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Abstract: With the continuous progress of science and technology, intelligent wireless sensor network
(IWSN) communication has become indispensable in its role in production and life because of its
convenient network settings and flexible use. However, with the widespread availability of intelligent
wireless sensor networks, the use of many wireless sensor nodes constitutes a multi-node wireless
communication system, which turns the accuracy and low complexity of multi-node detection in sensor
networks into a problem. Although the traditional algorithm has excellent performance, it cannot give
consideration to both accuracy and complexity. Therefore, a maximum logarithm message passing
algorithm based on serial and threshold (S-T-Max-log-MPA) for multi-mode detection in IWSN is
proposed in this paper. In this algorithm, the threshold is used to determine the necessary conditions
of sensor node stability first, and then the sensor node information updating is integrated into the
resource node information updating, so that the system can maintain good accuracy, performance,
and change the situation of poor system accuracy at low threshold. Compared with the traditional
algorithm, the proposed algorithm significantly changes the algorithm complexity reduction rate
of the system multi-node detection. Simulation results show that the algorithm has a good balance
between accuracy and complexity reduction rate.

Keywords: intelligent sensor; message passing algorithm; threshold; serial; complexity

1. Introduction

The intelligent wireless sensor network (IWSN) is composed of a large number of static or
mobile micro sensor nodes; the nodes form a wireless communication system [1]. Intelligent sensor
networks are widely used in military, traffic, environmental monitoring, medical and other aspects
because of their flexible network settings and simple equipment location modification [2,3]. The rapid
development of communication networks and intelligent sensor technology has resulted in large-scale
growth of sensor networks [4]. The use of many sensor nodes makes the demand for large-scale link,
low delay and high capacity of the communication network to sharply increase [5–7]. Therefore, how
to detect the existence of user nodes from many network nodes has become one of the research topics.

With the rapid development of fifth generation (5G) mobile communication systems, 5G has become
an important research objective in the development of communication networks and intelligent sensor
networks [8,9]. 5G has a throughput improvement of about 25 times higher than 4G, and a resource
utilization efficiency of more than 10 times [10]. In addition, 5G also includes key technologies such as
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large-scale antenna arrays, ultra-dense networks, millimeter wave communication, non-orthogonal
multiple access and new network architecture, etc. [11–14]. Therefore, it can well meet the needs of
current communication networks and wireless sensor networks. Sparse code multiple access (SCMA)
is a new multiple access technology of 5G [15]; it synthesizes the ideas of code division multiple access
(CDMA) and orthogonal frequency division multiple access (OFDMA) [16], realizes the frequency
domain non-orthogonal multiple access (NOMA) [17], and provides a reliable technical method for
multiuser access and detection in 5G application. SCMA has the characteristics of large capacity,
low delay, multi-connection and strong anti-multipath ability [18–20], which can better meet the needs
of 5G for higher spectral efficiency [21,22]. SCMA technology is an improvement over the basis of low
density multiple access technology; its application greatly improves the performance of multi-user
access and detection [23,24]. In order to get the codebook, SCMA technology combines spread spectrum
technology and constellation mapping technology to realize the operations of displacement, rotation
and conjugation of high-dimensional constellation [25–29]. When the SCMA technology is used in
IWSN, the following steps are adopted to realize the processing of the sensor nodes at the sending end:
(i) The sparse spread spectrum sequences are assigned to every sensor node. (ii) The sparse spread
spectrum technology is applied to sparse the data of sensor nodes. (iii) The data of all sensor nodes are
mapped into an n-dimensional codebook through a multi-dimensional constellation, and then these
data are superimposed on the same time-frequency resources of each transmission layer. (iv) These
data are sent to the same channel for transmission. The sensor nodes can get better mapping gains
with this scheme [30,31]. At the receiving end, the message passing algorithm (MPA) decoder is used
for multi-user detection, and then the received signal, mapping mode and channel coefficient are used
to decode the signal. However, when the number of sensor nodes in SCMA system is much larger than
the number of resource nodes, the complexity of the MPA algorithm will be very high.

