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Abstract: One of the most important ocean water parameters in world ocean observations is
temperature. In the application of high-precision ocean sensors, there are often various interferences
and random noises. These noises will cause the linearity of the sensor to change, and it is difficult to
estimate the statistical characteristics, and the results will deviate from the real temperature. Aiming
at the problems in the application, this paper proposes a compound Kalman smoothing filter (CKSF)
algorithm based on least square curve fitting. This algorithm first analyzes the system model of the
sensor, uses the least square method to fit the theoretical data and eliminate the non-linear factors
caused by system itself, then estimates the statistical characteristics of the noise required by modeling,
using the wavelet transform method to track the change of noise in real time and to accurately estimate
the noise variance. Finally, a compound filtering method including wavelet transform and Kalman
smoothing filtering is used as the main denoising algorithm, which is more accurate than a single
Kalman filtering result. The algorithm is applied to the temperature measurement process of the
ocean temperature sensor. The results show that the accuracy and stability of the sensor are improved.

Keywords: least squares method; CKSF; wavelet transform; temperature sensor; noise; noise variance

1. Introduction

The sensor is a detection device that can convert the detected values into an electrical signal. It is
a key device to achieve complex control in the field of mechanical control and automation design.
In particular, temperature sensors have important applications in the fields of water quality prediction
and industrial control [1,2], and temperature is also an important marine physical parameter. According
to relevant studies [3], a deviation of 0.25 ◦C in seawater temperature will cause changes in water
oxygen content, threatening the survival of some marine organisms. If the temperature fluctuation
is large, it will cause natural meteorological disasters, and most physical parameters and detection
instruments require temperature compensation. Therefore, high precision and stable temperature
sensors are very important in research [4]. However, the complex environmental noise and system
errors often limit the improvement of sensor accuracy. In the application, various filtering algorithms
are often used to improve stability and precision, such as low-pass filtering, which can reduce the
ripple caused by stable environmental noise, but a single hardware filtering method cannot adapt to
the complex and changeable marine environment and time-varying noise. Therefore, in many sensors
(e.g., the surface acoustic wave sensors, temperature sensor etc.) design processes often need to add
intelligent algorithms to achieve sensor denoising.

At present, the more practical algorithms for temperature sensor denoising are the methods
proposed in [2,5]. Although these algorithms can improve the accuracy of temperature sensors,
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the marine environment is often changeable and complex, so a single algorithm is difficult to adapt.
In addition, the Kalman filter model needs to estimate the statistical characteristics and system
characteristics of the noise, especially the estimation of the covariance of the noise, which is very
important for the output accuracy of the model. In [6,7], different algorithms were proposed,
and most of them used complex mathematical methods to solve the statistical characteristics of noise.
The application background is complex, and it is suitable for multivariate signal processing.

In this paper, a compound Kalman filtering method is proposed, which has a higher robustness
and accuracy than the single Kalman filter method. It mainly consists of two parts: the least square
method for fitting and wavelet transform for noises variance estimation. This focuses on the problem
of estimating the statistical characteristics of noise during non-stationary temperature measurement,
using the wavelet transform method. This method has the advantage of local signal analysis and
optimization, and predicts noise changes in real time [8]. We then focus on the non-linear characteristics
of the sensor caused by noise, using the least square method for curve fitting to get mathematical
relationship between resistance and temperature, selecting the appropriate degree of fit to eliminate
fault values. The output of the system after curve fitting could be only disturbed by the environmental
noise, reducing the influence of system-inherent errors, and further improving the stability and
accuracy of the compound Kalman smoothing filter (CKSF) model. Using smoothing filters after
Kalman filtering can make the results of Kalman filtering more accurate.

