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Abstract: In the process of the attitude measurement for a steering drilling system, the measurement
of the attitude parameters may be uncertain and unpredictable due to the influence of server vibration
on bits. In order to eliminate the interference caused by vibration on the measurement and quickly
obtain the accurate attitude parameters of the steering drilling tool, a new method for multi-sensor
dynamic attitude combined measurement is presented. Firstly, by using a triaxial accelerometer
and triaxial magnetometer measurement system, the nonlinear model based on the quaternion is
established. Then, an improved adaptive fading square root unscented Kalman filter is proposed for
eliminating the vibration disturbance signal. In this algorithm, the square root of the state covariance
matrix is used to replace the covariance matrix in the classical unscented Kalman filter (UKF) to avoid
the filter divergence caused by the negative definite state covariance matrix. The fading factor is
introduced into UKF to adjust the filter gain in real-time and improve the adaptive ability of the
algorithm to mutation state. Finally, the computational method of the fading factor is optimized to
ensure the self-adaptability of the algorithm and reduce the computational complexity. The results
of the laboratory test and the field-drilling data show that the proposed method can filter out the
interference noise in the attitude measurement sensor effectively, improve the solution accuracy of
attitude parameters of drilling tools in the case of abrupt changes in the measuring environment,
and thus ensuring the dynamic stability of the well trajectory.

Keywords: multi-sensor combined measurement; quaternion; unscented kalman filter; square root
filter; adaptive fading factor

1. Introduction

With the continuous development of the petroleum industry and the increasing difficulty of oil and
gas exploration and development, carrier space attitude measurement plays an increasingly prominent
role in the field of the petroleum industry [1–4]. This means that the requirements of real-time, accuracy,
continuous, and dynamic measurement of drilling tool attitude parameters (inclination, tool face angle,
and azimuth angle) are higher and higher. In the process of drilling, due to the influence of the drilling
string rotation, server vibration near bits, high temperature, high pressure, and a strong magnetic
field, especially in the near vertical condition (when the inclination is less than 1◦), if only using the
three-axis accelerometer sensors, the three-axis magnetometer sensors or simply combining them in
mechanical, still show significant errors for the attitude parameters of the guiding drilling tools [5,6].
At this time, using a multi-sensor combined measurement system to generate redundant signals is one
of the research directions to realize dynamic measurement while drilling of attitude parameters.

There are two conventional multi-sensor combined systems for measurement while drilling
(MWD) based on magnetometer sensors and gyroscope sensors, respectively. The system is called

Sensors 2020, 20, 1897; doi:10.3390/s20071897 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/7/1897?type=check_update&version=1
http://dx.doi.org/10.3390/s20071897
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1897 2 of 19

Gyroscope-based system, which uses gyro and accelerometer, as well as a magnetometer-based
system using magnetometer sensors and accelerometer sensors because, in the drilling engineering,
the accelerometer is always used in various measuring systems [4,7].

Continuous MWD is studied under laboratory conditions using a gyroscope-based system.
Mahmoud et al. [7,8] and Jurkov et al. [9] proposed an advanced inclination and direction sensor
package based on an inertial navigation system (INS). They verified the reliability of the algorithm
through simulation, which used INS to achieve continuous MWD with high accuracy. The influences of
vibration and temperature on MWD were also analyzed [10–12]. However, because of their insufficient
consideration about the down-hole complex situations, severe vibration is a great challenge for the
measurement accuracy and lifetime of the sensors. Additionally, an increasing temperature can cause
drift error in the gyroscope. Zhang et al. [13] and Chen et al. [14] developed a MWD instrument based
on the simplified inertial measurement unit. However, there are still the same limitations as shown in
the above studies.

Xue et al. [15] developed a strap-down measurement system based on a magnetometer, with triaxial
accelerometer sensors and triaxial magnetometer sensors installed near the bit. To achieve continuous
measurement, a novel linear stochastic system was proposed and the Kalman filter (KF) was used to
estimate the states. They proved that a continuous-survey system with a KF approach can improve
measurement precision and reduce errors produced by drill string vibration. However, the bottom
drilling tool shows complex nonlinear stochastic characteristics while rotating due to a combined
effect of their randomly nonlinear moving state, such as vertical vibration, horizontal vibration, eddy,
and sticky slip. Therefore, there will be an obvious model error between the linear stochastic system
established in [15] and the field-drilling dynamic system. Unfortunately, KF is only suitable for
multi-sensor linear stochastic systems [16,17]. For the multi-sensor nonlinear stochastic systems,
KF cannot be used.

