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Abstract: Satellite-based actual evapotranspiration (ETa) is becoming increasingly reliable and
available for various water management and agricultural applications from water budget studies to
crop performance monitoring. The Operational Simplified Surface Energy Balance (SSEBop) model
is currently used by the US Geological Survey (USGS) Famine Early Warning System Network
(FEWS NET) to routinely produce and post multitemporal ETa and ETa anomalies online for
drought monitoring and early warning purposes. Implementation of the global SSEBop using the
Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) land surface
temperature and global gridded weather datasets is presented. Evaluation of the SSEBop ETa data
using 12 eddy covariance (EC) flux tower sites over six continents indicated reasonable performance
in capturing seasonality with a correlation coefficient up to 0.87. However, the modeled ETa seemed
to show regional biases whose natures and magnitudes require a comprehensive investigation using
complete water budgets and more quality-controlled EC station datasets. While the absolute
magnitude of SSEBop ETa would require a one-time bias correction for use in water budget studies
to address local or regional conditions, the ETa anomalies can be used without further modifications
for drought monitoring. All ETa products are freely available for download from the USGS FEWS
NET website.

Keywords: Actual Evapotranspiration; Global; SSEBop model; MODIS; remote sensing;
drought monitoring

1. Introduction

The estimation of actual evapotranspiration (ETa) is an important activity in crop and water
management. As a key water budget component in the hydrologic cycle, ETa is responsible for the
exchange of mass and energy between land surfaces and atmosphere, thereby ensuring the continuity
of the hydrologic cycle and recycling 60-75% of total terrestrial precipitation [1,2]. ETa is composed
of two sub-processes—evaporation from surface and transpiration through plants—which are
difficult to measure directly, especially over large areas. Hence, estimation and mapping at a large
scale is restricted to indirect methods. The two most common principles in estimating ETa are water
balance and energy balance approaches [3]. In water balance approaches, ETa is estimated as a
function of soil moisture by tracking precipitation and other contributions (e.g., irrigation) in a
controlled volume (e.g., root-zone storage). This is the physics-based simulation of ETa as
implemented by prognostic hydrologic models, commonly described as land surface models (LSM)
such as the Global Land Evaporation Amsterdam Model (GLEAM) [4] and the Variable Infiltration
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Capacity (VIC) model [5]. ETa can also be estimated diagnostically using energy balance approaches
as the residual of the surface energy balance components where the difference between available net
radiation and outgoing (sensible plus ground heat) flux is attributed to latent heat (LE) flux. LE can
be converted into ETa using the latent heat of a vaporization constant (e.g., SEBAL [6]; ALEXI [7];
METRIC [8]). In all methods, ETa is generally estimated as a fraction of the potential
evapotranspiration (PET) or net radiation, representing maximum evapotranspiration (ETa). The
main difference between water balance and energy balance approaches is in the calculation of the ET
fraction (ETf), which is a function of soil moisture for the water balance approach, but calculated from
remotely sensed land surface temperature (LST) in cases of the energy balance approach.
Furthermore, ET fractions can be calculated from satellite-derived vegetation indices (VI) such the
Normalized Difference Vegetation Index (NDVI). VI-based ET fractions can be used to estimate ETa
directly [9-12] or in combination with water balance approaches [13,14]. Other sources of ETa
datasets are generated from the upscaling and regionalizing of station-based flux tower eddy
covariance measurements in combination with remote-sensing-based environmental parameters
such as the gridded flux net by the Max Planck Institute [15,16].

The quantification of ETa is prone to large uncertainties due to its dependence on the quality of
model inputs in addition to weaknesses in model structure and parameter accuracy. Mueller et al. [17]
attributed uncertainties in global ETa to the lack of reference observations. However, the desired level
of accuracy for ETa depends on its application and can be grouped into two categories: (1) water budget
and (2) drought monitoring. While absolute accuracy is critical for water budget applications, the year-
to-year consistency is more useful for drought monitoring purposes. There exist several global ETa
datasets from both land surface (prognostic) and remote sensing (diagnostic) approaches, but only
two are presently available for free download and use by the user community on an operational basis.
These publicly available sources are: (1) MOD16 [10]
(https://lpdaac.usgs.gov/products/mod16a2v006/, last accessed 1/29/2020) and (2) the Operational
Simplified Surface Energy Balance Model (SSEBop) [18]. MOD16 ET data have been published and
extensively referenced by various researchers [19,20]. On the other hand, despite its online availability
for various applications, the global SSEBop ETa product has not been supported by a publication. The
main objectives of this study are: (1) to present the methods used in creating the global SSEBop ETa
product, (2) to conduct a first-order evaluation using flux tower eddy covariance ETa and precipitation
data, and (3) to introduce the SSEBop ETa anomaly as a drought monitoring tool.

2. Materials and Methods

2.1. Data

The global land surface is diverse, consisting of mountains and valleys with land cover ranging
from barren and hot deserts to thick and temperate forests. These diverse land surface characteristics
are captured by spatially explicit geospatial datasets that are inputs to the SSEBop modeling approach
as summarized in Table 1.

