. Datasets

4.1.1. The Textures Dataset

We collect a dataset of surface texture (8674 images), which contains 64 classes from 3 public
datasets. It can be accessed by https://github.com/abin24/Textures-Dataset. The images are uniformly
resized into 331 × 331. Notably, 11 classes (3194 images) are from KTH surface datast (including
KTH-TIPS and KTH-TIPS2) [48], 28 classes (4480 images) from Kyberge [49] dataset, and 25 classes
(1000 images) from the UIUC dataset [50].

Images in the Textures datasets include wood, blanket, cloth, leather, and so forth, these textures
are very commonly seen in surface inspection problems. So, we believe that it can be used as a source
dataset for network pretraining, and also can be used to evaluate the capacity of defect inspection
models. Samples of this dataset are displayed in Figure 4.

KTH_aluminium,KTH_corduroy,KTH_cotton,KTH_cracker  sponge

Kyberge_blanket1, canvas,Kyberge_ceiling1, Kyberge_cushion1 

UIUC UIUC01_bark1 Wood1,Glass,upholstery，wood2 

Figure 4. The textures dataset. Each image is a sample of one texture class, first row is from the KTH,
second row from Kyberge, and third from UIUC.

NEU surface defect dataset [1] is a hot-rolled steel strip surface defect dataset including 6 classes
(1800 images) of defects. Images are grayscale with uniform size 200 × 200. The steel defects include
crazing (Cr), inclusion (In), patches (Pa), pitted surface (PS), rolled-in scale (RS), and scratches (SC),
as shown in Figure 5. Images are captured in different exposure conditions, their intra-class defects
exist large differences in appearance while the inter-class defects share some similar aspects, making the
classification task challenging.

(Cr) (Pa)(In) (Rs)(Ps) (Sc)

Figure 5. The 6 classes surface defects in NEU dataset.

4.1.2. The Dagm Dataset

The DAGM 2007 dataset [51] has 6 classes of textured surfaces, it is evenly divided into training
and test sets. As shown in Figure 6, defects are coarsely labeled with elliptical masks. In each class of
the 6 surfaces, there are 575 images in the training set, about 80 with a defect and the rest are normal,
and the test set shares this distribution.

https://github.com/abin24/Textures-Dataset
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(1) (2) (3) (4) (5) (6)

Figure 6. The DAGM dataset, the green ellipses are the provided coarse ground truths. (1)–(6) are the 6
classes of the surface in the dataset.

Wood defect dataset [5] is a surface defect dataset of dried lumber boards, containing 18 types of
defects (839 images with size 488 × 512). Figure 7 shows defects and the corresponding ground truths
with a set of bounding boxes. Some defects only appear in 2 or 3 images, such a severe imbalance of
image distribution brings many difficulties to our work.

Figure 7. Samples in wood defect dataset, blue bounding boxes are the provided ground-truth,
notice that the bounding box are not mapped well with the defects.

4.2. Classification on Textures

4.2.1. Experiment Settings

We split the Textures dataset into two halves randomly, one for the training set, and another
for the validation. We implement strong data augmentation to balance the image number of each
class and avoid the effect of overfitting. In the training set, we generated 200 images for each class.
Each augmented image is generated from a random combination of multiple data augmentation
methods provided by imgaug library [52]. These data augmentation approaches include flipping,
affine translation, crop, blur, Gaussian noise, illumination perturb, elastic transform, perspective
transform, and piece-wise affine. The augmented images are mixed with the original images to build
our final training set.

We compare our models with ResNetV2-50 [20], ShuffleNet [24], and MobileNetV2.
The hyperparameter setting is the same as those described in Section 3.4. The input size is 331× 331× 3,
and training for 90,000 steps with a batchsize of 64. Table 3 shows the experiment result, where @
represents Width multiplier which is mentioned at Section 3; t is the running time of a forward operation
on an IPC that is equipped with an Intel i34010U CPU(1.7 GHz) and 4 GB memory; Acc is the test
accuracy, defined as:

Acc =
C
N

× 100%, (7)

where C is the number of correct predictions in the test set and N is the number of all predictions in
the test set.
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Table 3. Model performance on the Textures dataset. F refer to FLOPs, W to Weights, t to running-time,
and Acc to Accuracy.

