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Abstract: This study aims to present a new two-degree-of-freedom (DOF) linear resonant actuator
(LRA) and its motion control method without a position sensor. The design method of 2-DOF LRA
which resonates with only detent force without a mechanical spring is proposed. Since the information
of displacement and direction is required to control 2-DOF LRA, a sensor or an estimator is needed.
Therefore, we proposed a position estimator and a motion controller for 2-DOF LRA. This paper
proved that reciprocating motion, elliptical motion, and scrolling motion can be controlled without a
position sensor. Finite element analysis (FEA) and dynamic simulation results validated the proposed
method as well.

Keywords: two-degree-of-freedom; linear resonant actuator; detent; spring-less; sensor-less;
motion control

1. Introduction

Recently, new actuators are being actively studied for application to various devices in household
appliances and industrial machinery. Linear actuators (LAs) have many benefits due to the fact that they
require no mechanical conversion to actuate the mover. Especially, linear resonant actuators (LRAs)
offer a gain in efficiency over general linear actuators because they utilize full m–k resonance. Since
LRAs can offer high efficiency in linear operation applications, it is mainly used in linear compressors,
electric shavers, electric toothbrushes, and so on [1–5]. Meanwhile, multiple- degree-of-freedom
(M-DOF) LRA which extends the DOF of LRA has also been studied. M-DOF LRA can be used
for applications requiring various motions such as a haptic device [6–9]. However, the M-DOF
LRA requires several mechanical springs for operation, which increases the size and complexity of
the actuator. In addition, since the M-DOF LRA also has unrestrained characteristics of the mover
stroke, the stroke must be sensed or estimated. In LRAs, the position information of the mover can
be obtained by sensors such as linear variable differential transformer (LVDT) and search coil [10].
However, since the sensored method has problems related to cost, assembly tolerance and operating
environment, sensorless methods of M-DOF LRAs are needed. LRAs have a disadvantage, which
increases complexity in the operation of LRA due to the unconstrained characteristic of the mover
stroke (peak-to-peak of displacement). In other words, since the stroke of the LRA may vary depending
on the input voltage, input frequency, and load conditions, it is necessary to estimate the stroke.
Methods of estimating the stroke by integrating the back electromotive force (EMF) from the motor
parameter information and the voltage equation have been proposed [11–14]. These methods use
motor parameters such as coil inductance, resistance, and back-EMF constant. Motor parameters are
generally used as a constant obtained from the static state, but the actual value can be changed by the
magnet position and the total flux. Therefore, motor parameters of each magnet position and current
are stored as a lookup table, and a method of using it for stroke calculation has been proposed [15,16].
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However, it has difficulties in measuring motor parameters of all conditions. On the other hand,
a method for estimating the stroke by detecting back-EMF in a non-conduction section where the
current becomes zero has been proposed [17]. Since this method cannot apply sinusoidal current, the
current must include not only the fundamental current component, but also odd harmonic components
such as the third and fifth order. As a result, the efficiency of the actuator may be reduced due to the
increased current.

In this study, the authors propose an axial gap type 2-DOF LRA with three-phase coils and
magnets. This LRA makes it possible to resonate without a mechanical spring. The detent force is
designed to generate the force in the center direction wherever the mover is and acts as the stiffness
of the spring for resonant operation. Moreover, the current force from three-phase coil can offer a
thrust force vector in various directions. Furthermore, we also proposed a method to estimate the
position without a sensor. It is confirmed that various motions can be controlled by using the estimated
information. Finally, finite element analysis (FEA) is performed to confirm the parameter characteristics
of the proposed M-DOF LRA, and the parameter characteristics are used for simulation. The possibility
for various motions is verified by the dynamic simulation in a nonlinear model of 2-DOF LRA.

2. Proposed 2-DOF LRA

2.1. Structure of 2-DOF LRA

The structure of the proposed 2-DOF LRA is described in Figure 1. As shown, this actuator
consists of stator, moving core, coils, and magnets. Three-phase coils are connected as a star-connection.
Magnets N–S arranged on each phase are fixed to the moving core. Although this actuator does not
have a mechanical spring, an oscillation with resonant frequency can be performed by using the detent
force of the actuator. In addition, since the mover is constrained only in the Z direction, various
resonant motions can be operated in the X and Y direction.
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Figure 1. Structure of the proposed two-degree-of-freedom linear resonant actuator (2-DOF LRA).
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Figure 2 indicates the main dimensions of the proposed 2-DOF LRA. This actuator has a diameter
of 52 mm and a height of 23 mm. The geometric air-gap between the stator and the mover equals
0.5 mm.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 17 

 

Figure 2 indicates the main dimensions of the proposed 2-DOF LRA. This actuator has a 

diameter of 52 mm and a height of 23 mm. The geometric air-gap between the stator and the mover 

equals 0.5 mm. 