Table 1. Summary of input datasets used in the Operational Simplified Surface Energy Balance Model
(SSEBop) model including data sources and the purpose of use. All datasets have a global extent.

Dataset Abbreviation Source Version Purpose

1 Land Surface Temperature LST(or Ts) MODIS (Aqua) Vé ETf
2 Maximum Air Temperature Ta Daymet/WorldClim  V3/V2 Tc
3 Reference evapotranspiration ETo GDAS/TWMI - ETa
4 Emissivity e MODIS (Aqua) V6 Ts
5 Normalize.d Difference NDVI MODIS (Aqua) V6 Ts, c

Vegetation Index factor
6 Albedo a MODIS Vo6 Ts
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Land surface temperature (LST, also represented by Ts as a variable) is one of the two important
drivers in the model along with reference evapotranspiration (ETo). We used dekadal (10-day) LST
data provided by the US Geological Survey (USGS) Earth Resources Observation and Science (EROS)
Center (Moderate Resolution Imaging Spectroradiometer (MODIS) LST,
https://doi.org/10.5066/P9BTSRIP, last accessed 1/29/2020). The LST dataset spatial resolution is 1 km
with a global extent of 80° North to 60° South and 180° West to 180° East, starting in 2003 and ranging
up to the current year (2020). Emissivity data are provided along with the LST dataset using the same
raster and temporal properties. The daily maximum air temperature (Ta) dataset is key for
determining the cold/wet boundary limit parameter (Tc). To utilize the best available datasets
globally, we spatially merged Ta from Daymet (https://daymet.ornl.gov/, last accessed 1/29/2020) [21]
for North America (average for 1980-2010) and Ta from WorldClim (average for 1970-2000)
(http://www.worldclim.org, last accessed 1/29/2020) [22] for the remaining parts of the globe into one
comprehensive dataset. We used a climatology dataset for ETo (2003-2012) from the Global Data
Assimilation System (GDAS) provided by the USGS Famine Early Warning Systems Network (FEWS
NET) Data Portal (https://earlywarning.usgs.gov/fews/product/81, last accessed 1/29/2020) and
climatological potential PET provided by the International Water Management Institute IWMI) at a 10
km resolution. The values from GDAS (daily at a 100 km spatial resolution) were downscaled to 10 km
using spatial patterns and statistics derived from the higher resolution IWMI PET dataset [23]. This
allowed the creation of improved spatial (10 km) and temporal (daily) resolutions by combining a
coarse (100 km) daily GDAS with a finer (10 km) monthly climatology IWMI PET.

The Normalized Difference Vegetation Index (NDVI, MYD13A2.006, 1 km, 2003 to 2020),
emissivity and albedo surface reflectance (MCD43A3.006 MODIS Albedo Daily 500 m, 2000 to 2020)
were used for model parameterization and adjustments as follows. The NDVI was used to locate
cold/wet pixels that are used to calibrate the correction coefficient (c factor), which converts Ta into
the cold/wet reference limit (Tc). Emissivity and albedo data were used to adjust the relatively low
LSTs (Ts) observed over unexpectedly high emissivity (>0.965) and albedo (>0.25) pixels in sparsely
vegetated (NDVI < 0.25) surfaces. High albedo (>0.25) and emissivity (>0.965) LSTs were adjusted to
warmer Ts to avoid a false sense of cooler temperatures that would be mistaken for high ETa areas
when they occur over sparse (NDVI < 0.25) vegetation landscapes. These adjustments tend be needed
in arid and semi-arid areas where the overall ET is very low to minimize artifacts that appear in such
low ET surfaces.

2.2. SSEBop Model Approach

Since the publication of the SSEBop model in 2013 by Senay et al. [18], the model has been
applied over diverse hydroclimatic regions with modifications made to model setup and parameter
thresholds, depending on the availability of input datasets. However, the overall principle has
remained the same, in that SSEBop is a two-parameter model with: (1) the temperature difference
(dT) and (2) a cold/wet reference limit (Tc).

Figure 1 shows a general flow diagram of the implementation of the SSEBop. Important forcing
inputs (Ts and ETo) and model parameters (air temperature, NDVI, v3, albedo, and emissivity) are
shown. Final products are posted to the FEWS NET website (https://earlywarning.usgs.gov/fews/).
LST, as noted in Section 2.1, is the most important model forcing variable. The estimation of ETa with
SSEBop is a two-step process where the ET fraction is first calculated using Ts, then ETa is calculated
as the product of ETf and the maximum ET derived from ETo. The ETf is calculated on a per-pixel
basis using Equation (1):

ETf =1 —y5(Ts — Tc) 1)

where ETfis the dekadal ET fraction for each pixel nominally ranging between 0 and 1, and y* is the
‘surface’ psychrometric constant over a dry-bare surface (it is the same as the inverse of the dT
parameter in Senay et al. [18]). Ts (K) is derived from MODIS LST, and Tc is the coldest/wettest
surface temperature (K) limit, which is derived from Ta [18]. The constant 1 represents the ET fraction
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value during maximum ET (i.e., when Ts = Tc). ETa is then determined on a per-pixel basis using
Equation (2):

