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Abstract: Satellite-based actual evapotranspiration (ETa) is becoming increasingly reliable and 
available for various water management and agricultural applications from water budget studies to 
crop performance monitoring. The Operational Simplified Surface Energy Balance (SSEBop) model 
is currently used by the US Geological Survey (USGS) Famine Early Warning System Network 
(FEWS NET) to routinely produce and post multitemporal ETa and ETa anomalies online for 
drought monitoring and early warning purposes. Implementation of the global SSEBop using the 
Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 
temperature and global gridded weather datasets is presented. Evaluation of the SSEBop ETa data 
using 12 eddy covariance (EC) flux tower sites over six continents indicated reasonable performance 
in capturing seasonality with a correlation coefficient up to 0.87. However, the modeled ETa seemed 
to show regional biases whose natures and magnitudes require a comprehensive investigation using 
complete water budgets and more quality-controlled EC station datasets. While the absolute 
magnitude of SSEBop ETa would require a one-time bias correction for use in water budget studies 
to address local or regional conditions, the ETa anomalies can be used without further modifications 
for drought monitoring. All ETa products are freely available for download from the USGS FEWS 
NET website. 

Keywords: Actual Evapotranspiration; Global; SSEBop model; MODIS; remote sensing;  
drought monitoring 

 

1. Introduction 

The estimation of actual evapotranspiration (ETa) is an important activity in crop and water 
management. As a key water budget component in the hydrologic cycle, ETa is responsible for the 
exchange of mass and energy between land surfaces and atmosphere, thereby ensuring the continuity 
of the hydrologic cycle and recycling 60–75% of total terrestrial precipitation [1,2]. ETa is composed 
of two sub-processes—evaporation from surface and transpiration through plants—which are 
difficult to measure directly, especially over large areas. Hence, estimation and mapping at a large 
scale is restricted to indirect methods. The two most common principles in estimating ETa are water 
balance and energy balance approaches [3]. In water balance approaches, ETa is estimated as a 
function of soil moisture by tracking precipitation and other contributions (e.g., irrigation) in a 
controlled volume (e.g., root-zone storage). This is the physics-based simulation of ETa as 
implemented by prognostic hydrologic models, commonly described as land surface models (LSM) 
such as the Global Land Evaporation Amsterdam Model (GLEAM) [4] and the Variable Infiltration 
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Capacity (VIC) model [5]. ETa can also be estimated diagnostically using energy balance approaches 
as the residual of the surface energy balance components where the difference between available net 
radiation and outgoing (sensible plus ground heat) flux is attributed to latent heat (LE) flux. LE can 
be converted into ETa using the latent heat of a vaporization constant (e.g., SEBAL [6]; ALEXI [7]; 
METRIC [8]). In all methods, ETa is generally estimated as a fraction of the potential 
evapotranspiration (PET) or net radiation, representing maximum evapotranspiration (ETa). The 
main difference between water balance and energy balance approaches is in the calculation of the ET 
fraction (ETf), which is a function of soil moisture for the water balance approach, but calculated from 
remotely sensed land surface temperature (LST) in cases of the energy balance approach. 
Furthermore, ET fractions can be calculated from satellite-derived vegetation indices (VI) such the 
Normalized Difference Vegetation Index (NDVI). VI-based ET fractions can be used to estimate ETa 
directly [9–12] or in combination with water balance approaches [13,14]. Other sources of ETa 
datasets are generated from the upscaling and regionalizing of station-based flux tower eddy 
covariance measurements in combination with remote-sensing-based environmental parameters 
such as the gridded flux net by the Max Planck Institute [15,16].  

The quantification of ETa is prone to large uncertainties due to its dependence on the quality of 
model inputs in addition to weaknesses in model structure and parameter accuracy. Mueller et al. [17] 
attributed uncertainties in global ETa to the lack of reference observations. However, the desired level 
of accuracy for ETa depends on its application and can be grouped into two categories: (1) water budget 
and (2) drought monitoring. While absolute accuracy is critical for water budget applications, the year-
to-year consistency is more useful for drought monitoring purposes. There exist several global ETa 
datasets from both land surface (prognostic) and remote sensing (diagnostic) approaches, but only 
two are presently available for free download and use by the user community on an operational basis. 
These publicly available sources are: (1) MOD16 [10] 
(https://lpdaac.usgs.gov/products/mod16a2v006/, last accessed 1/29/2020) and (2) the Operational 
Simplified Surface Energy Balance Model (SSEBop) [18]. MOD16 ET data have been published and 
extensively referenced by various researchers [19,20]. On the other hand, despite its online availability 
for various applications, the global SSEBop ETa product has not been supported by a publication. The 
main objectives of this study are: (1) to present the methods used in creating the global SSEBop ETa 
product, (2) to conduct a first-order evaluation using flux tower eddy covariance ETa and precipitation 
data, and (3) to introduce the SSEBop ETa anomaly as a drought monitoring tool. 

2. Materials and Methods 

2.1. Data 

The global land surface is diverse, consisting of mountains and valleys with land cover ranging 
from barren and hot deserts to thick and temperate forests. These diverse land surface characteristics 
are captured by spatially explicit geospatial datasets that are inputs to the SSEBop modeling approach 
as summarized in Table 1. 