 

Figure 2. The main dimensions of the proposed 2-DOF LRA. 

2.2. Detent Characteristics 

Figure 3 shows that the magnet placed on the U-phase is translated in a direction. The magnets 

of V-phase and W-phase placed by 120/240° are translated in the same direction as U-phase. While 

the mover is translated by the distance r in  direction, the detent force can be defined as follows: 


























 

3

4
cos

2

1

3

2
cos

2

1
cosrFdx

 (1) 






























 

3

4
cos

2

3

3

2
cos

2

3
rF

dy
 (2) 

rFFF dydxd 
2

3
sincos   (3) 

where  is the coefficient of slope that represents the relationship between the moving distance of the 

mover and the force acting on the mover, Fdx is the force in the X-direction, Fdy is the force in the Y-

direction, and Fd is the force in the -direction. Equation (3) indicates that the mover always receives 

centering force in the origin direction wherever it is positioned. This characteristic is similar to the 

case that several mechanical springs are mounted radially on the X–Y plane. Figure 4 indicates the 

centering force of 2-DOF LRA obtained by FEA results. As a finite element analysis tool, 3D model 

transient analysis of JMAG software was used.  

 

 

8.0

10.0

1
0

.0

x
y

z

1
2

0
º

5
.0

2
.5

0
.5

x
z

y

5
.0

1
0

.0

Figure 2. The main dimensions of the proposed 2-DOF LRA.

2.2. Detent Characteristics

Figure 3 shows that the magnet placed on the U-phase is translated in a direction. The magnets of
V-phase and W-phase placed by 120/240◦ are translated in the same direction as U-phase. While the
mover is translated by the distance r in θ direction, the detent force can be defined as follows:
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Fdθ = Fdx cosθ+ Fdy sinθ = −
3
2
δr (3)

where δ is the coefficient of slope that represents the relationship between the moving distance of
the mover and the force acting on the mover, Fdx is the force in the X-direction, Fdy is the force in
the Y-direction, and Fdθ is the force in the θ-direction. Equation (3) indicates that the mover always
receives centering force in the origin direction wherever it is positioned. This characteristic is similar to
the case that several mechanical springs are mounted radially on the X–Y plane. Figure 4 indicates the
centering force of 2-DOF LRA obtained by FEA results. As a finite element analysis tool, 3D model
transient analysis of JMAG software was used.
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Figure 3. Translation of mover on U-phase.
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Figure 4. Finite element analysis (FEA) results of centering force (detent force).

2.3. Force Constant Characteristics

Figure 5 shows the X and Y components of the force generated by the coil current 1A of each
phase in the reference frame. Figure 5a indicates the result of the force constant on the U-phase. As the
moving distance r increases, it shows non-linear characteristics because the magnet deviates from the
tooth. Overall, it can be seen that only the force in the Y-direction is generated. Meanwhile, Figure 5b
denotes the result of the force constant on V-phase. Since the V-phase is located at a position rotated
120◦ from the U-phase, a force constant is generated in a direction rotated 120◦ from the Y-direction.
In the case of Figure 5c, a force constant on W-phase is generated in a direction rotated 240◦ from
the Y-direction.

As the proposed LRA uses a star-connection, assuming that it is no leakage current component, as
expressed as follows:

iu + iv + iw = 0. (4)

Furthermore, as the force constant Kf of each phase are all the same, the sum of the torque T
generated at each phase becomes 0 as follows:

T = l(Fu + Fv + Fw) = lK f (iu + iv + iw) = 0 (5)
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where l is the distance between the center of the stator and the center of the tooth, the direction of the
force generated on the mover by the current can be defined as follows:

Fex = K f
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where Fex is the current force in the X-direction and Fey is the current force in the Y-direction.
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2.4. Switch States and Force Direction

Figure 6 illustrates the switching states under a general three-phase voltage source inverter. ‘1’ of
the switch state in Figure 6 means that the upper switch is on and the lower switch is off. Conversely,
‘0’ means that the upper switch is off and the lower switch is on. Since there are three legs in the
three-phase inverter, a total of 8 switch states exist. However, since the switch states of (1,1,1) and
(0,0,0) are defined as zero vectors that cannot apply current to the coil, six effective switch states can be
used to generate the force.
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Force direction by switch states of three-phase inverter can be generated as shown in Figure 7a.
From the current of each phase generated by the switch states and the characteristics of the force
constant in Figure 5, a force is applied to the mover in a certain direction. For example, Figure 7b
displays that the force direction according to the switch states is determined by the sum of the vector
components of the force generated on each phase.
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where x is the displacement in the X-direction, y is the displacement in the Y-direction, m is the mass 
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where k is the stiffness of the mechanical spring. However, since the proposed actuator has no 

mechanical spring, the detent force divided by the moving distance functions as a stiffness. 