ETa = ETf* k * ETo (2)

where ETa is the actual ET (mm), and ETo is the (grass-reference) potential ET (mm), which refers to
water that is transpired by grass, completely shaded, uniform in height, and never short of water; k
is a scaling coefficient of 1.25, which scales-up the grass-reference ETo to an alfalfa reference type for
maximum ETa, since alfalfa is an aerodynamic rougher crop than grass and therefore preferred to
represent the natural environment modeled.
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Figure 1. Overview of the SSEBop modeling process, adapted from Senay et al. [24], from the input

data to the final products posted to the United States Geological Survey (USGS) Famine Early
Warning Systems Network (FEWS NET) Data Portal (https://earlywarning.usgs.gov/fews/).

ET fraction (ETf)

As described in Senay et al. [18], the dT parameter was one of the key developments in
simplifying the ET computation process by completely eliminating the need to manually determine
the hot reference pixel. This allowed the model to be operationalized for use by the US Department
of the Interior's WaterSMART (Water Sustain and Manage America's Resources for Tomorrow)
Program and by FEWS NET projects. Senay [25] re-formulated the SSEBop model using the principle
of satellite psychrometry where the wet- and dry-bulb parameters are associated with the Tc and Ts,
respectively.

The surface psychrometric constant (y°) is defined as

Cpp
ye = R * rop f - (©)
where Cp is defined as the specific heat of air at constant pressure 1.013 * 102 (M]/(kg.°C)), p is the
density of air (kg/m?®), Ra is the daily average net radiation (M]/(m2.day)) [25], and ra is the
aerodynamic resistance over bare soil, defined as 110 s/m [25].

The second important model parameter is the cold/wet reference limit (Tc), which is determined
from the daily maximum air temperature using the c factor (Table 2).
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Tc=c*Ta 4)

where Tc (K) is the cold/wet boundary limit or wet bulb, Ta is the maximum air temperature (K) for
the period, and c is the correction coefficient, which is developed as the ratio of Ts and Ta at well-
vegetated pixels.

Table 2. SSEBop model parameter description and constraints. LST is the land surface temperature
provided by the NASA LP DAAC archive, also denoted by Ts as a variable.

Parameter Constraints
NDVI>=0.7
Ts>270 K
c factor

-10 K<=(Ta-Ts) <=5K
C factor is established under the above 3 conditions
albedo correction
If a>=250 & NDVI >= 0 & desert pixel mask
Then, Ts,a=Ts + 0.1(a -50)
Emissivity correction
If e >0.965 & (0.001 < NDVI < 0.25)

Then, Ts,e = Ts, a(e/0.965)
Note: albedo “a” is scaled by 1000. For example, the LST (320 K) of a pixel with a = 0.30 is adjusted
upwards to Ts = 320 + 0.10 (300-250) = 325 K. The desert pixel mask was obtained from the Koeppen
climate classification (http://koeppen-geiger.vu-wien.ac.at/) [26].

Ts

The cold/wet boundary (wet bulb) is used to define the ET rate at a well-watered and well-
vegetated surface based on the assumption that there is little or no sensible heat transfer because the air
and surface temperatures are identical at this surface and thus produce ET at the potential rate. The c
factor is based on the ratio (Tcorr) of Ts to Ta on pixels that meet the condition of NDVI >= 0.7 (well-
vegetated pixel). Furthermore, the temperature difference between Ta and Ts is restricted to between
-10 and 5 K (to avoid extreme calibration points when using the Aqua LST and this particular Ta
dataset) and Ts has to be > 270 K to exclude cloudy pixels (Table 2). The Tcorr (i.e., Ts/Ta) values that
meet all three conditions are then summarized for each MODIS sub-tile. MODIS sub-tiles are generated
by sub-diving each MODIS tile into 25 sub-tiles (5 x 5 tiles). The sub-tiling improves the optimization
of the c factor that is more appropriate for each sub-tile, thereby improving the spatial accuracy of the
model. The final c factor is then determined as the 5th percentile (mean minus two standard deviations)
from the distribution of Tcorr values for each sub-tile:

¢ = Tcorryean — 2 * STD 5)

where Tcorrmean is the mean Tcorr value for each sub-tile and STD is the standard deviation. The Tcorr
value is reduced by two times the STD to eliminate outliers and arrive at the coldest/wettest pixel
values at the 5th percentile.

The c factor is generated only when a sub-tile has more than 30 pixels that meet the criteria. If a
¢ value cannot be determined, the ¢ value of neighboring tiles is used. This approach is reasonable
because of the relatively small size of the tile and because hydroclimatic conditions tend to change
gradually. When neighboring sub-tiles do not have valid c factors, median c factors are used to create
a c factor raster that covers the entire study area.