The application of 5G not only brings high-speed data transmission, but also promotes the
development of multiple access and detection technology, such as the original MPA, the MPA based
threshold (T-MPA) and the MPA based serial (S-MPA). However, the existing multi-node detection
algorithm still cannot solve the problem of low transmission accuracy and high algorithm complexity
in wireless sensor networks, so how to reduce the algorithm complexity and improve the message
transmission accuracy is the key research objective in IWSN. In reference [32], a direct sequence code
division multiple access (DS-CDMA) based communication system is proposed, which becomes the
wireless interface of an integrated sensor micro system and improves the limitation of power and area
in the communication system of a miniaturized sensor network. In reference [33], a heuristic CDMA
multiuser detection scheme based on the harmony search (HS) algorithm is proposed. The multi-user
detection scheme based on the harmony search (HS) algorithm reduces the complexity of the algorithm
by searching a group of nearly optimal candidate vectors, but it still has high algorithm complexity
and bit error ratio (BER). In reference [34], a threshold based MPA algorithm is proposed, which uses a
threshold to control the algorithm, so as to reduce the complexity of the detection algorithm. An MPA
algorithm based on a serial strategy is proposed in [35]. In reference [36], an improved serial scheduling
based MPA (ISS-MPA) detection scheme is proposed. The maximum number of new message updating
in the corresponding factor graph is used to select the scheduling order of user nodes, so as to maintain
good BER performance and reduce the complexity of the detection algorithm. Although the above
algorithms have obvious changes in the algorithm complexity and transmission accuracy compared
with the traditional multi-node passing algorithm, the disadvantages of high algorithm complexity
and low transmission accuracy still exist simultaneously in IWSN.

In the multi-node detection algorithm, the original MPA has good performance and low complexity,
but because of the exponential (EXP) algorithm, the complexity of the multi-node detection algorithm is
very high. The approximate and the maximum calculation are used in the maximum logarithm message
passing algorithm (Max-log-MPA), which results in the loss of some information and poor system
accuracy. The T-MPA algorithm adopts the hard decision mechanism, which reduces the complexity of
the system algorithm, but has the problem of high accuracy when the threshold is low. The sensor
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node information updating is integrated into the resource node information updating in the S-MPA
algorithm, which effectively reduces the complexity of the system multi-node detection algorithm,
but the transmission accuracy of sensor node information is poor. Therefore, in order to further
improve the transmission accuracy and complexity of the multi-node detection algorithm in the IWSN,
a maximum logarithm message passing algorithm based on serial and threshold (S-T-Max-log-MPA) for
multi-mode detection in IWSN is proposed in this paper. In this algorithm, the exponential operation is
reduced to the additive operation by using the operation of the logarithmic field, and by reducing the
storage space of the sensor node codebook. The serial algorithm and threshold algorithm are used to
reduce the code storage time in the iterative process, improve the accuracy of information transmission
of sensor nodes, reduce the message loss in the updating process, and reduce the number of iterations
of sensor nodes. Therefore, the proposed algorithm in this paper reduces the computational complexity
to a large extent while maintaining good accuracy of the wireless sensor network system, especially
improving the poor accuracy of data transmission at low threshold in IWSN.

2. SCMA System Model

The SCMA uplink model consists of transmitter, transmission channel and receiver, as shown in
Figure 1. Assuming that the number of sensor nodes is j and the number of time-frequency resource
blocks is K (J>K), the binary bit data stream bj (b1, b2, . . . , bJ) is obtained after the sensor node
information uj (u1, u2, . . . , uJ) is encoded by the source and the channel. Then data enters the SCMA
encoder, which maps it to the sparse SCMA codebook x=f(bj); the mapping process of SCMA [37,38]
can be defined as f : Blog2M

→ χ . B is the set of binary numbers, χ is the sensor node’s codebook,
and M is the size of the codebook. Due to the channels of each layer of the upper link being different,
the channel factor is different, here assuming that the channel factor is hj (h1, h2, . . . , hJ).
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Figure 1. Uplink sparse code multiple access (SCMA) communication system model.

The size M of the codebook depends on the number of bits of binary data. Sensor node data is
divided into several groups according to a-bit. For a-bit user data, the size M of the codebook is shown
in Equation (1):

M = 2a. (1)

The ratio of the number of sensor nodes that can be carried on a certain time-frequency resource
block and the size of a codebook in the SCMA system is defined as the overload factor, and its
calculation method can be expressed as Equation (2):

λ =
J

M
. (2)

If six sensor nodes occupy four time-frequency resource blocks, the overload ratio is 150%.
As shown in Figure 2, the bit information of six sensor nodes is mapped to the codewords of different
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codebooks [39], and each sensor node has a unique codebook. Each codebook contains two non-zero
elements and two zero elements, so the codebook length is 4. In the factor graph, 1 represents the
non-zero element and 0 represents the zero element, then the user information can be expressed by a
matrix as in Equation (3):