Model Pretrain F (M) W (M) t (ms) Acc (%)

ShuffleNet@0.25 - 196 0.19 254 97.02
MobileNetV2@0.35 - 267 0.48 259 97.72
MobileNetV2@1.4 - 2684 4.43 695 97.56

ResNetV2-50 - 16082 23.65 893 99.03
ours@0.35 - 76 0.06 75 97.51
ours@0.75 - 246 0.14 140 98.71

ShuffleNet@0.25 ImageNet 196 0.19 254 99.33
MobileNetV2@0.35 ImageNet 267 0.48 259 99.63
MobileNetV2@1.4 ImageNet 2684 4.43 695 99.93

ResNetV2-50 ImageNet 16082 23.65 893 99.60
ours@0.35 ImageNet 76 0.06 75 99.29
ours@0.75 ImageNet 246 0.14 140 99.52

ShuffleNet@0.25 Flower102 196 0.19 254 99.27
MobileNetV2@0.35 Flower102 267 0.48 259 99.50
MobileNetV2@1.4 Flower102 2684 4.43 695 99.73

ResNetV2-50 Flower102 16082 23.65 893 99.58
ours@0.35 Flower102 76 0.06 75 98.48
ours@0.75 Flower102 246 0.14 140 99.33

4.2.2. Impact of Parameter Size

A model with more weights is more likely to obtain higher accuracy. For example,
MobileNetV2@1.4 performs better than MobileNetV2@0.35; ours@0.75 performs better than ours@0.35.
However, ours@0.75 obtains higher accuracy than MobileNetV2@1.4 with fewer weights when the
models are trained from scratch (random initialization).

In the experiments, the fine-tuned MobileNetV2@1.4 obtains the highest accuracy. Regardless of
the good accuracy performance of the MobileNetV2@1.4 and ResNetV2-50, these models contain
a large number of parameters (and operations) which require GPUs. However, an ideal ASI model
should not only perform well inaccuracy but also takes less computational resources, because many
ASI platforms usually are not equipped with such expensive hardware devices. After exploring the
trade-off between accuracy and efficiency, we give up on embedding these large-parameter models.

4.2.3. Impact of Fine-Tune

All the backbone networks in this paper are either trained from scratch (random initialization)
or fine-tuned from pretained parameters. As shown in Table 3, we pretrain our model on Oxford
Flower102 [53] and ImageNet. We obtain higher accuracy improvement using fine-tune strategy
than simply stacking more weights or layers. Compared with the random initialized ResNetV2-50
and MobileNetV2@1.4, ours@0.75 model (ImageNet pretrained) has much fewer weights and FLOPs,
but higher accuracy. The fine-tune strategy can enhance accuracy by 1∼2 %.

Fine-tune can also accelerate convergence. As shown in Figure 8, the Cross-Entropy losses
of pretrained models decrease much faster than the random initialization ones. The ImageNet
pretrained MobileNetV2@1.4 obtains the highest validation accuracy (99.93%) with only 4000 training
steps, which is 22.5 times faster than the random initialization. Our experiment also shows that
transferring the features of the larger scale source dataset is more generalization. As shown in
Figure 8, ImageNet pretrained model has higher validation accuracy than Flower102 pretrained model
at the same training loss. The ImageNet pretrained model has also higher accuracy improvement
as seen in Table 3. However, it takes days to weeks to pretrain a designed model on ImageNet with
a high-performance computer equipped with exceptionally strong GPUs and over 130 GB disk storage.
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Since the accuracy improvement of Flower102 pretraining is competitive to ImageNet pretraining,
a much smaller source dataset can be used as a compromise when computing resources are limited.
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Random

Figure 8. The accuracy and loss of different parameters initialization methods (our@0.35).