Once c factors are generated the major challenge for generating ET fractions is cloud-related
issues (clouds, cloud shadows, and contamination). Thus, a missing ETf is filled using the BABA
(before-after-before-after) algorithm to estimate the ETa for a given dekad “i”. An ETf is considered
invalid if it is greater than 1.3; however, ETf values between 1.05 and 1.3 are capped at 1.05 [25]. Using
the BABA algorithm, if the ETf value is greater than 1.3, then the ETf from the previous (before) dekad
(i-1) is used. If the “before” dekad is invalid, then the dekad after (i + 1) is considered. If that fails,
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then we go back to the two previous dekads (i — 2), or forward to the two subsequent dekads (i + 2),
in that order. After four attempts to fill the missing data using adjacent periods have failed (when
BABA fails) due to longer periods of cloud (e.g., during monsoon seasons in India or the Amazon),
the median ETf value (2003-2017) for the same period is considered as a reasonable ETf estimate.

In order to document whether a pixel is observed (calculated) or filled with a certain
approximation, a numerical quality assurance (QA) band is created. The QA raster contains values
from 1 to 6, where “1” represents the availability of a current (i) dekad ETf value and no need for
filling; “2”: missing ETf is filled with the previous dekad (i — 1) ETf; “3”: missing ETf is filled with (i
+1); “4”: missing ETf is filled with (i —2); “5”: missing ETf is filled with (i + 2); and “6”: missing ETf
is filled with the median ETf value.

Once the ETa is calculated for each dekad, two more modifications were made to the ETa over
desert areas and waterbodies. First, a desert area was defined when the maximum NDVI value (for
2003-2017) was less than 0.2. For desert areas such as The Sahara, ETa was capped at 32% of the
calculated value. The value was determined based on a comparison with rainfall data where ETa was
assumed to be equal to rainfall in such dry environments. Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS) data were used for the rainfall [27]. Secondly, ETa over known
waterbodies was assigned 85% of the potential ET (R. Allen, Kimberly Research and Extension Center
University of Idaho, verbal communication, 2013). The waterbodies were defined using the MODIS
Land Cover product (MCD12Q1), where we extracted water (ID = 0) from the raster file, resampled
it to a 1 km spatial resolution (from 500 m), then extracted the inland water features. To avoid the
inclusion of seasonally vegetated pixels near waterbodies, a water occurrence raster was used to
define waterbodies, i.e., a pixel was declared water if the land cover map identifies the pixel as water
(ID =0) in all years (2003-2013).

Temporal aggregation was achieved by multiplying the dekadal ETf and dekad-total ETo. A dekadal global
ETa was created for all dekads over 16 years (2003-2018). The dekadal ETa data were further aggregated to
generate monthly, seasonal, and annual ETa grids. Graphics for all three temporal scales (dekad, month, and
year) were created for visual interpretation of the data and posted to the FEWS NET website
(https:/learlywarning.usgs.govl/fews/). Supporting data and graphics are available as a USGS Data Release as
indicated in the Supplementary Materials section. 2.3. Evaluation of SSEBop ETa Estimates Using Eddy
Covariance Flux Towers

To evaluate the ETa dataset, monthly modeled ETa estimates were compared with monthly ETa
eddy covariance flux tower data (aggregated from daily) provided by FluxNet 2015
(https://fluxnet.fluxdata.org/, last accessed 1/29/2020). FluxNet 2015 is a curated dataset where the
regional flux networks in North, Central and South America, Europe, Asia, Africa, and Australia
contribute data to create a cohesive global network of eddy covariance measurements. The daily data
were converted to ETa (mm/day) and aggregated to monthly using the proportionality constant
between energy and ET depth in mm as:

LE
ETa = — (6)
where A is the latent heat of vaporization (2.45 MJ/kg) and latent heat (LE) is in comparable energy units
of MJ/(m2.day) and ETa in mm/day (i.e., 1 MJ/(m2.day) = 0.408 mm/day with a water density of 1000
kg/m?3) [14]. There are 165 Tier 1 flux tower sites in the FluxNET 2015 database. In order to show globally
distributed sample comparisons, we arbitrarily selected two sites per continent (different land cover
types where available), for a total of 12 sites with valid data since 2003, a starting period for SSEBop
ETa. We also limited the locations to those that had at least three years of flux tower measurements (the
Brazil site had only two years of data, with only two sites available in South America). The selected sites
included: Australia: AU-Wom, AU-DaP; North America: CA-SF1, US-Nel; South America: BR-Sa3, AR-
SLu; Asia: CN-Cng, CN-Du2; Europe: DE-Obe, DE-She; and Africa: ZM-Mon, ZA-Kru. One site for each
continent was over forest land cover and the second was on grassland or savanna. The modeled
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monthly ETa was compared to the observed latent heat flux-based ETa. Standard statistical metrics such
as correlation coefficient (r), root mean square error (RMSE), normalized RMSE (percent derived from
the range or mean), and percent bias (from the mean) were generated. The normalized RMSE using the
range was used because of the seasonality of ETa, creating a large range in ETa values. The mean was
used to determine the percent bias.