From the result of the detent force obtained by FEA, the resonant frequency for translational 

motion is the same regardless of the direction. 

3.2. Electrical Dynamics 

The electrical dynamics of the 2-DOF LRA with three-phase coils can be expressed as follows: 
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where v and i denote the phase voltage and the phase current, R is the coil resistance, L is the self-

inductance, M is the mutual inductance, e is the back-EMF of each phase. In the case of this LRA, since 

each phase is arranged symmetrically, it can be satisfied as: 
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Figure 7. Switch states and force direction: (a) force direction in each switch state, (b) force direction
on (0,1,1), and (c) composite of force vector between (1,1,0) and (0,1,0).

In addition, the force vector of various directions can be offered by a composite vector of two
states as shown in Figure 7c. During the control period Ts of pulse width modulation (PWM), the time
T0, T1, and T2 of each switch state can be determined to generate a force in the target direction.
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3. Modelling of 2-DOF LRA

3.1. Mechanical Dynamics

The mechanical dynamics of 2-DOF LRA without mechanical spring can be expressed as follows:
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x
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.
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1
m
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0
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0

Fey − Fdy − Fly

 (8)

where x is the displacement in the X-direction, y is the displacement in the Y-direction, m is the mass
of the mover, c is a viscosity coefficient considering the support structure of the mover, Fex,ey is the
force generated by the current, Fdx,dy is the centering force by the detent, and Flx,ly is the force of load.
In addition, the resonant frequency of the 2-DOF LRA can be defined as follows:

fn =
1

2π

√
k
m

=
1

2π

√
1
m

Fdx
x

=
1

2π

√
1
m

Fdy

y
(9)

where k is the stiffness of the mechanical spring. However, since the proposed actuator has no
mechanical spring, the detent force divided by the moving distance functions as a stiffness.

From the result of the detent force obtained by FEA, the resonant frequency for translational
motion is the same regardless of the direction.

3.2. Electrical Dynamics

The electrical dynamics of the 2-DOF LRA with three-phase coils can be expressed as follows:
vu

vv

vw

 =


Ru 0 0
0 Rv 0
0 0 Rw




iu
iv
iw

+ d
dt




Luu Muv Muw

Mvu Lvv Mvw

Mwu Mwv Lww




iu
iv
iw


+


eu

ev

ew

 (10)

where v and i denote the phase voltage and the phase current, R is the coil resistance, L is the
self-inductance, M is the mutual inductance, e is the back-EMF of each phase. In the case of this LRA,
since each phase is arranged symmetrically, it can be satisfied as:

Ru = Rv = Rw = R (11)

Luu = Lvv = Lww (12)

Muv = Mvw = Mwu = M. (13)

Substituting Equations (11)–(13) into Equation (10) can be expressed as follows:
vu

vv

vw

 =


R + ρL 0 0
0 R + ρL 0
0 0 R + ρL




iu
iv
iw

+


eu

ev

ew

 (14)

whereρ= d/dt, L is a relational expression of leakage inductance, self-inductance, and mutual inductance.

3.3. Voltage Reference for Motion Control

The vector direction of the force generated by voltage reference in the space vector is rotated by
−90◦. Figure 8 illustrates the reference voltage in the reference frame. In order to generate voltage in
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the target direction, voltage must be expressed in the U–V–W reference frame. Therefore, the voltage
reference can be transformed in the reference frame as follows:

vu

vv

vw

 =


1 0

−
1
2

√
3

2

−
1
2 −

√
3

2


[

V∗ cosθ
V∗ sinθ

]
(15)

where V* is a vector component of reference voltage in the reference frame.
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where V* is a vector component of reference voltage in the reference frame.  
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3.4. Load Defined 

The load acting on the actuator can be defined as a viscous component and a friction component. 

Therefore, the load acting in the  direction can be defined as follows: 

 

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lll
  sgn  (16) 

where Fl denotes the load in the  direction, Fl means the friction load, and cl stands for coefficient 

of a viscous load.  