F4×6 =


0
1
0
1

1
0
1
0

1
1
0
0

0
0
1
1

1
0
0
1

0
1
1
0

. (3)
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The K resource blocks are loaded on the subcarrier for transmission, and the signals on the K
subcarrier at the receiving end are expressed as Equation (4):

y =

J∑
j=1

diag(hj)xj + n, (4)

where, xj = [x1,j, x2,j, . . . , xK,j]T is the k-dimension SCMA code of sensor node j, and the non-zero
element is K. The SCMA code xj has sparsity, which can reduce the codeword conflict at time-frequency
resource k. The vector hj = [h1, h2, . . . , hK]T is the receiver channel factor vector. The vector nj = [n1,
n2, . . . , nK]T is the White Gaussian Noise vector added to the channel with distribution N(0, σ2I) [40].
The vector yj = [y1, y2, . . . , yK]T is the signal received by the receiver.

3. MPA Algorithm

The MPA algorithm is the main detection algorithm of the SCMA system [41]; it updates
information of sensor nodes and resource nodes by a factor graph [42]. In this paper, the sensor node is
regarded as the variable method node VN, and the resource block is regarded as the function node
FN. In the t-th iteration, function node ck sends the information of variable node uj, expressed as
It
k→j On the contrary, the information of function node uj sent by variable node ck in the t-th iteration

is expressed as It
j→k. If tmax is the maximum number of iterations, and t is the number of iterations,

when t = tmax, the symbol probabilities of information transmitted by sensor nodes are calculated
respectively [43].

Step 1: Update the information of function node FN, as shown in Equations (5) and (6):

I0
ck→uj

(xj) =
1
M

, (5)
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It
ck→uj

(xj) =
∑
∼xj

 1
√

2πδ
exp

− 1
2δ2 ‖yk −

∑
v∈ξk

hk,vxk,v‖ ×
∏

m∈ξk/j

It−1
cm→uk

(xj)


2, (6)

where, ∼
{
xj

}
represents the edge probability of symbol xj, ξk/j represents the set of all variable nodes

in VN that are connected to the function nodes ck except the j-th sensor node.
Step 2: Update the VN information of the variable node, as shown in Equation (7):

It
uj→ck

(xj) =
∏

m∈ξj/k

It
uk→cm(xj), (7)

where, ξj/k represents the collection of all function nodes in FN that are connected to the variable
node xj except the k-th function node.

Step 3: When the maximum number of iterations is reached, the symbol output probability after
MPA decoding is shown in Equation (8):

Q(xj) =
∏
k∈ξj

Itmax
ck→uj

(xj). (8)

4. S-MPA Algorithm

The S-MPA algorithm is improved on the basis of the original MPA, which uses serial updating of
the resource nodes. In the process of message iteration, the sensor node message updating is integrated
into the resource node information updating, and the updated information is delivered immediately,
which reduces the storage process of intermediate variables and improves the convergence speed of
the messages compared with the original MPA algorithm.

The resource node message delivery of the S-MPA algorithm is shown in Equations (9)–(11):

It
ck→uj

(xj) =
∑
∼xj

 1
√

2πδ
exp

− 1
2δ2 ‖yk −

∑
v∈ξk

hk,vxk,v‖


2

×

[
Qt−1(xj)

]new

It
cm→uk

(xj)
×

∏
m∈ξk/j

[
Qt−1(xj)

]old

It−1
cm→uk

(xj)

, (9)

[
Qt−1(xj)

]old
=
∏

m∈ξk/j

It−1
cm→uk

(xj), (10)

[
Qt−1(xj)

]new
=

[
Qt−1(xj)

]old

It−1
cm→uk

(xj)
∗ It

cm→uk
(xj), (11)

where t is the number of iterations: i , j, i ∈ ξk, j ∈ ξj, ξk and ξj represent the set of 1 positions in row K
and column j of the factor graph matrix F respectively; xv,k represents the codeword of the v-th sensor
node on the k-th resource block; and hk,v represents the channel coefficient of the v-th sensor node on
the k-th resource block. The terms [ ]new and [ ]old represent the code word probabilities of the sensor
node after and before the update.

From Equations (9) and (10), we can see that the confidence of
[
Qt−1(xj)

]old
is lower than that of[

Qt−1(xj)
]new

.