The main difference between the method in this paper and the traditional Kalman denoising
algorithm is that the observed noise variance P(k) in Equation (10) is not determined in advance based
on empirical values, but is estimated based on the signal value of the measured noise. This proves
that the variance of the observation noise used in the calculation is basically the same as the variance
of the observation noise of the actual system. Even if the noise of the actual system changes due
to some interference, the variance estimated by the algorithm can accurately follow the variation of
the noise of the observed signal. In order to verify the algorithm, the article takes a temperature
sensor based on platinum (Pt) thermal resistance. However, during the actual measurement in the
seawater for seven days, we found that the sensor is affected by environmental noise and system noise,
which caused the measured temperature value to fluctuate greatly and inaccurately reflect the true
temperature. The comparative experimental results show that the optimized design greatly improves
the measurement accuracy.

2. CKSF Denoising Algorithm Analysis

2.1. Kalman Filter Model of Temperature Sensor

The Kalman filter includes two parts: the prior estimation and the posterior estimation of the
state [9]. Based on the sensor system, this article designs a Kalman smoothing filter based on Kalman
estimation, which mainly consists of noise variance characteristics estimation and Kalman filtering and
data averaging. By comparing the single Kalman filter model and the CKSF algorithms, we show that
the algorithm in this paper can effectively reduce the 0.006 ◦C (an average of errors) error. The actual
application of the sensor system is shown in Figure 1.
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Figure 1. The algorithm application diagram, the upper left picture is the temperature sensor data fit,
and the red waveform is a schematic diagram of the collected temperature data.

The main advantage of the platinum thermal resistance temperature sensor (PTS) over
thermocouples and thermistors is that PTSs have good linearity, so the sensor discrete control
system can be approximated as:{

x(k) = F(k− 1)x(k− 1) + W(k− 1)
y(k) = B(k)x(k) + V(k)

(1)

In Equation (1), F(k-1), B(k) is the state transition matrix of the sensor system. If the sensor is
a temperature sensor, X(k) ∈ Rn×1 is defined as the temperature value at the moment k; y(k) is the
observation value; W(k-1) and V(k) are the state noise and observation noise of the temperature sensor,
the statistical characteristics of this noise are random and uncertain in applications. The method of
wavelet transform is used to estimate the variance characteristics of this kind of uncertainty noise.
It is assumed here that the noise is White Gaussian Noise, and the statistical characteristics of the
noise satisfy: 

E[W(k− 1)] = E[V(k)] = 0
Cov[W(k− 1)] = Q(k− 1)

Cov[V(k)] = R(k)
(2)

where Q(k-1) and R(k) represent the variance of process noise W(k-1) and measurement noise V(k).
Therefore, the sampling temperature value (T) output by the system at continuous moments is:

Y(k) =
k∑

n=1

y(n) = (T1 + T2 + . . .+ Tn) (3)

The specific algorithm steps of using the improved Kalman filtering algorithm to the temperature
sensor are:

The estimated value of the temperature at time k-1 is x̂(k− 1), then the further estimation (prior
estimate) of the state at moment k is the Equation (4) and the estimated covariance is Equation (5),
x̂(k|k− 1) indicates that the temperature at time k is estimated using time k-1.

x̂(k|k− 1) = F(k− 1)x̂(k− 1) (4)

P(k|k− 1) = E
{
[x(k− 1) − x̂(k− 1)][x(k− 1) − x̂(k− 1)]T

}
(5)
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Equations (4) and (5) complete the prior rough estimation of the state from k-1 to k. Obviously,
different noises may be added in this process [10], and the predicted value may not completely reflect
the true temperature. Using the state recursive estimation, the estimated value after error correction
is shown in Figure 2. where the innovation is usually represented by a(k), indicating the difference
between the predicted value and the actual value, and Kalman gain G(k) indicates that this part of the
innovation information occupies proportions [11,12]. So, based on the estimation method in Figure 2,
we can deduce: {

x̂(k) = x̂(k− 1) + G(k)a(k)
a(k) = y(k) −H(k)x̂(k

∣∣∣k− 1)
(6)

where y(k) indicates the state observation measurement of the posterior estimation, and H(k) indicates
the state transition at time k. In addition, the state value x(k) and observed value y(k) are both the
environment temperature value (◦C). There is no state transition. Assume H(k)= I for ease of calculation.

Figure 2. Schematic of using state recursive estimation to correct errors.

