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Abstract: Internet of Things (IoT) is a promising technology that uses wireless sensor networks
to enable data collection, monitoring, and transmission from the physical devices to the Internet.
Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques
are vital to meet various application requirements. Most of the IoT applications need low data
rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this
regard which offers superframe structure at the MAC layer. However, for IoT applications where
nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage
and latency. In this paper, a new superframe structure is proposed that is backward compatible
with the existing parameters of the standard. The proposed superframe overcomes limitations of
the standard by fine-tuning its superframe structure and squeezing the size of its contention-free
slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements
and accommodates more nodes in a superframe structure. The analytical results show that our
proposed superframe structure has almost 50% less delay, accommodate more nodes and has better
link utilization in a superframe as compared to the IEEE 802.15.4 standard.

Keywords: Internet of Things; wireless sensor networks; superframe structure

1. Introduction

Internet of Things (IoT) is an emerging technology that has been highly attracted due to its wide
utility in diverse applications since last decade. IoT is used to connect physical objects with the Internet
and has plenty of applications for sensor data monitoring and information analytic [1–3]. In critical
scenarios such as natural disasters like floods, earthquakes, and tsunamis, etc., the consequences
are catastrophic and need some reliable, timely and coordinated response to overcome the damage.
In this regard, the IEEE 802.15.4 based IoT plays a vital role to provide the connectivity among IoT
nodes [4–7].

The above mentioned critical applications demand better throughput, reduced power
consumption, and guaranteed data delivery with permitted latency [8]. Physical and Medium Access
Control (MAC) layers protocols in addition to routing protocols are designed to meet critical Quality
of Service (QoS) requirements of IoT applications [9,10].

IoT is a key part of future smart cities and Wireless Sensor Networks (WNSs) are its core
components, which are deployed in different applications to create a Wireless Personal Area Network
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(WPAN). To facilitate the transmissions from various IoT nodes, it is vital to design an efficient
MAC protocol. Various MAC protocols traditionally used for WSNs such as LoRaWAN [11,12],
and Symphony Link [13] can be used for IoT applications but they suffer from long delay in the
presence of adaptive data traffic. Energy is one of the major constraint in WSNs.

Institute of Electrical and Electronics Engineering (IEEE) has developed 802.15.4 standard for low
data rate and low power Wireless Personal Area Networks (WPAN). IEEE 802.15.4 standard offers
a very low duty cycle even less than 0.1% and is highly attracted by such devices having low power
constrainsts such as WSNs [14].

IEEE 802.15.4 operates at three different frequency bands such as 868 MHz, 915 MHz, and 2.4 GHz.
The standard works either in a Beacon enabled or Non-Beacon enabled mode. The Beacon enabled
mode is divided into two main sections, active and inactive period, as shown in Figure 1. All WSN
nodes communicate during an active period and remain in sleep mode during the later inactive
period to conserve energy. The active period of Beacon enabled mode consists of Contention Access
Period (CAP) and optional Contention Free Period (CFP). Each Superframe in this mode is divided
into 16 equal duration time slots. One or more slots are reserved for the Beacon frame because its
size may vary due to several remaining data frames for the associated nodes. The Beacon frame
is generated by the PAN coordinator and contains information about frame structure, next Beacon,
network, and sending messages.
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Figure 1. IEEE 802.15.4 Beacon enabled mode Superframe format.

The CAP consists of maximum of 16 or minimum of 9 slots. In CAP, nodes contend to access
medium by following the slotted CSMA/CA mechanism. On the other hand, the maximum number of
slots in CFP can be up to 7 and are known as Guaranteed Time Slots (GTS). Nodes having critical data
requests are allocated Guaranteed Time Slot (GTS) by the coordinator. The nodes that are allocated
GTS can explicitly carry out communication during their allocated period to the PAN coordinator.
However, this standard has some limitations for GTS allocations.

1. The cumulative delay from GTS allocation till transferring of data causes a significant delay,
which is appropriate for time-sensitive WSN applications.

2. Due to a limited number of CAP time slots maximum of 7 nodes can be allocated GTS.

These constraints along with the performance of the standard are evaluated and analyzed by
many researchers in different prospects of application scenarios. CAP performance of the superframe
structure of the standard is evaluated in different prospects on all frequency bands [15,16].