Table 1. Summary of input datasets used in the Operational Simplified Surface Energy Balance Model 
(SSEBop) model including data sources and the purpose of use. All datasets have a global extent. 

  Dataset  Abbreviation  Source  Version  Purpose  
1  Land Surface Temperature  LST(or Ts)  MODIS (Aqua)  V6  ETf  
2  Maximum Air Temperature  Ta  Daymet/WorldClim  V3/V2  Tc  
3  Reference evapotranspiration  ETo  GDAS/IWMI  -  ETa  
4  Emissivity  e MODIS (Aqua)  V6  Ts  

5  Normalized Difference 
Vegetation Index  

NDVI  MODIS (Aqua)  V6  Ts, c 
factor 

6  Albedo  a MODIS  V6  Ts  
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Land surface temperature (LST, also represented by Ts as a variable) is one of the two important 
drivers in the model along with reference evapotranspiration (ETo). We used dekadal (10-day) LST 
data provided by the US Geological Survey (USGS) Earth Resources Observation and Science (EROS) 
Center (Moderate Resolution Imaging Spectroradiometer (MODIS) LST, 
https://doi.org/10.5066/P9BT8RIP, last accessed 1/29/2020). The LST dataset spatial resolution is 1 km 
with a global extent of 80° North to 60° South and 180° West to 180° East, starting in 2003 and ranging 
up to the current year (2020). Emissivity data are provided along with the LST dataset using the same 
raster and temporal properties. The daily maximum air temperature (Ta) dataset is key for 
determining the cold/wet boundary limit parameter (Tc). To utilize the best available datasets 
globally, we spatially merged Ta from Daymet (https://daymet.ornl.gov/, last accessed 1/29/2020) [21] 
for North America (average for 1980–2010) and Ta from WorldClim (average for 1970–2000) 
(http://www.worldclim.org, last accessed 1/29/2020) [22] for the remaining parts of the globe into one 
comprehensive dataset. We used a climatology dataset for ETo (2003–2012) from the Global Data 
Assimilation System (GDAS) provided by the USGS Famine Early Warning Systems Network (FEWS 
NET) Data Portal (https://earlywarning.usgs.gov/fews/product/81, last accessed 1/29/2020) and 
climatological potential PET provided by the International Water Management Institute (IWMI) at a 10 
km resolution. The values from GDAS (daily at a 100 km spatial resolution) were downscaled to 10 km 
using spatial patterns and statistics derived from the higher resolution IWMI PET dataset [23]. This 
allowed the creation of improved spatial (10 km) and temporal (daily) resolutions by combining a 
coarse (100 km) daily GDAS with a finer (10 km) monthly climatology IWMI PET. 

The Normalized Difference Vegetation Index (NDVI, MYD13A2.006, 1 km, 2003 to 2020), 
emissivity and albedo surface reflectance (MCD43A3.006 MODIS Albedo Daily 500 m, 2000 to 2020) 
were used for model parameterization and adjustments as follows. The NDVI was used to locate 
cold/wet pixels that are used to calibrate the correction coefficient (c factor), which converts Ta into 
the cold/wet reference limit (Tc). Emissivity and albedo data were used to adjust the relatively low 
LSTs (Ts) observed over unexpectedly high emissivity (>0.965) and albedo (>0.25) pixels in sparsely 
vegetated (NDVI < 0.25) surfaces. High albedo (>0.25) and emissivity (>0.965) LSTs were adjusted to 
warmer Ts to avoid a false sense of cooler temperatures that would be mistaken for high ETa areas 
when they occur over sparse (NDVI < 0.25) vegetation landscapes. These adjustments tend be needed 
in arid and semi-arid areas where the overall ET is very low to minimize artifacts that appear in such 
low ET surfaces.  

2.2. SSEBop Model Approach 

Since the publication of the SSEBop model in 2013 by Senay et al. [18], the model has been 
applied over diverse hydroclimatic regions with modifications made to model setup and parameter 
thresholds, depending on the availability of input datasets. However, the overall principle has 
remained the same, in that SSEBop is a two-parameter model with: (1) the temperature difference 
(dT) and (2) a cold/wet reference limit (Tc). 

Figure 1 shows a general flow diagram of the implementation of the SSEBop. Important forcing 
inputs (Ts and ETo) and model parameters (air temperature, NDVI, γs, albedo, and emissivity) are 
shown. Final products are posted to the FEWS NET website (https://earlywarning.usgs.gov/fews/). 
LST, as noted in Section 2.1, is the most important model forcing variable. The estimation of ETa with 
SSEBop is a two-step process where the ET fraction is first calculated using Ts, then ETa is calculated 
as the product of ETf and the maximum ET derived from ETo. The ETf is calculated on a per-pixel 
basis using Equation (1): ETf = 1 − γ Ts − Tc  (1) 