By converting Equation (16) into the XY component, load equation can be obtained as: 
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

sinsincossgn

cossincossgn
 (17) 
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
 
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Stationary X-Y reference frame

Reference voltage

Figure 8. Reference voltage and stationary reference frame.

3.4. Load Defined

The load acting on the actuator can be defined as a viscous component and a friction component.
Therefore, the load acting in the θ direction can be defined as follows:

Flθ = Flsgn
( .
xθ

)
+ cl

.
xθ (16)

where Flθ denotes the load in the θ direction, Fl means the friction load, and cl stands for coefficient of
a viscous load.

By converting Equation (16) into the XY component, load equation can be obtained as:[
Flx
Fly

]
=

 Flsgn
( .
x cosθ+

.
y sinθ

)
cosθ+ cl

.
x

Flsgn
( .
x cosθ+

.
y sinθ

)
sinθ+ cl

.
y

 (17)

θ = tan−1
( .

y
.
x

)
(18)

where Flx is the load in the X-direction and Fly is the load in the Y-direction.

3.5. Model Block Diagram

Figure 9 illustrates the block diagram of 2-DOF LRA. As shown in Figure 9, force constant,
back-EMF constant, and detent force are used as the look-up table with FEA results. Inputs of each
look-up table are obtained by converting position information (x, y), which is the output of the model
to moving distance (r) and angle (θ).
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where Ke denotes the back-EMF constant. From Equation (19), position and angle information can be 

estimated as follows: 
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where x and y represent a position in the orthogonal frame, which are rotated by an angle . 
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4. Estimation Method of Motion

The voltage equation of the 2-DOF LRA in the XY reference frame can be expressed as follows:[
vx

vy

]
=

[
R + ρL 0

0 R + ρL

][
ix
iy

]
+ Ke

[
0 1
−1 0

][ .
x
.
y

]
(19)

where Ke denotes the back-EMF constant. From Equation (19), position and angle information can be
estimated as follows: [

x̂
ŷ

]
=

1
Ke

 ∫ (
−vy + Riy

)
dt + Liy∫

(vx + Rix)dt− Lix

 (20)

[
x̂θ
ŷθ

]
=

[
cosθ sinθ
− sinθ cosθ

][
x̂
ŷ

]
(21)

where xθ and yθ represent a position in the orthogonal frame, which are rotated by an angle θ. From
Equation (21), stroke can be obtained as follows:[

α̂
β̂

]
=

[
max(x̂θ) −min(x̂θ)
max(ŷθ) −min(ŷθ)

]
(22)

where α and β are the stroke position. Since the stroke uses the maximum and minimum values
of the displacement, it is updated every half cycle of the operating frequency. Figure 10 shows a
type of elliptical translational motion with 2-DOF in the reference frame. If elliptical motion can be
controlled, scrolling motion and reciprocating motion can be performed by changing the ratio of α
and β. In Figure 10, θ is the reference angle of motion, and ∆θ is the error between the reference
angle and the actual angle of motion. Therefore, ∆θ should be controlled to be zero for more precise
motion. The estimated position in the reference frame which is rotated by an angle θ can be expressed
as follows: [

xθ(t)
yθ(t)

]
=

1
2

[
cos ∆θ sin ∆θ
− sin ∆θ cos ∆θ

][
α cosωot
β sinωot

]
. (23)
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Figure 10. Reference frame of translational motion.

Using the orthogonality of xθ(t) and yθ(t) in Equation (23), ∆θ can be estimated as follows:

1
T

∫ T

0
xθ(t)yθ(t)dt =

β2
− α2

16
sin 2∆θ (24)

∆θ̂ �
8

(β̂2 − α̂2)

1
T

∫ T

0
x̂θ(t)ŷθ(t)dt. (25)

where T means the time of once driving cycle in a motion.
Figure 11 shows the overall control and estimation block diagram for the dynamic simulation.

The PI control is performed by comparing α, β, and ∆θ estimated from Equations (22) and (25). Section 5
details the simulation results using the estimator and controller in Figure 11.
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5. Simulation Result

The conditions of the dynamic simulation for the verification of the proposed method are shown
in Table 1. Force constant, back-EMF constant, and detent force are used as the look-up table with
FEA results. In order to simulate a real three-phase inverter, the voltage reference was applied after
converted to space vector pulse width modulation (SVPWM).
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Table 1. Simulation condition.