CFP performance of the standard is also analyzed and some new scenarios are proposed to
improve the performance of the standard in different prospects. Multi-Factor Dynamic GTS Allocation
Scheme (MFDGAS) in [17] proposed CFP slots allocation to nodes by considering their data traffic,
communication delay and slot size requirement. This improves the GTS utilization of CFP at the cost
of fairness. However, it does not address latency issues and QoS is compromised.

In [18], Advanced GTS Scheduling (AGS) is proposed for industrial applications. Authors claim
that AGS improves link utilization and also chances of collisions during GTS requests are avoided.
B. Lee et al. [19] proposed a priority-based algorithm for adaptive superframe adjustment and GTS
allocation (PASAGA) for IoT applications. The algorithm prioritizes GTS to sensitive data as compared
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to other data traffic. The authors claim that PASAGA improves bandwidth utilization and improves
delay for sensitive data in comparison to the standard.

In [20], authors proposed an optimal relay selection technique for IEEE 802.15.4 based sensor to
sink communications. The authors also propose an efficient channel access mechanism to improve the
network throughput and reduce packet collisions resulting in lower energy consumption of the sensor
nodes. In [21], a novel medium access protocol for the IEEE 802.15.4 Time-slotted Channel Hopping
(TSCH) based wireless sensor networks is proposed. The proposed protocol uses Enhanced Beacons
(EBs) based scheduling approach to minimize the collisions due to simultaneous transmissions of the
sensor nodes. As compared to the centralized schemes, the proposed autonomous scheduling protocol
improves the energy consumption and throughput.

All research related to maximizing the throughput and reduce communication delay of the traffic
in CFP consider the above-mentioned scenario mentioned in the 802.15.4. standard [22]. However,
these constraints were properly addressed in [23] by proposing an Efficient Superframe Structure (ESS)
where CFP precedes the CAP as shown in Figure 2. This superframe structure minimized the delay in
a significant manner. The link utilization has also been improved by reducing the GTS duration to half
of the normal slot length.
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Figure 2. Efficient Superframe Structure.

A large number of applications offer adaptive data traffic with an adaptive duty cycle to meet QoS.
One of the requirements of such applications is to avoid unnecessary delay, optimally scrutinize data
requesting nodes in a superframe structure with improved link utilization. To meet these requirements,
an adaptive duty cycle according to the data requests is required. Though ESS manages the delay
and link utilization to some extent, however, ESS as well as standard does not meet the adaptive data
requirements of GTS requesting nodes.

In this work, an Efficient Superframe Structure with Adaptive Duty Cycle (ESSADC) is proposed
to meet the adaptive data requirements. ESSADC follows the superframe structure of ESS by preceding
CFP than CAP for reduced network delay and introduces an algorithm, that allows PAN coordinator
to adjust its duty cycle according to the traffic requirements.

Major contributions of ESSADC are:

• ESSADC adjusts active period of the superframe to improve the GTS utilization and offers better data
transmission.

• Similar to ESS, GTSs have been doubled by reducing their slot size to half of the IEEE 802.15.4 standard.
This helps in accommodating up to 14 GTS requesting nodes instead of 7.

• PAN coordinator scrutinizes the GTS requesting nodes by applying Shortest Job First (SJF) algorithm
instead of first come first serve. This helps in reducing the network delay.

• ESSADC is backward compatible with the standard and adequate with existing parameter.
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The rest of the paper is organized in the following manner: Section 2 briefly describes the IEEE
802.15.4 standard by emphasizing on the GTS allocation procedure. Section 3 discusses the proposed
superframe format along with the necessary modifications in the beacon frame fields. The numerical
estimators for the delay and link utilization for the proposed superframe format are also presented
in this section. The numerical results of our proposed scheme are compared with the ESS and the
beacon-enabled IEEE 802.15.4 standard in Section 4. Finally, Section 5 concludes our work.

2. Overview of IEEE 802.15.4 Standard

The standard is designed for low-rate wireless personal area networks (LR-WPAN), that supports
both star and peer-to-peer topology. The standard operates in both beacon and non-beacon
enabled modes.