where ETf is the dekadal ET fraction for each pixel nominally ranging between 0 and 1, and γs is the 
‘surface’ psychrometric constant over a dry-bare surface (it is the same as the inverse of the dT 
parameter in Senay et al. [18]). Ts (K) is derived from MODIS LST, and Tc is the coldest/wettest 
surface temperature (K) limit, which is derived from Ta [18]. The constant 1 represents the ET fraction 
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value during maximum ET (i.e., when Ts = Tc). ETa is then determined on a per-pixel basis using 
Equation (2): ETa = ETf ∗ k ∗ ETo (2) 

where ETa is the actual ET (mm), and ETo is the (grass-reference) potential ET (mm), which refers to 
water that is transpired by grass, completely shaded, uniform in height, and never short of water; k 
is a scaling coefficient of 1.25, which scales-up the grass-reference ETo to an alfalfa reference type for 
maximum ETa, since alfalfa is an aerodynamic rougher crop than grass and therefore preferred to 
represent the natural environment modeled. 

 
Figure 1. Overview of the SSEBop modeling process, adapted from Senay et al. [24] , from the input 
data to the final products posted to the United States Geological Survey (USGS) Famine Early 
Warning Systems Network (FEWS NET) Data Portal (https://earlywarning.usgs.gov/fews/). 

As described in Senay et al. [18], the dT parameter was one of the key developments in 
simplifying the ET computation process by completely eliminating the need to manually determine 
the hot reference pixel. This allowed the model to be operationalized for use by the US Department 
of the Interior’s WaterSMART (Water Sustain and Manage America's Resources for Tomorrow) 
Program and by FEWS NET projects. Senay [25] re-formulated the SSEBop model using the principle 
of satellite psychrometry where the wet- and dry-bulb parameters are associated with the Tc and Ts, 
respectively.  

The surface psychrometric constant (γS) is defined as 

γ =  C ρR ∗  r  (3) 

where Cp is defined as the specific heat of air at constant pressure 1.013 * 10−3 (MJ/(kg.°C)), ρ is the 
density of air (kg/m3), Rn is the daily average net radiation (MJ/(m2.day)) [25], and rah is the 
aerodynamic resistance over bare soil, defined as 110 s/m [25]. 

The second important model parameter is the cold/wet reference limit (Tc), which is determined 
from the daily maximum air temperature using the c factor (Table 2). 
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Tc = c ∗ Ta (4) 

where Tc (K) is the cold/wet boundary limit or wet bulb, Ta is the maximum air temperature (K) for 
the period, and c is the correction coefficient, which is developed as the ratio of Ts and Ta at well- 
vegetated pixels.  

Table 2. SSEBop model parameter description and constraints. LST is the land surface temperature 
provided by the NASA LP DAAC archive, also denoted by Ts as a variable. 

Parameter Constraints 

c factor 

NDVI >= 0.7 
Ts > 270 K 

−10 K <= (Ta–Ts) <= 5 K 
C factor is established under the above 3 conditions 

Ts 

albedo correction 
If a >= 250 & NDVI >= 0 & desert pixel mask 

Then, Ts,a = Ts + 0.1(a -50) 
Emissivity correction 

If e > 0.965 & (0.001 < NDVI < 0.25) 
Then, Ts,e = Ts, a(e/0.965) 

Note: albedo “a” is scaled by 1000. For example, the LST (320 K) of a pixel with a = 0.30 is adjusted 
upwards to Ts = 320 + 0.10 (300–250) = 325 K. The desert pixel mask was obtained from the Koeppen 
climate classification (http://koeppen-geiger.vu-wien.ac.at/) [26]. 

The cold/wet boundary (wet bulb) is used to define the ET rate at a well-watered and well-
vegetated surface based on the assumption that there is little or no sensible heat transfer because the air 
and surface temperatures are identical at this surface and thus produce ET at the potential rate. The c 
factor is based on the ratio (Tcorr) of Ts to Ta on pixels that meet the condition of NDVI >= 0.7 (well-
vegetated pixel). Furthermore, the temperature difference between Ta and Ts is restricted to between 
−10 and 5 K (to avoid extreme calibration points when using the Aqua LST and this particular Ta 
dataset) and Ts has to be > 270 K to exclude cloudy pixels (Table 2). The Tcorr (i.e., Ts/Ta) values that 
meet all three conditions are then summarized for each MODIS sub-tile. MODIS sub-tiles are generated 
by sub-diving each MODIS tile into 25 sub-tiles (5 × 5 tiles). The sub-tiling improves the optimization 
of the c factor that is more appropriate for each sub-tile, thereby improving the spatial accuracy of the 
model. The final c factor is then determined as the 5th percentile (mean minus two standard deviations) 
from the distribution of Tcorr values for each sub-tile: c = Tcorr − 2 ∗ STD (5) 

where Tcorrmean is the mean Tcorr value for each sub-tile and STD is the standard deviation. The Tcorr 
value is reduced by two times the STD to eliminate outliers and arrive at the coldest/wettest pixel 
values at the 5th percentile.  

The c factor is generated only when a sub-tile has more than 30 pixels that meet the criteria. If a 
c value cannot be determined, the c value of neighboring tiles is used. This approach is reasonable 
because of the relatively small size of the tile and because hydroclimatic conditions tend to change 
gradually. When neighboring sub-tiles do not have valid c factors, median c factors are used to create 
a c factor raster that covers the entire study area.  