Moreover, the covariance of the innovation in the temperature estimation process can be obtained:

P(k) = E
[
a(k)a(k)T

]
= E

[
x(k) + V(k) − x̂(k|k− 1)x̂(k|k− 1)T

]
= R(k) + Pe(k) (7)

Because of the state prediction and observation noise correlation coefficients ρ satisfies
ρ[V(k), e(k)] = 0. The innovation variance can be written as the result of Equation (7), E[ê(k)ê(k)T] = Pe(k)
is the state prediction error covariance. Establishing a posterior estimation model, the estimated state
results need be evaluated, so the error in the state estimation process is defined as

e(k) = x(k) − x̂(k)
= [I −G(k)H(k)]e(k

∣∣∣k− 1)
P(k) = [I −G(k)H(k)]P(k

∣∣∣k− 1)
(8)

where e(k|k-1) and P(k) represents the state prediction error and the covariance of the state estimation
error for the posterior estimation model, e(k) represents the deviation between real value and predictive
value at the moment of k.

Equations (2) to (8) are the modeling processes of improved Kalman filter estimation. Because the
Kalman filter algorithm is a recursive algorithm based on prior and posterior estimates [9], the Kalman
filter algorithm can only be used for state estimation at moment k and k-n(n<k). The improved algorithm
adds an average value of smooth filtering and the wavelet transform method, which reduces the data
error and improves the accuracy of the state estimation, as shown in Figure 3.

However, in practical problems, CKSF modeling requires two important parameters, namely
the Kalman gain and the initial temperature value of the sensor observation. In this paper, using the
Kalman recursive least squares estimation to solve the Kalman gain, Z(k) is defined as the objective
function, as shown in Equation (9):

Z(k) = E[e(k)e(k)T]

= E[tr(e(k)e(k)T)]
(9)

where tr[e(k)e(k)T] represents the trace of matrix. The objective function Z(k) is minimized using the
Lagrange multiplication and matrix inversion method [13] to deduce the proportion of innovation
information, that is, Kalman gain G(k). Here, assume H to be the identity matrix.

G(k) = P(k|k− 1 )HT[HP(k|k− 1 )HT + P(k)]
−1

(10)
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The second parameter is to solve the initial temperature values. The CKSF algorithm needs to
assume the initial state of the system and the initial estimation error covariance. Generally, the initial
estimation error covariance of the system is not set to zero because it will cause the Kalman filtering
algorithm to trust the initial prediction state too much. As a result, the estimation error of the algorithm
will be too large. Based on the empirical model [10], the initial estimation error covariance of the
temperature sensor is:

P(0) = E
{
[x(0) − x̂(0)][x(0) − x̂(0)]T

}
(11)

Figure 3. The measurement principle block diagram of the improved Kalman filter algorithm, including
two parts of design data processing by algorithm and average value filtering (The method of averaging
the observations is called smooth filtering in diagram.).

2.2. Estimation of Noise Variance During Temperature Observation

The modeling assumes that the noise in the temperature sensor observation process is Gaussian
white noise, but the statistical characteristics and distribution of the noise in the actual process are
unknown. If the statistical characteristics of the noise change significantly, the mean square error of the
improved Kalman filter solution has deviated from the real situation (real temperature values) and
cannot reflect the accuracy of the state estimation, although the effect on the result may be small for a
period of time [12]. That is to say the ideal model observation data is a mixture of signal and noise [14]
and not suitable for practical applications.

When noise and signal are mixed, the analysis process becomes complicated. At present, there are
many methods for separating noise and signal, such as the commonly used oblique projection filtering,
particle filter, and blind separation algorithm [15,16]. However, in the Kalman smoothing filter,
only the statistical characteristics of the noise needs to be known, and the noise and signals need
not be accurately separated, therefore using the wavelet transform method to estimate the statistical
characteristics of the noise. The wavelet transform can focus on the signal detailed aspect and realize
the precise local optimization. Using this method, we can separate the high-frequency noise that
mainly affects the actual measurement data, and solve the variance of the high-frequency noise.