In non-beacon-enabled mode, there is no duty cycle, as there are no active and inactive periods
and allows nodes to communicate in an ad-hoc manner by using an un-slotted CSMA/CA algorithm.
However, in beacon-enabled mode, the standard offers superframe structure, that comprises of
an active and optional inactive period with an adaptive duty cycle, that ranges from less than 0.1% up
to 100%. For 100% duty cycle, there is no inactive period. An active period is known as Superframe
Duration (SD) and it comprises of the beacon, CAP and CFP. PAN coordinator broadcasts a beacon
frame and it is mandatory for all member nodes to listen this beacon message not only for time
synchronization but also to get the information about the CAP, CFP, inactive period and interval
between two consecutive beacons (BI). SD comprises of 16 slots, minimum 9 slots are shared between
Beacon frame and CAP, whereas maximum limit of CFP is 7 in a SD. A complete superframe structure
of IEEE 802.15.4 standard is shown in Figure 1.

The parameter values of Superframe Order (SO) and Beacon Order (BO) determines SD and BI as
mentioned in Equations (1) and (2).

SD = aBasesuper f rameduration× 2SO (1)

BI = aBasesuper f rameduration× 2BO (2)

where, 0 ≤ SO ≤ BO ≤ 14.
Duty cycle (DC) in a beacon-enabled mode is controlled by varying the values of SO and BO.

DC can be calculated as:
DC = 2BO−SO (3)

During CAP, nodes transmit their requests to their PAN coordinator and PAN coordinator assigns
Guaranteed Time Slots (GTS) to nodes for data transmission during CFP.

2.1. GTS Allocation Procedure

The standard allocates CFP slots to only those nodes which are a member of the PAN and holds
a short address. A node can determine the number of GTS required (GTSreq) to send its data (D), once
it knows the slot capacity by knowing the value of SO, with the help of Equation (4).

GTSreq = |D/SC| (4)

Here, SC is the slot capacity to carry maximum number of bits and is computed as:

SC = 960× 2SO−2 (5)

Each GTS requesting node calculates GTSreq and send it to the coordinator in CAP. A GTS
requesting frame is shown in Figure 3.
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Figure 3. GTS request frame format of IEEE 802.15.4.

PAN Coordinator receives GTS requests only in CAP. At the end of the CAP, it evaluates the
GTS requests. If GTS requests are within the available slot limits, then it allocates GTS to all the GTS
requesting nodes. In case, requesting GTS are more than 7, then the PAN coordinator scrutinizes
GTS on a first come first serve basis. All the scrutinized nodes are informed about their allocated
CFP slots with their starting and ending slot during the next beacon frame. An increase in successful
nodes increases the length of the beacon frame that reduces the CAP length. PAN coordinator also
ensures to maintain the minimum CAP duration, as it should not be less than aMinCAPLength value.
The scrutinized nodes retrieve information about their assigned CFP slots from the GTS descriptor
field of the beacon frame.

2.2. Brief Overview of ESS

This section discusses the efficient superframe structure introduced in [23] as shown in Figure 2.
In ESS, CFP precedes soon after the beacon frame and then followed by CAP. In case, there is no GTS
request received by the PAN coordinator then, there is no CFP and CAP will commence right after the
Beacon frame. CFP duration in ESS is similar in size as offered by the standard, however, each CFP slot
duration is halved to increase the slot capacity to 14 instead of 7. The salient feature of ESS is to avoid
the unnecessary CAP delay faced by a GTS requesting node in the next BI. This significantly reduces
the network delay faced by the GTS requesting nodes. Besides, 14 GTS can accommodate more GTS
requesting nodes to transmit their data in a BI, that improves the network throughput. The reduced
delay and improved throughput in ESS is achieved at the cost of some modifications in the existing
parameters of the standard.

The Superframe structure of ESS contains minimum 9 CAP slots and maximum 14 CFP slots
excluding the beacon frame. The Superframe Duration of ESS (SDESS) and Beacon Interval of ESS
(BIESS) are calculated as: depends upon the value of Superframe order (SO), aNumSuperframeSlot
(NSS) and aBaseSlotDuration (BSD) as:

SDESS = δ + (960× 2SO) (6)

BIESS = δ + (960× 2BO) (7)

here, 0 ≤ SO ≤ BO. Default value of aUnitBackoffPeriod is 20 Symbols. The Beacon Duration in
symbols, δ, in Equation (8) is computed as:

δ = (m + 3 ∗ n)× 2(Symbols) (8)

A large number of applications offer adaptive data traffic with an adaptive duty cycle to meet
QoS. Both IEEE 802.15.4 standard and ESS do not entertain the adaptive data traffic due to their fixed
SO and BO values in a superframe. This results in either not entertaining nodes optimally or poor
GTS utilization in a superframe duration. When nodes have data requests which are more than the
available limit, then PAN coordinator will not be able to accommodate maximum data requesting
nodes. However, when data requests by each node is less than the available slot capacity, then GTS
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utilization is compromised. In this work, an active period of the superframe structure is fine tuned to
optimally adjust the data requesting nodes in CFP.