Once c factors are generated the major challenge for generating ET fractions is cloud-related 
issues (clouds, cloud shadows, and contamination). Thus, a missing ETf is filled using the BABA 
(before-after-before-after) algorithm to estimate the ETa for a given dekad “i”. An ETf is considered 
invalid if it is greater than 1.3; however, ETf values between 1.05 and 1.3 are capped at 1.05 [25]. Using 
the BABA algorithm, if the ETf value is greater than 1.3, then the ETf from the previous (before) dekad 
(i − 1) is used. If the “before” dekad is invalid, then the dekad after (i + 1) is considered. If that fails, 
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then we go back to the two previous dekads (i − 2), or forward to the two subsequent dekads (i + 2), 
in that order. After four attempts to fill the missing data using adjacent periods have failed (when 
BABA fails) due to longer periods of cloud (e.g., during monsoon seasons in India or the Amazon), 
the median ETf value (2003–2017) for the same period is considered as a reasonable ETf estimate.  

In order to document whether a pixel is observed (calculated) or filled with a certain 
approximation, a numerical quality assurance (QA) band is created. The QA raster contains values 
from 1 to 6, where “1” represents the availability of a current (i) dekad ETf value and no need for 
filling; “2”: missing ETf is filled with the previous dekad (i – 1) ETf; “3”: missing ETf is filled with (i 
+ 1); “4”: missing ETf is filled with (i – 2); “5”: missing ETf is filled with (i + 2); and “6”: missing ETf 
is filled with the median ETf value. 

Once the ETa is calculated for each dekad, two more modifications were made to the ETa over 
desert areas and waterbodies. First, a desert area was defined when the maximum NDVI value (for 
2003–2017) was less than 0.2. For desert areas such as The Sahara, ETa was capped at 32% of the 
calculated value. The value was determined based on a comparison with rainfall data where ETa was 
assumed to be equal to rainfall in such dry environments. Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) data were used for the rainfall [27]. Secondly, ETa over known 
waterbodies was assigned 85% of the potential ET (R. Allen, Kimberly Research and Extension Center 
University of Idaho, verbal communication, 2013). The waterbodies were defined using the MODIS 
Land Cover product (MCD12Q1), where we extracted water (ID = 0) from the raster file, resampled 
it to a 1 km spatial resolution (from 500 m), then extracted the inland water features. To avoid the 
inclusion of seasonally vegetated pixels near waterbodies, a water occurrence raster was used to 
define waterbodies, i.e., a pixel was declared water if the land cover map identifies the pixel as water 
(ID = 0) in all years (2003–2013).  

Temporal aggregation was achieved by multiplying the dekadal ETf and dekad-total ETo. A dekadal global 
ETa was created for all dekads over 16 years (2003–2018). The dekadal ETa data were further aggregated to 
generate monthly, seasonal, and annual ETa grids. Graphics for all three temporal scales (dekad, month, and 
year) were created for visual interpretation of the data and posted to the FEWS NET website 
(https://earlywarning.usgs.gov/fews/). Supporting data and graphics are available as a USGS Data Release as 
indicated in the Supplementary Materials section. 2.3. Evaluation of SSEBop ETa Estimates Using Eddy 
Covariance Flux Towers 

To evaluate the ETa dataset, monthly modeled ETa estimates were compared with monthly ETa 
eddy covariance flux tower data (aggregated from daily) provided by FluxNet 2015 
(https://fluxnet.fluxdata.org/, last accessed 1/29/2020). FluxNet 2015 is a curated dataset where the 
regional flux networks in North, Central and South America, Europe, Asia, Africa, and Australia 
contribute data to create a cohesive global network of eddy covariance measurements. The daily data 
were converted to ETa (mm/day) and aggregated to monthly using the proportionality constant 
between energy and ET depth in mm as: 

ETa =  LEλ  (6) 

where λ is the latent heat of vaporization (2.45 MJ/kg) and latent heat (LE) is in comparable energy units 
of MJ/(m2.day) and ETa in mm/day (i.e., 1 MJ/(m2.day) = 0.408 mm/day with a water density of 1000 
kg/m3) [14]. There are 165 Tier 1 flux tower sites in the FluxNET 2015 database. In order to show globally 
distributed sample comparisons, we arbitrarily selected two sites per continent (different land cover 
types where available), for a total of 12 sites with valid data since 2003, a starting period for SSEBop 
ETa. We also limited the locations to those that had at least three years of flux tower measurements (the 
Brazil site had only two years of data, with only two sites available in South America). The selected sites 
included: Australia: AU-Wom, AU-DaP; North America: CA-SF1, US-Ne1; South America: BR-Sa3, AR-
SLu; Asia: CN-Cng, CN-Du2; Europe: DE-Obe, DE-She; and Africa: ZM-Mon, ZA-Kru. One site for each 
continent was over forest land cover and the second was on grassland or savanna. The modeled 
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monthly ETa was compared to the observed latent heat flux-based ETa. Standard statistical metrics such 
as correlation coefficient (r), root mean square error (RMSE), normalized RMSE (percent derived from 
the range or mean), and percent bias (from the mean) were generated. The normalized RMSE using the 
range was used because of the seasonality of ETa, creating a large range in ETa values. The mean was 
used to determine the percent bias.  