Our model (ours@0.75) is ∼4.9 times faster than MobileNetV2@1.4, with only ∼1/10 weights,
∼1/4 FLOPs and a slight (∼ 0.41%) accuracy decrease. Compared to the models with similar FLOPs
size, our models also have competitive accuracy to ShuffleNet@0.25 and MobileNet@0.35, but much
faster speed on low power CPU.

4.3. Classification on NEU

Each class of NEU dataset has 300 200 × 200 images, they are randomly split into 150 training
images and 150 test images. We use accuracy defined in Equation (7) as evaluation metric, and the
classification result can be seen in Table 4.

SCN + SVM [1] is the first model using the NEU dataset. In this model, a translation and scale
invariant wavelet method called scattering convolution network (SCN) is used to extract texture
features; support vector machine (SVM) is used as the classifier. Their experiments proved that SCN
performs better than other methods on extracting features, and SVM performs better than the Nearest
Neighbor Classifier on this dataset. This method achieves 98.60% accuracy. Reference [2] introduces an
end-to-end CNN for this surface defect classification task. Their work proves that data augmentation
on this dataset is crucial for performance improvement, their model gets a better accuracy at 99.05%.
Ruoxu, Ren et al. [54] used an ImageNet pretrained CNN named Decaf [55] as a fixed peculiarity
extractor, they remove the fc7, fc8 layer, freeze the layers before fc6, then trained a multinomial logistic
regression (MLR) classifier. This transfer learning method helps them reach a higher accuracy at 99.27%.
Larger-size models can fit the dataset better, mentioned in Reference [56], Wide Residual Networks
(WRN) [57] are used, and the WRN-28-20 gets the best-reported result at 99.89%. However, as shown
in the Table 4, WRN has so many weights to train that results in a massive computation cost during
training, as long as 2 days as their report, even if the input images were resized to 32 × 32.

We apply strong data augmentation to generate sufficient data for network training. Each class
contains 9000 images after data augmentation, all the augmentation methods mentioned in Section 4.2.1
is used in this case. We train ShuffleNet@0.25, MobileNetV2@0.35 and ours@0.35 at this augmented
dataset with 200 × 200 input size and a batch size of 64, losses and hyperparameters are the same as
those described in Section 3.4.

Both MobileNetV2@0.35 and the ours@0.35 achieve exceptionally high performance with the best
record of 100% test accuracy. However, compared to the minor improvement on accuracy, it is more
worth pointing out that the pretrained models accelerate convergence. For instance, the ImageNet
pretrained MobileNetV2@0.35 and ours@0.35 takes only 1.2 K–1.6 K training steps to converge
(99% + test accuracy). In the setting of random initialization, the training time of ShuffleNet@0.25,
MobileNetV2@0.35 and the ours@0.35 is almost identical, which takes around 4 h (60K steps) on a GTX
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1080 GPU, much faster than the 48 h of WRN-28-10. Our model has the least parameter, computational
cost and running time but the highest accuracy in the NEU dataset.

Table 4. The accuracy of the NEU dataset.

Model Pretrain F (M) W (M) t (ms) Acc (%)

SCN + SVM - - - - 98.60
CNN(Yi Li) - 400 0.46 - 99.05

Decaf + MLR ImageNet 1078 28.58 - 99.27
WRN - 115557 144.8 - 99.89

ShuffleNet@0.25 - 52 0.19 126 99.89
MobileNetV2@0.35 - 102 0.40 116 99.89

ours@0.35 - 28 0.04 29 100

ShuffleNet@0.25 ImageNet 52 0.19 126 99.89
MobileNetV2@0.35 ImageNet 102 0.40 116 100

ours@0.35 ImageNet 28 0.04 29 100

4.4. Segmentation on DAGM

4.4.1. Comparison Models

We use the mAcc (mean Accuracy) in Reference [14] as our evaluation metric, which is defined as:

mAcc =
TPR + TNR

2
(8)

and TPR (True Positive Rate), TNR (True Negative Rate) are defined as:

TPR =
TP

TP + FN
, TNR =

TN
TN + FP

. (9)

mAcc is an image-level evaluation metric, without considering pixel-level segmentation accuracy.
Specially, the mAcc in Table 5 is the mean mAcc of all the 6 type textures of the test set.