3. Efficient Superframe Structures with Adaptive Duty Cycle (ESSADC)

In this work, an efficient superframe structure with adaptive duty cycle (ESSADC) is proposed that
optimally adapts the duty cycle of superframe structure of ESS to meet the adaptive GTS requirements
of GTS requesting nodes. The proposed algorithm in ESSADC offers reduced delay and increased
GTS utilization as compared to ESS and the standard by effectively using some existing and unused
parameters of the standard.

Initially all the GTS requesting nodes (NodeGTS) are required to determine the number of GTS
required (GTSreq) to send their data. GTSreq in the standard is calculated by knowing the requested
data (DR) and data slot capacity (DScap) of each slot of the superframe as:

GTSreq =

⌈
DR

DSCap

⌉
(9)

3.1. GTS Request Frame Structure

In ESSADC, each CFP slot is halved, which increases the GTS capacity from 7 to 14 without
including any new parameter values in the standard. This doubles the GTS capacity in each SD at the
cost of marginally increased computing, as each node need has to determine the data slot capacity of
each CFP slot DSESSADC

Cap with the help of following equation.

CFPSLOT = 960× 2SO−3(bits) (10)

All the NodeGTS calculate their GTSESSADC
req in ESSADC as:

GTSESSADC
req =

DR

DSESSADC
Cap

(11)

Equation (11) generates a fractional number, that is transmitted by each requesting node to PAN
coordinator. In this work, two unused bits b6 and b7 of each GTS requesting frame are used as shown
in Figure 3. The value of these bits is determined by computing the value of X as:

X =

∣∣∣∣∣
⌈

log2(
DR

DSCap
)

⌉∣∣∣∣∣ (12)

Each requesting node fills these two bits as shown in Table 1.
These bits helps PAN coordinator to know the fractional value of data slots requested by a node.

The information of these two bits are only meaningful when node either requests for one GTS or by
requesting 14 GTS by sending value from b0 to b3 as 0001 and 1110 respectively. There are chances
that the requested data of the node might be smaller in size as compared to the DSCap. Decrease of 1 in
SO, halves the GTS capacity to its previous capacity. That’s why, the PAN coordinator needs to know
about GTS utilized before decreasing its size. However, b0 to b3 value 1110 means, that a node has
requested maximum available GTS. In this case, b6 and b7 will mention, how many more CFP slots,
a node requires to send its data completely.



Sensors 2020, 20, 1971 7 of 17

Table 1. Parameter values describing slot utilization.

b0 − b3 (GTS Req) Value of X b6, b7 (Reserved Bit) Description

0001 0 00 More than 50% slot is occupied
0001 1 01 GTS between 25% to 50% is occupied
0001 2 10 GTS between 12.5% to 25% is occupied
0001 3 11 GTS between 6.25% to 12.5% is occupied
1110 4 00 No more additional GTS required
1110 5 01 1 to 15 more GTS required
1110 6 10 16 to 31 more GTS required
1110 7 11 32 to 63 more GTS required

PAN coordinator at the end of CAP, accumulates all GTS requests and apply the ESSADC algorithm
as described in Section 3.2.

3.2. ESSADC Algorithm

PAN coordinator applies ESSADC algorithm by adjusting the values of SO and BO as shown in
Figure 4.