Energy balance closure (EBC) error has always been an issue with eddy covariance (EC) tower 
datasets [28,29]. We calculated the EBC (ratio of the sum of latent and sensible fluxes to net radiation 
minus ground heat flux) on a daily time step for each of the 12 sites. We used thresholds of EBC = 0.7 
and 1.0 to identify potential under-estimation with low closure (EBC < 0.7) and over-estimation with 
high closure (EBC > 1.0). The energy balance residual correction was computed using the corrected 
variables for latent heat (LE_CORR) and sensible heat (H_CORR) in addition to net radiation 
(NETRAD) and ground heat (G_F_MDS) for the data provided. The percentage of days with low and 
high EBC are reported to indicate the reliability of the eddy covariance data for interpreting the 
accuracy metrics against SSEBop ETa. 

2.4. Evaluation of SSEBop ETa Using Annual Water Budget at Pixel and Basin Scales 

Considering the limited coverage of flux towers, we also conducted a pixel-based and basin-
scale annual water budget analysis. The major assumption was that the storage change for each 
spatial scale was negligible at an annual time scale. Therefore, we created mean annual precipitation 
(PPT) totals (2006–2015) from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) data [30] 
and mean annual ETa from SSEBop data for the same time period. The pixel-based analysis showed 
the annual difference between PPT and ETa as a map with positive values showing runoff generation 
pixels, while negative values indicating sink areas such as wetlands and large irrigated deltas where 
there was more ETa than direct rainfall over the pixel. We selected one major river basin for each 
continent and spatially averaged the PPT and ETa data. The ETa/PPT coefficient (ETcoeff) for the six 
major river basins over 10 years (2006–2015) was calculated as: 

ET =  ETaPPT (7) 

where ETcoeff is the fraction of basin-average ETa in relation to basin-average PPT for each year. ETcoeff 
provides a sense of the relative amount of precipitation that is partitioned between ETa and runoff, 
with tropical desert areas having a high ETcoeff compared to wet temperate regions [31]. 

2.5. ETa Anomalies for Drought Monitoring 

One of the main uses of the global ETa datasets is drought monitoring, which relies on relative 
changes from a normal climate. The ETa anomalies are computed as the percentage of monthly, 
seasonal and annual median values for the corresponding aggregation periods. The median is 
calculated from the available historical data (2003–2017) constituting a 15-year normal. Unlike 
applications in water resources and hydrological water budget studies, the absolute accuracy of ETa 
is not critical for drought monitoring. However, a consistent global ETa dataset that captures the 
spatiotemporal variability of landscape stress from lack of moisture allows the monitoring/early 
warning of droughts at a relatively high spatial resolution (1 km). Global and regional ETa anomaly 
products are regularly posted to the FEWS NET website (https://earlywarning.usgs.gov/fews/). 

3. Results and Discussion 

3.1. SSEBop ETa Estimates 

Model outputs were created for every dekad. A typical product is illustrated in Figure 2a,b for 
the first dekad of January and July 2018, respectively. One can see the active growing seasons in 
January for the southern hemisphere and in July for the northern hemisphere, with ETa values in the 
range of 20–60 mm per dekad. Monthly totals were created by aggregating the three dekads in each 
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month; for example, January and July 2018 SSEBop ETa values are illustrated in Figure 2c,d, 
respectively. In the month of January, South America and southern Africa showed high ETa values 
due to an active growing season. A typical range for healthy vegetation/crops is about 150–200 mm 
per month during a peak season, represented by dark blue-green colors. In July, the active growing 
seasons are visible in the northern hemisphere, such as in the United States (>150 mm) and the Indus 
Valley (South Asia) (>200 mm). Overall, the spatial distribution of the ETa pattern for each time 
period corresponded well with the vegetation cover and rainfall/irrigation patterns of the globe, 
highlighting where and how much ETa was generated for a given time period of the year. 

 
Figure 2. (a) Actual ET (mm) for dekad 1, January 2018 (1.1.2018–10.1.2018), (b) actual ET (mm) for 
dekad 1, July 2018 (1.7.2018–10.7.2018), (c) actual ET (mm) for the month of January 2018 (1.1.2018–
31.1.2018), and (d) actual ET (mm) for the month of July 2018 (1.7.2018–31.7.2018). 

3.2. Evaluation of ETa Estimates Using Eddy Covariance (EC) Data 

Twelve EC flux tower sites from around the world were used to evaluate monthly SSEBop ETa. 
The locations of the 12 selected sites are shown in Figure 3, with the annual ET estimates for 2018 as 
the base map. The time period for the EC data was 2003–2014, based on the availability of flux  
tower measurements. 
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Figure 3. 2018 annual ETa map (mm) with 12 flux tower locations. There are two sites on each of the 
six continents. 