Energy balance closure (EBC) error has always been an issue with eddy covariance (EC) tower
datasets [28,29]. We calculated the EBC (ratio of the sum of latent and sensible fluxes to net radiation
minus ground heat flux) on a daily time step for each of the 12 sites. We used thresholds of EBC =0.7
and 1.0 to identify potential under-estimation with low closure (EBC < 0.7) and over-estimation with
high closure (EBC > 1.0). The energy balance residual correction was computed using the corrected
variables for latent heat (LE_CORR) and sensible heat (H_CORR) in addition to net radiation
(NETRAD) and ground heat (G_F_MDS) for the data provided. The percentage of days with low and
high EBC are reported to indicate the reliability of the eddy covariance data for interpreting the
accuracy metrics against SSEBop ETa.

2.4. Evaluation of SSEBop ETa Using Annual Water Budget at Pixel and Basin Scales

Considering the limited coverage of flux towers, we also conducted a pixel-based and basin-
scale annual water budget analysis. The major assumption was that the storage change for each
spatial scale was negligible at an annual time scale. Therefore, we created mean annual precipitation
(PPT) totals (2006-2015) from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) data [30]
and mean annual ETa from SSEBop data for the same time period. The pixel-based analysis showed
the annual difference between PPT and ETa as a map with positive values showing runoff generation
pixels, while negative values indicating sink areas such as wetlands and large irrigated deltas where
there was more ETa than direct rainfall over the pixel. We selected one major river basin for each
continent and spatially averaged the PPT and ETa data. The ETa/PPT coefficient (ETetf) for the six
major river basins over 10 years (2006-2015) was calculated as:

ETa
ETcoest = PPT )
where ETcoett is the fraction of basin-average ETa in relation to basin-average PPT for each year. ETcoett
provides a sense of the relative amount of precipitation that is partitioned between ETa and runoff,
with tropical desert areas having a high ETwett compared to wet temperate regions [31].

2.5. ETa Anomalies for Drought Monitoring

One of the main uses of the global ETa datasets is drought monitoring, which relies on relative
changes from a normal climate. The ETa anomalies are computed as the percentage of monthly,
seasonal and annual median values for the corresponding aggregation periods. The median is
calculated from the available historical data (2003-2017) constituting a 15-year normal. Unlike
applications in water resources and hydrological water budget studies, the absolute accuracy of ETa
is not critical for drought monitoring. However, a consistent global ETa dataset that captures the
spatiotemporal variability of landscape stress from lack of moisture allows the monitoring/early
warning of droughts at a relatively high spatial resolution (1 km). Global and regional ETa anomaly
products are regularly posted to the FEWS NET website (https://earlywarning.usgs.gov/fews/).

3. Results and Discussion

3.1. SSEBop ETa Estimates

Model outputs were created for every dekad. A typical product is illustrated in Figure 2a,b for
the first dekad of January and July 2018, respectively. One can see the active growing seasons in
January for the southern hemisphere and in July for the northern hemisphere, with ETa values in the
range of 20-60 mm per dekad. Monthly totals were created by aggregating the three dekads in each
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month; for example, January and July 2018 SSEBop ETa values are illustrated in Figure 2cd,
respectively. In the month of January, South America and southern Africa showed high ETa values
due to an active growing season. A typical range for healthy vegetation/crops is about 150-200 mm
per month during a peak season, represented by dark blue-green colors. In July, the active growing
seasons are visible in the northern hemisphere, such as in the United States (>150 mm) and the Indus
Valley (South Asia) (>200 mm). Overall, the spatial distribution of the ETa pattern for each time
period corresponded well with the vegetation cover and rainfall/irrigation patterns of the globe,
highlighting where and how much ETa was generated for a given time period of the year.

2500 5000
K

Figure 2. (a) Actual ET (mm) for dekad 1, January 2018 (1.1.2018-10.1.2018), (b) actual ET (mm) for
dekad 1, July 2018 (1.7.2018-10.7.2018), (c) actual ET (mm) for the month of January 2018 (1.1.2018-
31.1.2018), and (d) actual ET (mm) for the month of July 2018 (1.7.2018-31.7.2018).

3.2. Evaluation of ETa Estimates Using Eddy Covariance (EC) Data

Twelve EC flux tower sites from around the world were used to evaluate monthly SSEBop ETa.
The locations of the 12 selected sites are shown in Figure 3, with the annual ET estimates for 2018 as
the base map. The time period for the EC data was 2003-2014, based on the availability of flux
tower measurements.
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Figure 3. 2018 annual ETa map (mm) with 12 flux tower locations. There are two sites on each of the
six continents.