After receiving all the GTSESSADC
req , PAN coordinator calculates the fractional slot requests for each

node. Suppose node S requested k slots. It needs to compute the percentage of available GTS being
utilized by all nodes. This will help the PAN coordinator to determine the slot usage in fractions. PAN
coordinator accumulates all these slots (K) requested by all nodes S. The coordinator computes the
ratio (A) between total available slots as compared to the GTS requested by all nodes. The proposed
scheme offers 14 GTS in a superframe, so A = 14/K. PAN coordinator after computing the value of A,
needs to compare it with the total number of available GTS. In case, the value of A is greater than the
available GTS, then it needs to increase the duty cycle by increasing the value of SO. At the same time,
the duty cycle should not increase from 50%. This increase in the duty cycle depends on the value of C
calculated as:

C = d(|log2 A| , 1)e (13)

If A is less than the available GTS limit, then the duty cycle may be reduced. This decrease in duty
cycle should not violate the SO and BO limits as defined in the standard. At the same time, the PAN
coordinator should be precise about the reduction in the duty cycle. The reduced parameters of SO
and BO depends upon the value of B, which is determined as:

B = b(log2 A, 1)c (14)

This algorithm helps the PAN coordinator to adapt the duty cycle of the next superframe without
violating the standard limits, such as the difference between BO and SO should not increase from 9
and values of SO and BO should remain in their boundary limits.

Figure 5 shows that ESSADC algorithm adjusts SO according to the data requests generated by
the nodes for three different data ranges. The SO trend is observed for five different beacon intervals.
In each beacon interval, 15 nodes send their data requests to PAN coordinator. The nodes increase their
data requests with an increment of 15 bytes in the next beacon interval. It is evident from the results
that, SO value becomes 0,1,2 and 3, when data requests of nodes are less than 16 bytes, 16–30 bytes,
31–60 bytes and 61–120 bytes respectively.
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Figure 4. Proposed ESSADC algorithm.
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3.3. Nodes Selection

PAN coordinator after computing the new SO and BO, recomputes the number of CFP slots
(GTSnew) for all nodeGTS to transmit their data based on the new parameter value of SO. It scrutinizes
and allocates GTS to all the nodeGTS with their GTSnew by applying SJF, that is, by allowing nodes
with less GTS requests to send their data before the other nodes. This helps more nodes to complete
their transmission earlier as compared to the standard, resulting in reduced network delay at the cost
of minute fairness.

In this work, similar to the standard, the duration of CAP and CFP depends solely on the value of
SO. However, each slot in CFP has been halved to increase its capacity to 14 instead of 7 as mentioned
in ESS. This increases the maximum capacity of GTS from 7 to 14 within a superframe structure. Data
capacity of each CFP slot (CFPSLOT) can be determined by a node from the following equation.

CFPSLOT = 960× 2SO−3(bits) (15)

3.4. Link Utilization

It has been observed that a significant amount of bandwidth is wasted during CFP in the standard.
Higher the slot size more will be the wastage. Though ESS reduces this wastage by reducing the CFP
slot size to half however, it is not optimal with adaptive data traffic in each BI. If Di data is required to
be transmitted by node i, then the time required to send this data td to PAN coordinator is estimated as:

td =
Di
C

(16)

Here C is the data rate through which node communicates. If Ki is the number of CFP slots
required to send Di data, then it is computed as:

Ki =
Di

Nbps
(17)

here, Nbps is the number of maximum bits, that can transmitted during each CFP slot and is
calculated as:

Nbps = 15× 2SO+3 (18)

Larger the slot size more will be its capacity in transmitting data in a CFP. Nbps is fixed in ESS
due to its unchanged SO throughput, however in ESSADS, it varies due to its adjustment according to
adaptive data traffic. If a node i requires Ki slots in transmitting its data Di to PAN-coordinator, then
link utilization (Ui) for node i is calculated as:

Ui =
td

Ki × ts
(19)

here, ts is the time in seconds of each CFP slot and it is computed as

ts = 15× e−6 × 2SO+5 (20)

If p nodes are successfully allocated CFP slots, then the link utilization (UCFP), for p number of
nodes is computed as:

UCFP =
p

∑
i=1

td
Ki × ts

(21)

However, link utilization of same node i for the IEEE 802.15.4 standard (Uoi ) is calculated as:

Uoi =
td

Ko × to
(22)
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here ko is number of CFP slots required to send data during CFP in current standard and to is the time
of each CFP slot in seconds and it is calculated as:

to = 15× e−6 × 2SO+4 (23)

If q nodes have been successfully assigned CFP slots, then link utilization UCFPo during a specific
BI is calculated as:

UCFPo =
q

∑
i=1

ti
Ko × to

(24)

4. Numerical Analysis with Results

To analyze and evaluate the ESSADC performance with IEEE 802.15.4 and ESS, the simulation
environment is created by deploying 20 sensor nodes and a PAN coordinator. This simulation
environment is created in MATLAB. Each node is allowed to transmit different data in each beacon
interval that ranges from 20 to 300 bytes. The effects of different values of BO and SO parameters
is observed for fair analysis of ESS and the standard with ESSADC. For better comparison of our
proposed scheme with the other two, the proposed superframe structure is evaluated in different
prospects, such as delay calculations, link utilization and slot(s) allocation to GTS requesting nodes.
Table 2 shows a complete list of simulation parameters.