Overall, the two datasets compared favorably with a correlation coefficient r as high as 0.87 with 
some exceptions (as low as r = 0.09) (Table 3). The strongest correlations occurred in Australia at the 
AU-Wom site (Evergreen Broadleaf Forests, r = 0.87, RMSE = 13.6 mm) and Europe at the DE-Obe site 
(Evergreen Needleleaf Forests, r = 0.82, RMSE = 15.8 mm). The lowest correlations were with the sites 
in South America: one in Argentina, AR-SLu (Mixed Forest, r = 0.09, RMSE = 43.7.1 mm) and one in 
Brazil, Br-Sa3 (Evergreen Broadleaf Forests, r = 0.32, RMSE = 7.5 mm). Although ETa seasonality seemed 
to be captured well by the SSEBop model, as demonstrated by a relatively strong r, large biases ranging 
from 3 to 50% were observed in both negative and positive directions. While the model can be subject 
to biases as a result of various factors from model structure to input sources, the EC flux tower ETa was 
also subject to potential biases and uncertainties, as indicated by the relatively large energy balance 
closure (EBC) error percentages. For example, the DE-Obe station in Europe showed 34.2% of the daily 
observed data with an EBC less than 0.7 and 38.3% with more than 1.0 (Table 4). Similarly, most of 
stations had a high percentage of days with an EBC outside the desired range. Interestingly, these 
datasets are supposed to be corrected for EBC error, but still showed a high percentage of the days away 
from the desired value of 1.0. 
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Table 3. Monthly comparison of SSEBop ETa and eddy covariance (EC) flux tower ETa for 12 sites globally for 2003–2014. ETa columns are mean values for all 
months available with matching pairs. RMSEm (%) is the RMSE divided by the mean of flux tower ETa, and RMSEr (%) is the RMSE divided by the range of flux 
tower ETa. Percent bias is the average difference between the SSEBop ETa and flux tower ETa from matching pairs divided by the mean of EC flux tower ETa; r is 
the Pearson’s correlation coefficient. 

Site Continent Land Cover SSEBop ETa(mm) Flux tower ETa (mm) Range(mm) 
Bias 

(mm) 
Bias 
(%) 

RMSE(mm) RMSEm RMSEr r 

AU-DaP Australia Grasslands 89.7 63.2 188.2 26.5 42% 35.7 56% 19% 0.74 
AU-Wom Australia Evergreen Broadleaf Forests 77.8 85.4 134.1 −7.6 −9% 13.6 16% 10% 0.87 
CA-SF1 North America Evergreen Needleleaf Forests 53.0 54.7 107.4 −1.7 −3% 17.8 33% 17% 0.71 
US-Ne1 North America Croplands 51.3 76.9 258.1 −25.6 −33% 38.7 50% 15% 0.86 
CN-Cng Asia Grasslands 22.9 38.0 116.2 −15.1 −40% 13.6 36% 12% 0.75 
CN-Du2 Asia Grasslands 38.4 49.1 102.4 −10.8 −22% 11.3 23% 11% 0.47 
DE-Obe Europe Evergreen Needleleaf Forests 32.6 40.4 109.2 −7.8 −19% 15.8 39% 14% 0.82 
DE-Seh Europe Croplands 27.8 41.7 106.3 −13.8 −33% 18.3 44% 17% 0.56 
ZA-Kru Africa Savannas 44.6 37.7 221.4 7.0 18% 18.3 49% 8% 0.82 

ZM-Mon Africa Deciduous Broadleaf Forests 52.6 35.1 120.2 17.5 50% 24.7 70% 21% 0.45 
AR-SLu South America Mixed Forest 59.1 54.6 75.2 4.5 8% 43.7 80% 58% 0.09 
BR-Sa3 South America Evergreen Broadleaf Forests 104.8 106.0 43.8 −1.2 −1% 7.5 7% 17% 0.32 



Sensors 2020, 20, 1915 11 of 18 

 

Table 4. Energy balance closure (EBC) statistics for each site. #Days column indicates the number of 
available daily measurements. #Days_low gives the number of days with <70% EBC along with its 
percentage (%low). #Days_high gives the number of days with >100% EBC along with the 
corresponding percentage of days (%high). 

Site Continent #Days #Days_low %low #Days_high %high 
AU-DaP Australia 2063 12 0.58 1034 50.1 

AU-Wom Australia 992 246 24.8 396 39.9 
CA-SF1 North America 1220 316 25.9 479 39.3 
US-Ne1 North America 4360 632 14.5 2001 45.9 
CN-Cng Asia 1131 198 17.5 509 45 
CN-Du2 Asia 238 11 4.6 120 50.4 
DE-Obe Europe 2451 837 34.2 938 38.3 
DE-Seh Europe 1198 363 30.3 444 37.1 
ZA-Kru Africa 1939 290 14.9 843 43.5 

ZM-Mon Africa 685 17 2.5 322 47 
AR-SLu South America 448 29 6.5 230 51.3 
BR-Sa3 South America 1058 18 1.7 523 49.4 