Table 5. The mean accuracy of the DAGM dataset.

Model Pretrain F (M) W (M) t (ms) Acc (%)

FCN + CNN - - - - 95.99
CA-CNN - - - - 96.44

CNN + SW - - - - 99.20
C-CNN - 2280 1.27 - 99.43

VGG ImageNet 9024 134.31 - 99.93

ShuffleNet@0.25 + ours decoder - 1126 0.64 371 98.99
MobileNetV2@0.35 + ours decoder - 1630 1.40 591 98.99

ours@0.35 - 923 0.55 217 98.86
ours@0.75 - 1312 0.60 369 99.46

ShuffleNet@0.25 + ours decoder ImageNet 1126 0.64 371 99.40
MobileNetV2@0.35 + ours decoder ImageNet 1630 1.40 591 99.90

ours@0.35 Textures 923 0.55 217 99.40
ours@0.35 ImageNet 923 0.55 217 99.43
ours@0.75 Textures 1312 0.60 369 99.79
ours@0.75 ImageNet 1312 0.60 369 99.67

In Reference [13], 32 × 32 image patches and their 64 × 64 context patches are randomly extracted
from the training images, and fed to a context-aware CNN(CA-CNN) classifier together. All test
images are classified into 12 classes(6 background textures and 6 defects) with the 32 × 32 patches.
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Context information is critical to increasing the mAcc this sliding window classifier. In Reference [14],
the problem of segmentation is also treated the defect segmentation as a classification task in 32 × 32
patches, with CNNs and sliding windows (CNN + SW). There also exist some attempts to select an
optimal CNN structure among different depths and widths between operation time and accuracy
trade-off. In Reference [58], the segmentation strategy includes two stages: first, an FCN is used
to segment defects; second, the 32 × 32 or 64 × 64 patches are cropped around the defect detected
by the first stage and a CNN is used as a foreground-background classifier to reduce false alarms.
These three approaches use very small patches. However, the elliptical ground contains tremendous
non-defective areas (as shown in Figure 6(2) and (4)). To extract positive samples, more accurate
manual re-label ground truths are necessary. The ever-changing texture background makes a universal
set of background patches to train the network, in Reference [14] 324,000 training patches are cropped
to ensure model accuracy. So these sliding window based models are unstable and hard to train.

In Reference [15] a input image is cropped to 9 224× 224 sub-images, and an ImageNet-pretrained
VGG-16 [42] is fine-tuned. The whole image is classified by the vote result of 9 sub-images. Rich features
learned from ImageNet push the VGG-16 well-fit to the DAGM and get the best mAcc(99.93%)
overall. However, the parameters of a VGG-16 are 134.31 M, which causes very large computational
cost—9024 M FLOPs in one sub-image, 9 times FLOPs are needed in an entire input image.

In Reference [29], an end-to-end segmentation-classification multi-task compact CNN(C-CNN)
is used. Different from the ordinary segmentation model, they use a mean squared error (MSE) loss
to treat the defect segmentation as a regression problem and use heat maps as segmentation results.
The training process has two stages: first, only the regression FCN is trained; second, the layers related
to FCN are frozen and the classifier is trained only. This training strategy enables the model to fit
a good classifier without affecting the segmentation accuracy. The mAcc of this model is 99.43% with
small computational cost and very few parameters.