The detection temperature values of the sensor with random noise is approximated by a polynomial
expansion method with an error f(k):

y(k) = b0k0 + b1k1 + · · ·+ f (k) (12)

Yielding the Equation (13) by the linear transformation of the wavelet function:

ψa,τ(k) = a−0.5ψ(
k− τ

a
) (13)

Equation (13) describes the relationship between the zoom (a) and translation (τ) transformed
from the wavelet mother function and the mother function transformation sequence ψa,τ(k).
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Using wavelet transform to process the temperature sensor observation data y(k):

Wtl(a, τ) = y(k) ×ψa,τ(k) = Wt(a, τ) + Wl(a, τ) (14)

The Wtl(a, τ) represents the function after wavelet transform. The Wt(a, τ) and Wl(a, τ) denotes
the approximate part and the detail part of the wavelet coefficients. Choosing the suitable vanishing
moments of the mother function, the wavelet transform will enhance the ability of the observed signal
to suppress the source signal, so that only the noise component Wl(a, τ) is retained [17].

If the state value of the temperature is the piecewise polynomial within a period of time, a suitable
observation interval is selected so that the vanishing moment of the wavelet mother function is greater
than the order of the highest polynomial in the piecewise polynomial. The implicit noise variance in
the process of measuring the temperature value can be presented by using the median estimation of
the approximate part of the wavelet coefficients in the wavelet transform [18], which is Equation (15):

Dδ(k) ≈
MAD
0.6745

(15)

where the MAD is the median value of the high-frequency sub-band wavelet coefficient amplitudes
contained in all decomposition layers after wavelet transform [19]. The Dδ (k) is the noise global
variance. In summary, the steps of estimating the variance of noise by wavelet transform are shown in
Figure 4.

Figure 4. The flow diagram of the wavelet transform algorithm to solve the noise variance.

2.3. Sensor Resistance and Temperature (R_T) Fitting Model

The thermal resistance temperature sensor is mainly used in this paper. The linearity of platinum
thermal resistance is better than that of a thermistor, and the measurement value between low and
medium temperature measurement is stable. If the sensor is affected by noise, the linearity deteriorates
and the non-linear characteristics increases. This will cause the Kalman filtering algorithm result
and accuracy to deviate from the ideal values. At present, the basic processing method is system
linearization, such as the use of extended Kalman filter (EKF), volume Kalman filter (VKF) and other
methods, which can solve nonlinear problems [20]. However, the algorithm is complicated, and the
robustness of the system will be reduced [21]. For the non-linear part of the system, it only appears in
the stage of interference, thus the direct linearization method is not very practical. The main method
used in this paper is to fit the temperature characteristic curve by using the least square method,
and then to perform the Kalman smoothing method. The data results show that the system is stable
and the temperature observation value is closer to the real temperature.
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Using the least square method fitting for the curve of R_T, the discrete state equation of the
observation is the Equation (1). For a given state value x(k), there is a corresponding ŷ(k) in the state
estimation, the estimated value is often different from the observed value y(k). There is a deviation
between them. The sum of the squared deviations is defined as:

J(k) =
n∑

i=1

[y(k) − ŷ(k)][y(k) − ŷ(k)]T (16)

In the state estimation, the state estimation of the regression equation should be as accurate as
possible. According to the minimum mean square error (MMSE) methods, the partial derivatives for
J(k) need satisfy [22]:

∂
∂xi

J(k) = 0 (17)

In this paper, we perform a first- and second-order fitting on the temperature data. By comparing
the conventional residuals, as shown in Figure 5, the second-order fitting has the best effect.

Figure 5. Comparison chart of the effect of first-order and second-order fitting using the least
square method.

3. Experimental Data Analysis and Discussion

3.1. Temperature Sensor Selection and Application

The data were measured by using a temperature sensor, and a series of actual interference and
theoretical noise were added. The validity of the CKSF algorithm is verified by comparing the processed
data with the original data. In this experiment, the host computer software was written by using
C SHARPE and Visual Studio 2019 software (Microsoft Corporation) to obtain the resistance and
temperature values measured by the temperature sensor.