Despite the concerns with SSEBop ETa biases and EBC error with EC flux tower data, SSEBop 
ETa captured the temporal variability with a reasonable performance (Figure 4). The observed bias 
seemed to vary from region to region. SSEBop seemed to under-estimate Europe and Asia, but partly 
over-estimate Africa and Australia. We can also see the bias appearing to shift between over- and 
under-estimation in some flux towers such as ZA-Kru (Africa), which casts doubt on the most 
important strength of the data (consistent bias) for drought monitoring. However, the dry years 
remained dry (low ETa) and the wet years were wet (high ETa), even with such changes in bias signs, 
indicating reliability of the SSEBop ETa for drought monitoring. 
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Figure 4. Monthly traces of SSEBop (red) and observed (black) EC flux tower ETa (mm) organized by 
continent. Two EC towers are shown for each of the six continents. SSEBop is shown from the start 
(2003) until the most recent available EC date (2014) for visual inspection of year-to-year variability. 
Land cover type and r values are shown for the flux tower sites. 
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Temporal traces of both the EC flux tower and SSEBop ETa in Figure 4 show that the seasonality 
was reasonable for most sites, but highly suspected errors in the EC data are illustrated in AR-SLu  
(Figure 4b) where the EC data seemed to miss the seasonality, showing a higher ETa in the winter (low 
SSEBop) than summer. On the other hand, ZM-Mon (Figure 4d) reported almost identical values close 
to 10 mm for several months in 2006 and 2007, where SSEBop ETa showed the expected seasonality. It 
is also interesting to note that even when the r was not that strong, such as in the case of CN-Du2 (Figure 
4e), SSEBop captured the year-to-year variability when the low EC ETa in 2007 was represented well, 
indicating the reliability of the SSEBop ETa model as a drought monitoring tool. The same is true in 
capturing the drought in 2007 for ZA-Kru (Figure 4d). Some of the biases could come as a result of 
differences in spatial resolution. In looking at the SSEBop ETa for site US-Ne1 (irrigated site), the 
drought of 2012 in the United States was identified by the SSEBop model as one of the lowest ETa years, 
but the EC tower data showed the highest summer value, potentially representing a well-irrigated field 
with high atmospheric demand in a drought year. In this case, both datasets could be right, but 
representing different spatial scales (Figure 4a). 

3.3. Evaluation of ETa with Annual Water Budget  

Annual water budget evaluations are illustrated in Figure 5 for six continents and six basins. 
This analysis does not involve runoff and hence only a partial water budget analysis without an 
attempt to close the budget was performed. Under most circumstances we expect precipitation to be 
more than ETa; thus, positive differences indicate runoff-producing regions while negative 
differences imply sinks (more ETa than PPT), where ETa is met by moisture sources other than direct 
rainfall (e.g., irrigation and shallow groundwater over wetlands and deltas). In Figure 5, the red-
orange colored areas represent areas where ETa was more than PPT. While deltas and major 
irrigation areas showed negative differences, unexpected areas such as the southern part of the 
Amazon basin and northeast Australia also showed such negative differences, indicating an over-
estimation of model bias error, assuming PPT is correct.  

On the other hand, blue-green regions indicate areas where PPT was more than ETa. Such 
positive (high runoff) areas were in commonly rain-rich areas where major rivers originate. Grey 
areas indicate areas where the input (PPT) and ETa were about equal (within +/− 100 mm). These 
regions included The Sahara and Gobi Deserts, where the small amount of precipitation was lost to 
ETa without generating much surplus runoff.  

 
Figure 5. Water balance: annual mean Multi-Source Weighted-Ensemble Precipitation (MSWEP) 
precipitation data (2006–2015) minus annual mean SSEBop ETa data (2006–2015) for parts of 
continents including the six major river basins. Orange to red values indicate higher ETa values than 
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precipitation (irrigation and wetlands), while blue-green values show a higher precipitation (PPT) 
than ETa (rainfed). Water balance is calculated on a per-pixel basis. 

Basin-average ETcoeff (ETa/PPT) values provide insight into the basin-scale partitioning of 
precipitation between ETa and runoff across the six major river basins distributed in diverse 
hydroclimatic regions (Table 5). Overall, the average ETcoeff ranged between 36% and 82% across 
the six basins, which is not unusual over diverse hydroclimatic settings [32]. The low (<50%) ETcoeff 
basins were in rain-rich (Amazon, 48%) or energy-poor, snow-fed (Rhine, 36%) areas while the 
highest (>80%) ETcoeff value was observed in the rain-poor, high-energy Nile Basin. 

Table 5. Summary statistics for the six major river basins shown from left to right in Figure 5: basin 
name, area in km2, average annual ETa (mm) and precipitation (mm), and basin-wide ETcoeff 
(ETa/PPT) (%). 