Parameter Symbol Value Unit

Mass of mover M 60 (g)
Detent force Fd Look-up table (N)
Friction load Fl 0.5 (N)
Viscous load cl 5.0 (Ns/m)

Force constant Kf Look-up table (N/A)
Phase resistance R 0.2 (Ω)

Phase inductance L 1.2 (mH)
Resonant frequency fn 37~40 (Hz)
Operating frequency fo 40 (Hz)

Carrier frequency fc 960 (Hz)
DC-link voltage Vdc 3.7 (V)
Rotation angle θ 35 (degree)

In order to control various motion, the displacement information must be known. Figure 12
presents the estimation result of the displacement information with elliptical motion. Figure 12a
indicates displacement information in the stationary reference frame while the result in the rotating
reference frame is represented in Figure 12b. There is some phase lag due to the effect of a low pass
filter. The cutoff frequency of low pass filter is designed as 20-times the operating frequency.
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Figure 12. Displacement estimation of elliptical motion (α: 1 mm, β: 0.5 mm,θ: 35 deg.) (a) Displacement
in the X–Y reference frame and (b) displacement in the Xθ –Yθ reference frame.

In Section 4, we have mentioned the estimation method of target angle error ∆θ. Figure 13a
presents the result of elliptical motion without ∆θ compensation. On the other hand, Figure 13b
shows the case which compensates the estimated ∆θ. As a result, precise motion can be realized by
compensating the estimated ∆θ.
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Figure 13. Effect of compensated ∆θ. (a) without compensation and (b) with compensation.

Simulation results of reciprocating motion with a resonant operation are shown in Figure 14.
Reference stroke and angle were inputted into the controller as α 2 mm, β 0 mm, and θ 35◦. Figure 14a
indicates three-phase voltage which represents the fundamental waveform of the PWM. In Figure 14b,
three-phase current waveform is illustrated. Each phase current contains some ripple component due
to SVPWM. The reciprocating motion can be realized by two-phase currents with the same phase and
one phase current with the phase difference of 180◦. The amplitude and phase of each phase current
are determined by the stroke and direction of the reciprocating motion. Figure 14c indicates the result
of displacement (xθ, yθ), stroke (α, β), and angle error (∆θ). It was confirmed that the displacement
and stroke in the rotating frame converge into α within a period of six cycles, while β keeps being
0. Figure 14d presents the trajectory of the displacement on the X–Y plane. As a result, the precise
resonance operation can be obtained as the reciprocating trajectory with an angle.

Figure 15 illustrates simulation results of elliptical motion. Reference stroke and angle were
inputted into the controller as α 2 mm, β 1 mm, and θ 35◦. In the case of three-phase permanent magnet
synchronous motor (PMSM), each phase current has the same magnitude at a constant load and has
a phase difference of 120◦. However, it can be seen that the amplitude and phase difference of each
phase are changed for the resonance operation of the elliptical motion. A displacement and amplitude
at the rotating frame is shown in Figure 15c. It was confirmed that the target motion converges within
a period of six cycles from the initial position. The trajectory of the displacement on the X–Y plane
is shown in Figure 15d. As a result, it can be seen that resonance operation can be performed as the
elliptical trajectory.

Finally, Figure 16 presents simulation results of scrolling motion with a resonant operation.
Reference stroke and angle were inputted into the controller as α 2 mm and β 2 mm. It indicates
that the phase voltage and current waveforms are similar to them of three-phase PMSM. Namely,
scrolling motion can be performed by applying a phase voltage of the same magnitude with a phase
difference of 120◦. However, a stroke of 2-DOF LRA must be controlled due to the characteristic of the
unconstrained mover. Figure 16c shows that the steady-state is made within a period of six cycles.
Moreover, it is controlled by the stroke of the reference value. In Figure 16d, the trajectory of the
displacement on the X–Y plane is shown. It presents that resonance operation can be performed as the
scrolling trajectory.
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6. Conclusions

In this study, the authors proposed an axial gap type 2-DOF LRA which resonates with detent
force without any mechanical springs. The proposed 2-DOF LRA showed that constant detent force is
generated with respect to the moving direction from the FEA and simulation results. Furthermore,
a method of estimating the motion of an actuator without a sensor has been proposed. Finally, it has
been confirmed that various resonant motion can be precisely controlled by feedback control of the
estimated values through the dynamic simulation. This study presented theoretical and analytical
results. The actual design error and assembly error were not considered. Also, since the dynamic
behavior of LRAs is usually unstable, these errors may make the overall system unstable. As future
work, we will build a prototype to experimentally verify the effectiveness of the proposed method.
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