The temperature sensor used in the experiment is a platinum thermal resistance (PTR) type,
degrees B (technical parameter), the values of temperature coefficient of resistance (TCR) is 0.003851
and the temperature calculation follows the empirical Equation (18):

R(t) = R0(1 + At + Bt2) (18)

where A and B are constants, R0 is the resistance values at 0 ◦C.
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3.2. The Analysis of Least Squares Method Results

This analysis is based on Section 2.3, using the least squares second-order fitting to calculate
the value of the constant A and B in Equation (18). The resistance data of the least squares fitting is
derived from the output of the precision resistance box. This calibration method can greatly improve
the accuracy of the sensor compared to directly using the resistance parameters in the technical manual
(In the technical manual of PTR, there are general reference values of A and B.). As the PTR sensors
use different A and B parameters, Table 1 shows the comparison between using second order fitting
methods and sensor manual parameters.

Table 1. The influence of temperature for different methods to obtain the parameters of A and B.

Temperature/◦C 1 Fitting Para Manual

20 19.6 19.3
30 29.7 29.1
40 39.9 39.0
50 49.5 49.1
60 59.9 59.4
70 69.8 69.8

1 Temperature represents the ambient temperature at this time; Fitting para represents using LS methods to detect
temperature; Manual represents using sensor manual rate A and B value to detect temperature. For obvious
comparison, we have only kept one decimal place.

In addition to the system error reflected in Table 1, in the actual measurement process,
even temperature ranges with good linearity will fluctuate. These fluctuations will make the Kalman
filter result inaccurate. The least square curve fitting can ensure the accuracy of the sensor’s input
curve and reduce the influence of error on the observed value. In Figure 6, 1#, 2# and 3# represent
the R_T data measured by three different temperature sensors. It can be seen from the experimental
results that the least square method is not used to preprocess the curve, and the system error during
the measurement process will cause the curve to be unstable and nonlinear.

Figure 6. Comparison chart of the effect of first-order and second-order fitting using the least square
method. The resistance on the way is the resistance of the thermistor.

The experimental data were preprocessed by the least square method. Figure 6 shows that the
processing of the least square method (only processing the sensor 2#) can ensure that the data measured
by the sensor is approximately linear, and the fitting process can make the Kalman filter model identify
and predict the data more accurately.



Sensors 2020, 20, 1959 9 of 13

3.3. The Analysis of Wavelet Transforms Results

The data output by the sensor is obtained on the basis of the least square method to compensate
the system error. However, the actual measurement process is also affected by the position of the
sensor in the liquid, the environment (humidity, mechanical vibration, etc.) and the accuracy of the
data calculation. It is very important for modeling to estimate the variance of these random noises.

In order to verify the performance of the CKSF algorithm in eliminating observation noise,
we used the wavelet transform to process the observation data (here choosing the negative temperature
coefficient sensor). The approximate part and the detail part are separated, and then the noise
covariance is solved to estimate the preliminary statistical characteristics of the noise. According to the
calculation in Paper [19], the sliding window was selected as 30S in the experiment.

As shown in Figure 7, the wavelet transform can effectively separate the approximate part and
the detailed part of the observation signal. According to the Equation (14), choosing a suitable wavelet
vanishing moment for the separated noise can effectively calculate the covariance of the noise, solve the
problem that the covariance of the observed noise of the Kalman filter model is difficult to estimate
and have good followability for the method, identifying time-varying signals of noise change [7].
The noise covariance estimation is shown in Figure 8 (the right figure shows the monitoring values of
different sensors in a constant temperature water of 15 Celsius in 200s, and the left figure shows the
noise covariance estimation by using wavelet transform).

Figure 7. (a) Temperature and resistance curve with random noise; (b) Details of wavelet transform;
(c) Approximate part of wavelet transform. Here, the abscissa represents the temperature value (◦C),
and the ordinate represents the corresponding resistance value (ohm).

Figure 8. Estimation of noise variance based on wavelet transform for different sensor.