5. S-T-Max-log-MPA Algorithm

In order to reduce the complexity of the detection algorithm, the S-T-Max-log-MPA is proposed.
Based on the Max-log-MPA algorithm [44], this proposed algorithm introduces the serial updating
algorithm and threshold application. In the Max-log-MPA algorithm, the exponential algorithm is
changed into the process of sum algorithm and maximum value. The sensor node information updating
is integrated with the resource node information updating in the S-MPA algorithm, which reduces the



Sensors 2020, 20, 1960 6 of 13

complexity of information storage. In the T-MPA algorithm, a hard decision is used to effectively reduce
the sensor node information that needs to be updated in each cycle [45]. The algorithm proposed here
is based on the advantages of the above algorithms; it can effectively reduce the complexity of the
detection algorithm while maintaining a good BER.

The basic idea of this algorithm is as follows: the threshold is added based on the S-MPA algorithm,
and the codeword reliability and sensor node stability are combined as the index to judge the codeword
reliability of sensor nodes. Before the message updating, the stability of the sensor variable node is
judged. If the log likelihood ratio (LLR) of the sensor variable node meets the threshold condition,
the sensor variable node is decoded in advance and will not be updated in the later iteration.

In the process of iterative updating, the necessary conditions for the stability of sensor variable
nodes have been judged first, so it is considered that the codeword sent by the sensor node has been
judged accurately in the process of message iteration. Decoding the information of the sensor node
will not bring a big error to the SCMA system, and in this process, the multi-node detection algorithm
of the system can effectively reduce complexity.

Since the stability of sensor variable nodes in the iterative updating process is judged first in the
S-T-Max-log-MPA algorithm, Equation (9) of the resource node updating process of the algorithm is
modified as Equation (12):

It
ck→uj

(xj) = 2× 1
√

2πδ
×max
∼xj

− 1
2δ2 ‖yk −

∑
v∈ξk

hk,vxk,v‖
2 +

∏
m∈ξk/j

It
cm→uk

(xj) +
∏

m∈ξk/j
It−1
cm→uk

(xj)

. (12)

Then, the sensor nodes are judged by the LLR of each sensor node’s coding bit, as shown in
Equations (13) and (14):

Q(xj) = apv(xj) ×
∏

m∈ξk/j

Icm→uk(xj), (13)

LLRj,x = log(

∑
m:bm,i=0

Q(xj)∑
m:bm,i=1

Q(xj)
), (14)

where, apv(xj) represents the prior probability of user j codeword, LLRj,k represents the log likelihood
ratio,

∑
m:bm,i=0

Q(xj) represents the output probability of the decoded variable node, and
∑

m:bm,i=1
Q(xj)

represents the output probability of the variable node to be decoded.

6. Complexity Analysis

The complexity of MPA and its improved algorithms are mainly determined by the number of
multipliers used in the algorithm. In the original MPA, the high complexity is mainly caused by the
large amount of operations of the EXP algorithm in the iterative process, the large space occupied in
the iterative updating process of the message, and the storage space occupied by the updating between
the variable node and the function node. The number Qm of multipliers used in the original MPA
calculation is as Equation (15):

Qm = tmax ×K× df ×Mdf × (2× df + 1) + tmax × J× dv × (dv − 2), (15)

where df represents the number of sensor nodes per resource block and dv represents the number of
resource blocks per sensor node.

In the proposed algorithm, the user node stability and threshold are first used for decision, so the
accuracy of user information decoding is increased, and the maximum number t′max of user iterations
is reduced, which is less than tmax. Then, the user node information updating is integrated into the
resource node information updating, which reduces the storage space of the intermediate information
variables. Finally, in the whole operation process, the operation of logarithmic field is used to change
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EXP operation into addition operation. The number Q′m of multipliers used in the S-T-Max-log-MPA
algorithm can be calculated as Equation (16):

Q′m = t′max ×K× d2
f ×Mdf . (16)

Therefore, the number Q′m of multipliers of the proposed algorithm in this paper is greatly
reduced, which is less than Qm. So the complexity of the detection algorithm will be greatly reduced.

7. BER Analysis

In the communication system, the accuracy of user information transmission is mainly measured
by BER performance. In the T-MPA algorithm, because the hard decision mechanism is used to make
a decision and decode the user information in advance, the correctness of information transmission
is greatly reduced, the soft information is lost, and the decision of other user nodes will also be
affected. This method will result in worse BER performance, especially at low threshold. In the
S-MPA algorithm, because the user node information updating is integrated into the resource node
information updating, the decoding and update of user information is stopped before the stability of
user information is judged, which leads to incomplete transmission of user information and the loss of
certain information [46].