Overall, the two datasets compared favorably with a correlation coefficient r as high as 0.87 with
some exceptions (as low as r = 0.09) (Table 3). The strongest correlations occurred in Australia at the
AU-Wom site (Evergreen Broadleaf Forests, r = 0.87, RMSE = 13.6 mm) and Europe at the DE-Obe site
(Evergreen Needleleaf Forests, r = 0.82, RMSE = 15.8 mm). The lowest correlations were with the sites
in South America: one in Argentina, AR-SLu (Mixed Forest, r = 0.09, RMSE = 43.7.1 mm) and one in
Brazil, Br-5a3 (Evergreen Broadleaf Forests, r =0.32, RMSE =7.5 mm). Although ETa seasonality seemed
to be captured well by the SSEBop model, as demonstrated by a relatively strong r, large biases ranging
from 3 to 50% were observed in both negative and positive directions. While the model can be subject
to biases as a result of various factors from model structure to input sources, the EC flux tower ETa was
also subject to potential biases and uncertainties, as indicated by the relatively large energy balance
closure (EBC) error percentages. For example, the DE-Obe station in Europe showed 34.2% of the daily
observed data with an EBC less than 0.7 and 38.3% with more than 1.0 (Table 4). Similarly, most of
stations had a high percentage of days with an EBC outside the desired range. Interestingly, these
datasets are supposed to be corrected for EBC error, but still showed a high percentage of the days away
from the desired value of 1.0.
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Table 3. Monthly comparison of SSEBop ETa and eddy covariance (EC) flux tower ETa for 12 sites globally for 2003—2014. ETa columns are mean values for all
months available with matching pairs. RMSEm (%) is the RMSE divided by the mean of flux tower ETa, and RMSEr (%) is the RMSE divided by the range of flux
tower ETa. Percent bias is the average difference between the SSEBop ETa and flux tower ETa from matching pairs divided by the mean of EC flux tower ETa; r is

the Pearson’s correlation coefficient.

Site Continent Land Cover SSEBop ETa(mm)  Flux tower ETa (mm) Range(mm) (:f:) ](3:/:)3 RMSE(mm) RMSEm RMSEr r

AU-DaP Australia Grasslands 89.7 63.2 188.2 26.5 42% 35.7 56% 19% 0.74
AU-Wom Australia Evergreen Broadleaf Forests 77.8 85.4 134.1 -7.6 -9% 13.6 16% 10% 0.87
CA-SF1 North America Evergreen Needleleaf Forests 53.0 54.7 107.4 -1.7 -3% 17.8 33% 17% 0.71
US-Nel North America Croplands 51.3 76.9 258.1 -25.6 -33% 38.7 50% 15% 0.86
CN-Cng Asia Grasslands 229 38.0 116.2 -15.1 -40% 13.6 36% 12% 0.75
CN-Du2 Asia Grasslands 38.4 49.1 102.4 -10.8 -22% 11.3 23% 11% 0.47
DE-Obe Europe Evergreen Needleleaf Forests 32.6 40.4 109.2 -7.8 -19% 15.8 39% 14% 0.82
DE-Seh Europe Croplands 27.8 41.7 106.3 -13.8 -33% 18.3 44% 17% 0.56
ZA-Kru Africa Savannas 44.6 37.7 221.4 7.0 18% 18.3 49% 8% 0.82
ZM-Mon Africa Deciduous Broadleaf Forests 52.6 35.1 120.2 17.5 50% 24.7 70% 21% 0.45
AR-SLu South America Mixed Forest 59.1 54.6 75.2 4.5 8% 43.7 80% 58% 0.09
BR-5a3 South America Evergreen Broadleaf Forests 104.8 106.0 43.8 -1.2 -1% 7.5 7% 17% 0.32
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Table 4. Energy balance closure (EBC) statistics for each site. #Days column indicates the number of

available daily measurements. #Days_low gives the number of days with <70% EBC along with its
percentage (%low). #Days_high gives the number of days with >100% EBC along with the

corresponding percentage of days (%high).

Site Continent #Days #Days_low Ylow #Days_high %high
AU-DaP Australia 2063 12 0.58 1034 50.1
AU-Wom Australia 992 246 24.8 396 39.9
CA-SF1 North America 1220 316 25.9 479 39.3
US-Nel North America 4360 632 14.5 2001 45.9
CN-Cng Asia 1131 198 17.5 509 45
CN-Du2 Asia 238 11 4.6 120 50.4
DE-Obe Europe 2451 837 34.2 938 38.3
DE-Seh Europe 1198 363 30.3 444 37.1
ZA-Kru Africa 1939 290 14.9 843 43.5
ZM-Mon Africa 685 17 25 322 47
AR-SLu South America 448 29 6.5 230 51.3
BR-Sa3 South America 1058 18 1.7 523 494