Table 2. Simulation Parameters.

Parameters Values

Number of Nodes 21
Network Size 100 m × 100 m

Data Rate 250 Kbps
Offered Load/node (Bytes) 20:20:300

Superframe Order in ESS and 802.15.4 2:1:4
Superframe Order (initial) in ESSADC 0

Beacon Order in ESS and 802.15.4 3:1:5
Beacon Order (initial) in ESSADC 0
Duty Cycle in 802.15.4 and ESS 50%

Duty Cycle in ESSADC 50%
GTS Duration in 802.15.4 (sec) 9.6× 10−4 × 2SO

GTS Duration in ESSADC and ESS (sec) 4.8× 10−4 × 2SO

4.1. Delay Analysis

Transmission delay of a node is the duration, when a node has data to transmit till its successful
transmission to the PAN coordinator. Suppose, a node j needs to send L amount of data just at the
beginning of the beacon frame, its delay in ESSADC (DESSADC ) is calculated as:

Dj
ESSADC

= BIESS + (
b=j

∑
b=1

Kb × tESSADC ) (25)

Here,
tESSADC (sec) = 4.8× 10−4 × 2SO

and Kb−1 describes the total slots assigned to node j and previously allocated slots to the preceding
nodes. ESS follows the same formula in finding its delay, however its SO is fixed whereas, ESSADC
adapts its SO and BO according to the data requirement. Delay of ESS and ESSADC will only be same,
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when both have same values of SO and BO. If Y nodes are successfully scrutinized for GTS allocation,
then accumulated delay of the PAN in ESSADC (Dmax

ESSADC
) is computed as:

Dmax
ESSADC

=
i=Y

∑
i=1

[BIESSi + (
b=i

∑
b=1

Kb × tESSADC )] (26)

However, in IEEE 802.15.4 standard, delay of the same node j in transmitting its data (D15.4) is
calculated as:

D15.4 = BI + SD− (
b=j

∑
b=1

Kb−1 × t15.4) (27)

Here,
t15.4 = 9.6× 10−4 × 2SO (28)

If X nodes are successfully scrutinized for GTS allocation, then accumulated network delay of the
PAN in IEEE802.15.4 standard (Dmax

15.4 ) is determined as:

Dmax
15.4 =

i=X

∑
i=1

[(BI + SD)i −
x=i

∑
x=1

Kx−1 × t15.4] (29)

Figure 6 comprises of 4 sub-figures that shows delay comparison of ESSADC with ESS and IEEE
802.15.4 standard for four different values of BO such as 4, 5, 6, and 7. In each subplot, accumulated
delay of nodes between all three schemes is evaluated for all possible values of SO against each BO,
when each node has 20 bytes of data. The results verified that accumulated delay in ESSADC is less
than ESS and IEEE802.15.4 standard. This significant different is due to fixed SO and BO values in ESS
and the standard. However, ESSADC allows PAN coordinator to adapt its duty cycle to accommodate
GTS requests with minimum SO and BO values. Consequently, resulting in a significant decrease in
the accumulated delay as compared to other two.
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Figure 6. Accumulated delay comparison against all ranges of 4 different BO values.

The results shown in Figure 7 further verifies that accumulated delay of all nodes within the data
range of 25 to 50 bytes are significantly less in the proposed ESSADC as compared to the other two
schemes when they both have SO = 3 and BO = 4.
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Figure 7. Accumulated delay for random data traffic.

4.2. Link Utilization and Data Transmission

Link utilization during CFP is calculated in percentage and it is the ratio of the used bandwidth by
all GTS allocated nodes to the total allocated bandwidth for all these nodes in a superframe. The results
shown in Figure 8 verify that GTS utilization in ESSADC is more than ESS and the standard, when
nodes have random data requests in the range of 25 to 50 bytes. SO and BO values chosen for these
results for both ESS and the standard are 3 and 4 respectively.