4.4.2. Proposed Model

The DAGM dataset contains 6 classes of defects. Noticeably, the full input image size is 512 × 512,
but the width of the smallest defects only consists of 3–4 pixels. We treat this defect inspection as
a binary image segmentation task and the elliptical mask as the supervise ground truth. We build
a segmentation neural network with the encoder-decoder illustrated in Figure 3, in which input
size = 512 × 512, output stride = 8, and output size = 64 × 64. The encoder backbone is our LW
backbone, ShuffleNet or the MobileNetV2, and the decoder shortcut is the 5th layer output of the
backbone. The training batch size is set to 12, losses and hyperparameters are the same as those
described in Section 3.4. The outputs of these semantic segmentation model are two 64 × 64 binary
images, one for the foreground (defect) and another for the background. When we evaluate the mAcc
in the test set, if any white pixel appears in the predicted foreground, the image will be treated as
a positive sample, otherwise, it will be predicted as normal (negative). The training set is augmented
by methods described in Section 4.2.1, since some spatial augmentation (affine/flip/crop/etc.) will
change the locations of the defects, the same spatial augmentation transform will be applied to the
ground truth masks as well. Each type of these texture surface will be augmented to 6000 images.

The proportion of training images with defects and non-defects is 1/7, and some tiny defects only
consist of 3-4 pixels width while the image size is 512 × 512. Such severe imbalance is highly likely to
cause low accuracy of tiny defects because of foreground under-fitting. We use the gradual training
strategy mentioned above (Section 3.4), to address the issue of the severe imbalance distribution of
DAGM. First, only the images with defects are trained at the beginning, and these images are zoomed
to the defect area. Figure 9a presents an example of the process. The zoom ratio is linearly reduced
from 3.6 to 1 at the first 20 K steps, then the model continues to train with the original input size.
The images without defects are fed to the model after 80 K steps. These setups are empirically designed,
and our experiments prove that this training strategy can help obtain better performance on surface
defect inspection.
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As shown in Table 6, gradual training improves TPR2 of the tiny defect (the True Positive
Rate of the second type texture surface), but cannot improve the mAcc. This conservative training
strategy enables the network to learn the feature of tiny defects, to avoid foreground underfitting and
result in predict all images as the background. Together with ImageNet pretraining, 4.77% TPR2 and
0.61% mAcc improvement can be achieved. Pretraining is the key process accuracy improvement,
pretraining on small datasets like Flower102 or Textures is competitive to large scale dataset
(ImageNet).

Table 6. Impact of the gradual training and pretraining on tiny defect.

Model Gradual Training Pretrain TPR2 (%) mAcc (% )

ours@0.35 90.47 98.82
ours@0.35 X 94.05 98.86
ours@0.35 X X 95.24 99.43

(a) (b) (c) (1) (2) (3) (4)

Figure 9. Results of DAGM dataset. (a): At the early training steps, training images are zoomed to the
defect, (b) are the label of (a), (c) are the predicted images of the model. (1), (3) are the full-scale image,
(2), (4) are the prediction of the well-trained model, predict masks are more accurate than the ground
truths sometimes.

Table 5 shows the statistic of model performance on DAGM dataset. Ours@0.35 model costs the
least computation with the least weights, while still achieves a mAcc of 99.43%. ImageNet pretrained
MobileNetV2@0.35 with our LW decoder get a very high mAcc (99.90%). In contrast to the
FCN+CNN [58], CA-CNN [13], CNN [14] and other patch-based models, our model does not require
finer ground truth. Universe set of background patches is also no longer needed, and the end-to-end
prediction does not require any post-processing steps. As shown in Figure 9, our model makes a fine
prediction of elliptical defect masks, and sometimes the outputs are more accurate than the ground
truths. This phenomenon indicates that the model has learned the feature of defects rather than
overfitting the training set.

Ours@0.35 is 3 times faster than the MobileNetV2@0.35 on a low-cost IPC, which make ∼5 fps
surface defect inspection is possible, with only 0.47% mAcc drop. Ours@0.35 has same mAcc with
the ShuffleNet@0.25 but 1.7 times faster on the IPC. When using a GPU, ours@0.35, ours@0.75,
ShuffleNet@0.25+ours decoder and MobileNetV2@0.35+ours decoder can inference a 512 × 512 image
within 8 ms.