Despite the concerns with SSEBop ETa biases and EBC error with EC flux tower data, SSEBop
ETa captured the temporal variability with a reasonable performance (Figure 4). The observed bias
seemed to vary from region to region. SSEBop seemed to under-estimate Europe and Asia, but partly
over-estimate Africa and Australia. We can also see the bias appearing to shift between over- and
under-estimation in some flux towers such as ZA-Kru (Africa), which casts doubt on the most
important strength of the data (consistent bias) for drought monitoring. However, the dry years
remained dry (low ETa) and the wet years were wet (high ETa), even with such changes in bias signs,

indicating reliability of the SSEBop ETa for drought monitoring.
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Figure 4. Monthly traces of SSEBop (red) and observed (black) EC flux tower ETa (mm) organized by
continent. Two EC towers are shown for each of the six continents. SSEBop is shown from the start
(2003) until the most recent available EC date (2014) for visual inspection of year-to-year variability.
Land cover type and r values are shown for the flux tower sites.
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Temporal traces of both the EC flux tower and SSEBop ETa in Figure 4 show that the seasonality
was reasonable for most sites, but highly suspected errors in the EC data are illustrated in AR-SLu
(Figure 4b) where the EC data seemed to miss the seasonality, showing a higher ETa in the winter (low
SSEBop) than summer. On the other hand, ZM-Mon (Figure 4d) reported almost identical values close
to 10 mm for several months in 2006 and 2007, where SSEBop ETa showed the expected seasonality. It
is also interesting to note that even when the r was not that strong, such as in the case of CN-Du2 (Figure
4e), SSEBop captured the year-to-year variability when the low EC ETa in 2007 was represented well,
indicating the reliability of the SSEBop ETa model as a drought monitoring tool. The same is true in
capturing the drought in 2007 for ZA-Kru (Figure 4d). Some of the biases could come as a result of
differences in spatial resolution. In looking at the SSEBop ETa for site US-Nel (irrigated site), the
drought of 2012 in the United States was identified by the SSEBop model as one of the lowest ETa years,
but the EC tower data showed the highest summer value, potentially representing a well-irrigated field
with high atmospheric demand in a drought year. In this case, both datasets could be right, but
representing different spatial scales (Figure 4a).

3.3. Evaluation of ETa with Annual Water Budget

Annual water budget evaluations are illustrated in Figure 5 for six continents and six basins.
This analysis does not involve runoff and hence only a partial water budget analysis without an
attempt to close the budget was performed. Under most circumstances we expect precipitation to be
more than ETa; thus, positive differences indicate runoff-producing regions while negative
differences imply sinks (more ETa than PPT), where ETa is met by moisture sources other than direct
rainfall (e.g., irrigation and shallow groundwater over wetlands and deltas). In Figure 5, the red-
orange colored areas represent areas where ETa was more than PPT. While deltas and major
irrigation areas showed negative differences, unexpected areas such as the southern part of the
Amazon basin and northeast Australia also showed such negative differences, indicating an over-
estimation of model bias error, assuming PPT is correct.

On the other hand, blue-green regions indicate areas where PPT was more than ETa. Such
positive (high runoff) areas were in commonly rain-rich areas where major rivers originate. Grey
areas indicate areas where the input (PPT) and ETa were about equal (within +/- 100 mm). These
regions included The Sahara and Gobi Deserts, where the small amount of precipitation was lost to
ETa without generating much surplus runoff.

North America Eu(ups A
Mississippi Rhine — angtze

= N ; ) . y
* % South America _ b M Australia
oy 4 4

| Amazan - 3 z Murray-Darling
gt~y : " : i

I - 500
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[ 100 - 250
I 250 - 500
. - 500 et 200,

Figure 5. Water balance: annual mean Multi-Source Weighted-Ensemble Precipitation (MSWEP)
precipitation data (2006-2015) minus annual mean SSEBop ETa data (2006-2015) for parts of
continents including the six major river basins. Orange to red values indicate higher ETa values than
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precipitation (irrigation and wetlands), while blue-green values show a higher precipitation (PPT)
than ETa (rainfed). Water balance is calculated on a per-pixel basis.

Basin-average ETcoeff (ETa/PPT) values provide insight into the basin-scale partitioning of
precipitation between ETa and runoff across the six major river basins distributed in diverse
hydroclimatic regions (Table 5). Overall, the average ETcoeff ranged between 36% and 82% across
the six basins, which is not unusual over diverse hydroclimatic settings [32]. The low (<50%) ETcoeff
basins were in rain-rich (Amazon, 48%) or energy-poor, snow-fed (Rhine, 36%) areas while the
highest (>80%) ETcoeff value was observed in the rain-poor, high-energy Nile Basin.

Table 5. Summary statistics for the six major river basins shown from left to right in Figure 5: basin
name, area in km?, average annual ETa (mm) and precipitation (mm), and basin-wide ETcoeff

(ETa/PPT) (%).
Basin Name Area (km?) PPT (mm) ETa (mm) ETcoeff (%)
1 Mississippi 2,981,076 812 582 72%
2 Amazon 7,049,948 2339 1120 48%
3 Rhine 185,000 916 328 36%
4 Nile 3,254,555 625 511 82%
5 Yangtze 1,808,589 1119 576 51%
6 Murray-Darling 1,061,469 463 303 65%