In this proposed algorithm, the necessary condition of the stability of sensor nodes information
is judged first, and then the sensor node information updating is integrated into the resource node
information updating, which improves the stability of sensor information and reduces the BER of
sensor information transmission. Especially when the threshold setting is low, the decision of the
necessary condition of sensor node stability is more significant to reduce BER performance of T-MPA.
Finally, the iterative update of messages is carried out with the threshold decision, which reduces the
loss of information during the updating process and further improves the accuracy of sensor node
information transmission.

8. Analysis of Simulation Results

In order to test and compare the BER performance and complexity between the S-T-Max-log-MPA
algorithm and the original MPA algorithm in IWSN, simulation experiments are carried out. In the
experiment, the selected parameters are J = 6, K = 4, M = 4, N = 1000. The overload factor is 150%,
and the channel is a Gaussian white noise (AWGN) channel. The codebook used is a 4-dimensional
codebook published by Huawei in reference [47].

8.1. BER Analysis

Figure 3 shows the average BER performance comparison between the original MPA algorithm
and the S-T-Max-log-MPA algorithm when the maximum number of iterations is tmax = 2. It can be
seen from Figure 3 that the threshold value of the S-T-Max-log-MPA algorithm is smaller, and the
BER of the S-T-Max-log-MPA algorithm is closer to that of the original MPA algorithm. The BER
performance of thresholds th = 0.01 and th = 0.10 is similar to that of the original MPA algorithm when
Eb/No ≤ 4 dB is used. When 4 dB < Eb/No < 14 dB, the BER performance of threshold th = 0.01 is
slightly higher than that of the original MPa algorithm, by 1.834%, and that of threshold th= 0.10 is
slightly higher than that of the original MPa algorithm, by 0.967%. For threshold th = 0.60, the BER
performance of S-T-Max-log-MPA is 5.05% higher than that of the original MPA at Eb/No = 0 dB and
3.864% higher than that of the original MPA at Eb/No = 14 dB. But on the whole, the BER performance
of the S-T-Max-log-MPA algorithm is good. So when tmax = 2, the threshold is smaller and the BER
performance is better.
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Figure 4 shows the average BER performance comparison between the S-T-Max-log-MPA algorithm
and the original MPA algorithm when the maximum number of iterations is tmax=3. As can be seen
from Figure 4, when the S-T-Max-log-MPA algorithm is Eb/No ≤ 6 dB, the BER algorithm with threshold
th = 0.01 is closest to the BER of the original MPA algorithm. When Eb/No = 0 dB, the threshold of the
algorithm is th = 0.01, the BER performance is 0.47% higher than the original MPA algorithm, and when
Eb/No = 14 dB, it is 0.20% higher than the original MPA algorithm. When Eb/No = 0 dB, the threshold
of the algorithm is th = 0. 10, and the BER performance is 1.52% higher than that of the original
algorithm. At Eb/No = 14 dB, it is 0.3667% higher than the original MPA algorithm. For threshold
th = 0.60, the BER performance of the S-T-Max-log-MPA algorithm is 6.13% higher than that of the
original MPA algorithm at Eb/No = 0 dB. At Eb/No = 14 dB, it is 3.8997% higher than the original MPA
algorithm. But on the whole, the BER performance of the S-T-Max-log-MPA algorithm is close to that of
the original MPA algorithm. So when tmax = 3 the threshold is small and the BER performance is better.
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Figure 5 shows the comparison of the average BER performance between the S-T-Max-log-MPA
algorithm and the original MPA algorithm when the maximum number of iterations is tmax = 5. As can
be seen from Figure 5, the BER performance of the S-T-Max-log-MPA algorithm with thresholds of th
= 0.01 and th = 0.10 is similar to that of the original MPA algorithm. When Eb/No = 0 dB, the BER
performance with threshold th = 0.01 is 0.65% higher than the original MPA algorithm, and the BER
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performance with threshold th = 0.10 is 0.3833% higher than the original MPA algorithm. At Eb / No =