  Basin Name Area (km2) PPT (mm)  ETa (mm)  ETcoeff (%) 
1 Mississippi 2,981,076 812 582 72% 
2 Amazon 7,049,948 2339 1120 48% 
3 Rhine 185,000 916 328 36% 
4 Nile 3,254,555 625 511 82% 
5 Yangtze 1,808,589 1119 576 51% 
6 Murray-Darling 1,061,469 463 303 65% 

Most basins showed a relatively minor year-to-year variability in terms of ETcoeff (Figure 6). 
The Yangtze basin in Asia (Figure 6e) and Amazon basin in South America (Figure 6b) showed a 
stable 51% and 48% ETcoeff, respectively, over the years, while the Mississippi basin in North 
America (Figure 6a) showed a stable 72% ETcoeff, which appears to be a reasonable estimate for the 
region [32]. The clear exception is the Murray-Darling basin in Australia (Figure 6f), which showed a 
big increase during the relatively wet years of 2010–2012 after a period of drought [33]. The Nile Basin 
in Africa (Figure 6d) also showed an increase in ETcoeff by about 10% during the 2012–2015 period. 
The sudden increase in ETcoeff in some years could imply increased rainfall that was converted into 
ETa, assuming most of the increased PPT over the basin went into ETa compared to runoff. This 
assertion requires information on runoff data, which is beyond the scope of this study. It is important 
to note that any error in PPT could lead to erroneous jumps or dips in the ETcoeff as well. However, 
the overall low ETcoeff (36%) over the Rhine basin in Europe (Figure 6c) may support the under-
estimation of SSEBop ETa in relation to the EC flux tower, and suggests the need to apply local or 
regional bias correction to the SSEBop ETa before using it for water budget studies. 

 
Figure 6. Yearly ETcoeff (ETa/PPT) variability for six major river basins over 10 years (2006–2015). 
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3.4. Drought Monitoring Using ET Anomalies 

While the absolute magnitude of ETa is critical for water management and hydrologic water 
budget studies, drought monitoring requires deviations from average patterns in which case any biases 
in the ETa dataset will drop out during the anomaly calculation. SSEBop ET anomalies (Figure 7a–c) 
are created as ratios (expressed as percentage) of a particular aggregation period (month, season, or 
year) to the median of the corresponding aggregation period generated from the 2003–2017 dataset  
(Figure 7d for annual ETa). 

Figure 7a–c show wet and dry year examples in some parts of the world using annual ETa 
anomalies. Parts of the United States showed a wet trend (green, above normal ETa) in 2005 and dry 
trend (orange, low ETa) in 2012. The years of 2011/2012 were known drought periods, especially in 
southcentral United States (Figure 7, box A), caused by below average precipitation [34,35]. Australia 
had dry conditions in 2005 (Figure 7, box B), which was a period known as the Millennium drought 
and impacted the basin’s water resources during the first decade of the 21st century [36,37]; wet 
conditions in 2012 were attributed to the return of precipitation, which ended the drought. Cunha et 
al. [38] mapped drought severity indices in Brazil’s Amazon basin during 2011–2019 (Figure 7, box 
C), which corresponds to the extreme drought location shown on the 2012 map in Figure 7b and the 
moderate drought level identified in 2018 shown in Figure 7c. On the other hand, western 
Kazakhstan, northeast of the Caspian Sea (Figure 7, box D) shows dryness for all three years (2005, 
2012, 2018; Figure 7a–c). Figure 7d shows the median annual ETa distribution from which the yearly 
(Figure 7a–c) ETa anomalies were created. The USGS FEWS NET posts and consults these products 
as parts of the convergence of evidence, along with rainfall and vegetation index anomalies, to 
develop drought monitoring and early warning bulletins in order to avert potential food-insecurity 
crises. All products (monthly, seasonal, and annual) can be viewed and/or downloaded at 
http://earlywarning.usgs.gov/fews/. 

 
Figure 7. ET anomaly (%) maps for (a) 2005, (b) 2012, (c) 2018, and (d) median (2003-2017) actual ET 
map (mm). 

4. Conclusions 

The main objectives of this study were to present the methodology used in generating the global 
SSEBop ETa, along with a limited evaluation using eddy covariance and water budget approaches. 
The SSEBop ETa product, generated from the Aqua MODIS data stream, is operationally posted on 
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the FEWS NET website (https://earlywarning.usgs.gov/fews/). Data include ETa (mm) at dekadal, 
monthly, and annual time scales for the globe with the extent shown in Figure 7. ETa anomalies are 
available for monthly, seasonal, and annual times scales. 

Comparison of SSEBop ETa with 12 EC flux tower sites from six major continents showed 
reasonable performance in capturing the seasonality, but large biases were noted at some sites. Because 
of the suspected energy balance closure errors, more investigation is required to ascertain the nature 
and magnitude of the biases. However, the comparison with basin-scale water balance (low ETcoeff) 
seems to indicate an under-estimation of the SSEBop ETa over the Rhine River basin in central Europe, 
which would require additional information on runoff and a full water budget analysis. 

Despite concerns of bias errors, the SSEBop ETa anomaly can be used for drought monitoring 
and early warning applications at multiple spatiotemporal scales ranging from 1 km dekadal to basin-
scale annual estimates. For water budget studies, the SSEBop data should be considered as a first-
order general solution where a one-time local (irrigation region) or regional (basin-scale) calibration 
procedure could be followed to correct any biases in the SSEBop ETa to produce a region-specific 
solution before using the absolute magnitudes.  

Supplementary Materials: All graphics and data are available online as a USGS data release in Senay et al. [31]. 
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