Most basins showed a relatively minor year-to-year variability in terms of ETcoeff (Figure 6).
The Yangtze basin in Asia (Figure 6e) and Amazon basin in South America (Figure 6b) showed a
stable 51% and 48% ETcoeff, respectively, over the years, while the Mississippi basin in North
America (Figure 6a) showed a stable 72% ETcoeff, which appears to be a reasonable estimate for the
region [32]. The clear exception is the Murray-Darling basin in Australia (Figure 6f), which showed a
big increase during the relatively wet years of 2010-2012 after a period of drought [33]. The Nile Basin
in Africa (Figure 6d) also showed an increase in ETcoeff by about 10% during the 2012-2015 period.
The sudden increase in ETcoeff in some years could imply increased rainfall that was converted into
ETa, assuming most of the increased PPT over the basin went into ETa compared to runoff. This
assertion requires information on runoff data, which is beyond the scope of this study. It is important
to note that any error in PPT could lead to erroneous jumps or dips in the ETcoeff as well. However,
the overall low ETcoeff (36%) over the Rhine basin in Europe (Figure 6¢c) may support the under-
estimation of SSEBop ETa in relation to the EC flux tower, and suggests the need to apply local or
regional bias correction to the SSEBop ETa before using it for water budget studies.

'fz (a) Mississippi (b) Amazon (c) Rhine
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70%
60%
50%
0%
30%
. 20% I
=
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% 0%
=]
= 100%
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50%
10%
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Figure 6. Yearly ETcoeff (ETa/PPT) variability for six major river basins over 10 years (2006-2015).
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3.4. Drought Monitoring Using ET Anomalies

While the absolute magnitude of ETa is critical for water management and hydrologic water
budget studies, drought monitoring requires deviations from average patterns in which case any biases
in the ETa dataset will drop out during the anomaly calculation. SSEBop ET anomalies (Figure 7a—c)
are created as ratios (expressed as percentage) of a particular aggregation period (month, season, or
year) to the median of the corresponding aggregation period generated from the 2003-2017 dataset
(Figure 7d for annual ETa).

Figure 7a—c show wet and dry year examples in some parts of the world using annual ETa
anomalies. Parts of the United States showed a wet trend (green, above normal ETa) in 2005 and dry
trend (orange, low ETa) in 2012. The years of 2011/2012 were known drought periods, especially in
southcentral United States (Figure 7, box A), caused by below average precipitation [34,35]. Australia
had dry conditions in 2005 (Figure 7, box B), which was a period known as the Millennium drought
and impacted the basin’s water resources during the first decade of the 21st century [36,37]; wet
conditions in 2012 were attributed to the return of precipitation, which ended the drought. Cunha et
al. [38] mapped drought severity indices in Brazil’s Amazon basin during 2011-2019 (Figure 7, box
C), which corresponds to the extreme drought location shown on the 2012 map in Figure 7b and the
moderate drought level identified in 2018 shown in Figure 7c. On the other hand, western
Kazakhstan, northeast of the Caspian Sea (Figure 7, box D) shows dryness for all three years (2005,
2012, 2018; Figure 7a—c). Figure 7d shows the median annual ETa distribution from which the yearly
(Figure 7a—c) ETa anomalies were created. The USGS FEWS NET posts and consults these products
as parts of the convergence of evidence, along with rainfall and vegetation index anomalies, to
develop drought monitoring and early warning bulletins in order to avert potential food-insecurity
crises. All products (monthly, seasonal, and annual) can be viewed and/or downloaded at
http://earlywarning.usgs.gov/fews/.

(a) 2005

Figure 7. ET anomaly (%) maps for (a) 2005, (b) 2012, (c) 2018, and (d) median (2003-2017) actual ET
map (mm).

4. Conclusions

The main objectives of this study were to present the methodology used in generating the global
SSEBop ETa, along with a limited evaluation using eddy covariance and water budget approaches.
The SSEBop ETa product, generated from the Aqua MODIS data stream, is operationally posted on
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the FEWS NET website (https://earlywarning.usgs.gov/fews/). Data include ETa (mm) at dekadal,
monthly, and annual time scales for the globe with the extent shown in Figure 7. ETa anomalies are
available for monthly, seasonal, and annual times scales.

Comparison of SSEBop ETa with 12 EC flux tower sites from six major continents showed
reasonable performance in capturing the seasonality, but large biases were noted at some sites. Because
of the suspected energy balance closure errors, more investigation is required to ascertain the nature
and magnitude of the biases. However, the comparison with basin-scale water balance (low ETcoeff)
seems to indicate an under-estimation of the SSEBop ETa over the Rhine River basin in central Europe,
which would require additional information on runoff and a full water budget analysis.

Despite concerns of bias errors, the SSEBop ETa anomaly can be used for drought monitoring
and early warning applications at multiple spatiotemporal scales ranging from 1 km dekadal to basin-
scale annual estimates. For water budget studies, the SSEBop data should be considered as a first-
order general solution where a one-time local (irrigation region) or regional (basin-scale) calibration
procedure could be followed to correct any biases in the SSEBop ETa to produce a region-specific
solution before using the absolute magnitudes.

Supplementary Materials: All graphics and data are available online as a USGS data release in Senay et al. [31].
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