14 dB, the BER performance of the S-T-Max-log-MPA algorithm at threshold th = 0. 01 is 0.20% higher
than that of original MPA algorithm, and the BER performance at threshold th = 0.10 is 1.69% higher
than that of original MPA algorithm. When the threshold is th = 0.60, the BER performance of the
S-T-Max-log-MPA algorithm is 5.78% higher than that of the original MPA algorithm at Eb/No = 0
dB. At Eb/No = 14 dB, it is 2.8663% higher than the original MPA algorithm. On the whole, the BER
performance of the S-T-Max-log-MPA algorithm is good. So when tmax = 5, the threshold is smaller,
the BER performance is better.
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Figure 6 shows the comparison of the average BER performance among the S-T-Max-log-MPA
algorithm experiments: the original MPA algorithm and the T-MPA algorithm, in which the maximum
number of iterations tmax = 5 and the threshold is th = 0.60. It can be seen from Figure 6 that the BER
performance of the S-T-Max-log-MPA algorithm is lower than that of the T-MPA algorithm, which is
4.26% lower than that of the T-MPA algorithm when Eb/No = 0 dB. When Eb/No = 14 dB, it is 10.397%
lower than the T-MPA algorithm. The BER performance of the S-T-Max-log-MPA algorithm is higher
than that of the original MPA algorithm, which is 6.47% higher than that of the original MPA algorithm
at Eb/No = 0 dB. At Eb/No = 14 dB, it is 4.4997% lower than the original MPA algorithm. According
to the comparison results, we can see that although the BER performance of the S-T-Max-log-MPA
algorithm is higher than that of the original MPA algorithm, it is lower than that of T-MPA algorithm.
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8.2. Complexity Analysis

Figure 7 shows the comparison of the computational complexity reduction ratio (CCRR) between
the S-T-Max-log-MPA algorithm and the original MPA algorithm when the maximum number of
iterations is 5; the complexity reduction ratio of the algorithm is defined as Equation (17). As can be
seen from Figure 7, at the threshold of th = 0.01, when Eb/No = 0 dB, the CCRR of the S-T-Max-log-MPA
algorithm is 5.74%, which is lower than that of the original MPA algorithm. When Eb/No = 14 dB, the
CCRR is 48.18% lower than the original MPA algorithm. At the threshold of th = 0.10, when Eb/No

= 0 dB, the CCRR of the S-T-Max-log-MPA algorithm is 18.42% lower than that of the original MPA
algorithm. When Eb/No = 14 dB, CCRR is 53.20% lower than the original MPA algorithm. When the
threshold is th = 0.60, CCRR is more effective than the threshold values of th = 0.01 and th = 0.10.
At Eb/No = 0 dB, CCRR is 44.71% lower than the original MPA algorithm. At Eb/No = 14 dB, CCRR is
60.10% lower than the original MPA algorithm. It can be seen from the figure that the CCRR of the
S-T-Max-log-MPA algorithm under different thresholds is lower than the CCRR of the original MPA
algorithm, so the S-T-Max-log-MPA algorithm can effectively reduce the CCRR of the SCMA system
detection algorithm, and the effect is more obvious with the increase of Eb/No and the threshold.

CCRR =
Complexity of A algorithm
Complexity of B algorithm

(17)
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Message Passing Algorithm (MPA) algorithm and S-T-Max-log-MPA algorithm, where S-T-Max-log-MPA
is Maximum logarithm Message Passing Algorithm based on Serial and Threshold.

9. Conclusions

The application of 5G brings new opportunities for the development of IWSN. The IWSN
composed of a large number of intelligent wireless sensor nodes has similar characteristics with
the mobile communication network, and also has the problem of multi-node access and detection.
Therefore, based on the research of the original MPA and its improved algorithms, the related 5G
SCMA technologies are combined to carry out the research of multi-node detection in IWSN, and a
novel S-T-Max-log-MPA algorithm is proposed for multi-node detection in this paper. Through the
application of threshold and serial updating, the proposed algorithm reduces the iterations of sensor
nodes, increases the accuracy of information transmission, and reduces the computational complexity.
The simulation results show that the accuracy of information transmission of the S-T-Max-log-MPA
algorithm is effectively changed, with accuracy superior to the T-MPA algorithm (up to 10.397%).
The complexity of multi-node passing algorithm is effectively reduced, which is superior to the original
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MPA algorithm (up to 60.1%). Therefore, the S-T-Max-log-MPA algorithm can not only ensure the
system bit error rate, but also effectively reduce the complexity of the multi-node detection algorithm.
At the same time, it can effectively solve the serious problem that the accuracy of T-MPA algorithm
decreases when the threshold value is low.
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