According to the analysis on the left in Figure 8, it can be observed that the wavelet transform
can effectively estimate the noise covariance within a certain error range, and can track the change of
noise in real time, providing a guarantee for an accurate Kalman filter model. In addition, the average
filtering method is usually used to process data with large variance fluctuations.
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3.4. Comparative Analysis with Other Algorithms

Here, we focus on the data with random noise, using the wavelet transform method to estimate
covariance. The Kalman algorithm was used to build the CKSF model. Through comparison with
the unfiltered temperature value, the observation temperature is stable even with uninterrupted
random noise by using CKSF algorithms. By adjusting the interval of the filtering and compensation,
the high-precision output of the sensor can be effectively realized in the case of interference. The noise
sources in the experiment are mainly electromagnetic vibration, humid environment, sensor position
and more. The temperature data containing random noise are observed in the constant-temperature
water bath (at standard atmospheric pressure, the water temperature is 28.51 degrees Celsius), as shown
in Figure 9.

Figure 9. Temperature observation with random noise of constant temperature water bath.

It can be seen from Figure 9 that the artificial application of process noise will cause the measured
value of the temperature sensor to deviate from the actual value, so it is inaccurate to directly use the
temperature value of the disturbed sensor. Using the CKSF algorithm and the single Kalman method
to process the actual observation temperature value, the algorithm in this paper is smoother than
the single Kalman filter, and the experimental data is closer to the real temperature, as observed in
Figure 10 and Table 2.

Figure 10. Comparison of Kalman filtering and Kalman smooth filtering.
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Table 2. The data of using different algorithms to process temperature detected by ocean conductivity
temperature depth sensor.

Temp1 1 Error1 2 Temp2 3 Error2 4

25.776 −2.734 28.542 0.032
28.485 −0.025 28.323 −0.187
28.416 −0.094 28.254 −0.256
28.505 −0.005 28.233 −0.277
28.495 −0.015 28.167 −0.343
28.498 −0.012 28.075 −0.435
28.483 −0.027 28.054 −0.456
28.221 −0.289 28.337 −0.173
28.36 −0.150 28.433 −0.077

28.457 −0.053 28.248 −0.262
28.199 −0.311 28.005 −0.505
28.499 −0.0011 28.016 −0.494
28.491 −0.019 28.334 −0.176
28.51 0.000 28.280 −0.23

28.445 −0.065 28.117 −0.393
28.265 −0.245 28.371 −0.139
28.322 −0.188 28.556 0.046
28.423 −0.087 28.386 −0.124
28.424 −0.086 28.365 −0.145
28.356 −0.154 28.696 0.186
28.500 −0.010 28.708 0.198
28.534 0.024 28.905 0.395
28.543 0.033 28.579 0.069
28.571 0.061 28.694 0.184
28.554 0.044 28.476 −0.034
28.566 0.056 28.610 0.100
28.57 0.060 28.685 0.175

28.589 0.079 28.664 0.154
28.597 0.087 28.629 0.119
28.562 0.052 28.429 −0.081
28.52 0.010 28.353 −0.157

1 Temp1 represents the sensor temperature data (◦C) processed by the algorithm in this paper. 2 Error1 represents
the error between Temp1 and the standard environment temperature. 3 Temp2 is the sensor data (◦C) processed by
the single Kalman algorithm. 4 Error2 is the error between Temp2 and the standard environment temperature.

4. Conclusions

This paper mainly designs the CKSF algorithm for cases where the ocean temperature sensor is
easily influenced by uncertainty and random noise, which causes the measurement data to fluctuate
greatly, and deviate from the real environment temperature.

Firstly, the noise of the sensor is analyzed, and a model using wavelet transform to estimate the
statistical characteristics of the noise is proposed, including use of the least square curve fitting method
to reduce the system error of the sensor. Furthermore, based on this model, we deduce the sensor data
processing algorithm that compounds the Kalman smoothing filtering algorithm. Through analysis
and simulation using the CKSF method, the temperature value detected by the sensor can effectively
restore the actual temperature under the conditions of random and uncertain noise. Therefore, it has
potential to be applied in sensor design and data processing.
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