GTS utilization of ESSADC is evaluated against three different values of SO of ESS and IEEE
802.15.4 standard in Figure 9. The results show that link utilization of ESSADC varies on varying data
requests because it adjusts its slot size according to the requesting nodes to accommodate a maximum
number of nodes. As increment of 1 in SO value doubles the GTS duration, hence less will be the
utilization. Smaller SO value increases the GTS utilization as a majority of its slots are filled. However,
data transmission and node allocation are not optimal in smaller CFP slots.
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Figure 8. GTS utilization of the network for random data requesting nodes.
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Figure 9. GTS utilization of the network for varying range of fixed data requesting nodes.

A comparative analysis of the proposed scheme with the other two schemes in respect of data
transmission, when both have SO = 3 and BO = 4 for random data range is shown in Figure 10. ESSADC
adjusts its slot size according to the data traffic to accommodate 14 GTS requesting nodes. Results
show that the amount of data transmitted in ESSADC is similar to the ESS in different beacon intervals
but greater than IEEE 802.15.4 standard. This is due to the larger slot duration in ESS and IEEE 802.15.4
standard with SO = 3, which allocates a separate slot to each data requesting node, consequently
capacity nodes are entertained. Maximum GTS capacity in a superframe duration in ESS and the
standard is 14 and 7 respectively, that’s why ESS allows more data transmission as compared to
the standard.
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Figure 10. Data transmission by all nodes for random data requesting nodes.
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Figure 11 shows, that ESSADC allows nodes to send more data as compared to ESS and IEEE
802.15.4 standard for different values of SO, when requested data of each node increases from 240 bytes.
However, when each node has less amount of data, ESSADC accommodates same amount of data as
allowed by ESS. This is due to the reason that duty cycle adjustment of the proposed scheme is similar
to the value of ESS.
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Figure 11. Data transmission by all nodes for varying range of fixed data requesting nodes.

4.3. GTS Allocation Nodes

PAN coordinator allocates GTS to the GTS requesting nodes up to its maximum capacity. It is
obvious that the increase in SO results in longer slot duration, that can accommodate more data request.
IEEE 802.15.4 standard has only 7 GTS in a superframe duration and can adjust the maximum 7 nodes
by allocating GTS. However, superframe duration of both ESSADC and ESS contains 14 CFP slots by
reducing each CFP slot to its half size that helps it to accommodate up to 14 GTS requesting nodes.

Figures 12 and 13 shows the number of successful GTS allocating nodes for random and fixed
data requests of each node respectively. It is evident from the results that ESSADC and ESS allow up to
14 GTS requesting nodes to send their data in a superframe duration as compared to the IEEE 802.15.4
standard. If data requests of each GTS requesting node is less than the slot capacity then maximum
nodes will be entertained, such as 7 for the standard and 14 each for ESSADC and ESS as shown in
Figure 13. However, Figure 12 verifies that ESSADC performs better than three different SO values of
ESS and the standard for adaptive data requests. The results show that ESS and the standard allows
maximum nodes to send their data unless, data requests by each node is within their respective slot
limit. This is due to its duty cycle adjustment, that allows ESSADC to accommodate 14 nodes in a SD.



Sensors 2020, 20, 1971 15 of 17

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2

4

6

8

10

12

14

Data(bytes/node)

N
o
d

es
 A

ll
o
ca

te
d

 G
T

S

 

 

Standard − SO = 2

Standard − SO = 3

Standard − SO = 4

ESS       − SO = 2

ESS       − SO = 3

ESS       − SO = 4

ESS
ADC

Figure 12. GTS allocating nodes for random data requesting nodes.
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Figure 13. GTS allocating nodes for varying range of fixed data requesting nodes.

5. Conclusions

In this paper an efficient superframe structure ESSADC of IEEE802.15.4 standard for such IoT
based applications, where an adaptive duty cycle is required. The proposed scheme helps PAN
coordinator to adjust its duty cycle according to data requests received from its member nodes.
The proposed superframe structure is backward compatible with the standard without any inclusion
in additional parameters with minute modifications in the existing parameter values. The proposed
work is compared with the standard and ESS. The analytical results show that this ESSADC improves
delay, offer better GTS utilization with better data transmission and accommodates more number of
nodes as compared to the original 802.15.4 standard and the ESS in all respects.
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