4.5. Segmentation on Wood Defects

Each image in the Wood defect dataset has a set of bounding boxes of the same size, and a label
indicating the defect type inside these bounding boxes (shown in Figures 7 and 10). These evenly
distributed bounding boxes sometimes do not match the defects well. We use ours@0.75 as the
backbone, which also pretrained from DAGM dataset, as the encoder. The output stride is 8, the input
size is 488 × 512 × 3, and the defect bounding boxes as the ground truth. Half of the images are
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used as the training set and the rest as the test set, each of the 18 type defect is augmented to at least
6000 images with the same method used in DAGM dataset, to reduce the effects of data imbalance.
We also adopt all the hyperparameters and gradual training strategy the same as we used in the
DAGM dataset.

We adopt the Accuracy and Error escape rate defined in Reference [54], the Accuracy is defined as:

A = 1 − (Nlab − Ndet_lab) + (Ndet − Ndet_lab)

N
(10)

And Error escape rate is defined as:

E = 1 − Ndet_lab

Nlab
(11)

where the Nlab is the number of defect patches (bounding boxes), Ndet is the number of detected
defect patches, Ndet_lab is the correctly detected defect numbers, and N is the total number of patches.
High accuracy (A) and low Error escape rate (E) is expected.

Image Ground-Truth Result 

Figure 10. Segmentation results of Wood defect dataset.

In Reference [54], an ImageNet pretrained Decaf is used as the fixed feature extractor,
and a multinomial logistic regression (MLR) classifier is trained with patches. Heatmaps are generated
from the predict probabilities of the MLR, and Otsu’s method together with Felzenswalb’s segmentation
is used to generate binary segmentation results. They found that patch size and patch stride will be
a greatly affect the result, small patches will not include enough information, and small stride will
lead to high computational cost, while large patch size or stride will lead to imprecise segmentation
result. And in this dataset, they choose a patch size roughly the same as the size of the defect (50 × 50)
and a stride of 10. They got the best-reported result in all the defect types, which has the highest A,
and the lowest E.

We also treat this task as a binary segmentation, the segmentation result can be seen in Figure 10,
our model fits the defect better than the provided bounding boxes. The A and E of our model and
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the best-reported result of Reference [54] is shown in Figure 11. Our model has much higher accuracy
than the Decaf and similar Error escape rate. Our model is much faster than the reported segmentation
time in Reference [54], they use a 24 core workstation and 2 min to generate heatmaps per image,
our model tests an image in 397 ms with an Intel i3-4010U(1.7 GHz) CPU or 27 ms with a GTX1080
GPU. Our model has no patch size selection process and no post-process, differ from the segmentation
method in Reference [54].
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Figure 11. Accuracy and Error escape rate of Wood defect dataset.

5. Conclusions

In this paper, we introduce a novel compact CNN model with low computation and memory
cost as well as explore the availability that if one model can be applied on cross-product surface
defect inspection. We modify classic backbone architecture into the LW backbone via switching
channel expansion order and customizing small kernels. Meanwhile, we observe that some strategies,
e.g., transfer learning and zoom-in training, are critical to building the networks of tiny defect inspection.
By evaluating the tradeoff between accuracy and computation cost, our model outperforms other
advanced models with the least computation on four defect datasets. In contrast to the traditional
approaches, our model gets rid of hand-crafted features and patch size selection. Compared with
modern CNNs, the LW model has less than 1 M weights, which is no longer needed to run on
expensive GPUs.

We record the experiment results on an IPC equipped with an Intel i3-4010U CPU (1.7 GHz).
The inference time of a 200× 200 image in the NEU dataset is ∼29 ms, a 331× 331 image in the Textures
dataset is ∼140 ms (@0.75, 99.33% Acc) and a 512 × 512 image in DAGM dataset takes 217 ms (@0.35,
99.43% mAcc). The inference time will be <30 ms if using a GPU. This lightweight, end-to-end compact
model is promising to be used in low power consumption real-time surface inspection systems or
smartphone apps.
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