The unscented Kalman filter (UKF) is a promising filtering method to estimate the state of a
nonlinear stochastic system [18,19]. This method can approximate the posterior mean and covariance
of any Gaussian random variable in third-order accuracy by using unscented transformation (UT).
It has advantages of high estimation accuracy, high convergence rate, and simple implementation
compared to other nonlinear filtering methods [19,20]. Due to these merits, Xu et al. [21], Yang et al. [22],
and Gao et al. [5] developed the multi-sensor measurement system, which is composed of triaxial
accelerometer sensors and triaxial magnetometer sensors, and the nonlinear model of attitude
measurement based on quaternion is established, as well as the UKF method which is used to filter the
vibration interference signal. The experimental results show that the method is effective in multi-sensor
combined MWD.

According to the literature analysis above, the UKF algorithm can eliminate the adverse effect
of vibration disturbance to a certain extent by iterative calculation of the filtering model for drilling
tool attitude parameters based on quaternion. However, due to the inherent defects of UKF, there are
two problems in the dynamic calculation of drilling tool attitude parameters: (1) In the transmitting
process of a covariance matrix, due to rounding error and noise, it is easy to cause numerical calculation
instability [23–25], especially the influence of bottom vibration and the fast rotation of the drill pipe,
which will aggravate the adverse effect of noise on calculation stability, and even lead to UKF algorithm
failure; and (2) the filter gain of classical UKF cannot be adjusted online, as well as a lack of adaptive
ability [26–28]. When the multi-sensor measurement system is abnormal (affected by the complex
environment, such as high temperature and pressure, strong magnetic field, and near-vertical position,
which leads to unnatural transfer or mutation of the attitude parameters while drilling), it cannot
effectively track the attitude parameters while drilling.

Based on the classical UKF algorithm, this paper proposes an improved adaptive fading square
root UKF (IAFSR-UKF) algorithm, which can dynamically process the attitude measurement signal
by a multi-sensor combined system. This method combines the numerical stability of a square root
filter and the strong tracking ability of an adaptive fading filter to the system state mutation. It can
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further eliminate or weaken the adverse effect of noise signal for the MWD and thereby obtain the
real-time and high-precision attitude parameters, thus ensure the dynamic stability of the well trajectory.
This method is applied to the nonlinear filtering model of the magnetometer-based system to solve the
dynamic attitude parameters. The simulation test was carried out by the vibration platform system
and the field-drilling data of a well in western Sichuan, which verified the accuracy and real-time
performance of the proposed IAFSR-UKF applied to the combined measurement system for the drilling
tools attitude parameters.

2. Multi-Sensor Combination Measurement Based on the IAFSR-UKF

2.1. A nonlinear System Model of MWD Based on Quaternion

According to the installation principle of three-axis sensor in attitude measurement while drilling
and the common space coordinate transformation method in the field of inertial navigation, quaternion
was used to replace the attitude parameters of drilling tools in the space attitude measurement, and a
nonlinear filtering model of downhole attitude measurement based on quaternion is established in
this section.

The multi-sensor measurement system was composed of three-axis accelerometer and three-axis
magnetometer, as shown in Figure 1. Referring to the rotation coordinate transformation method
in inertial navigation, the multi-sensor observation equation based on time-varying quaternion was
established as follows.

Y(t) =
[

mx my mz ax ay az
]T

= H[Q(t)] +
[

nmx nmy nmz nax nay naz

]T
, (1)

where mx, my, and mz are the components of the three-axis magnetometer sensors in the x, y, and z
axes (µT); ax, ay, and az are the components of the three-axis accelerometer sensors in the x, y, and z
axes (m/s2); nm and na are the interference noise signals (µT, m/s2) of magnetometer and accelerometer,
respectively; Q(t) is the value of quaternion q0, q1, q2, and q3 at time t, and H is the nonlinear observation
matrix.
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According to the theory of spatial coordinate rotation and the quaternion differential, the equation
is as follows:

Q′ = A ·Q. (2)

The process equations expressed by quaternion are as follows:[
q′0 q′1 q′2 q′3

]T
= A ·

[
q0 q1 q2 q3

]T
, (3)
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where

A =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

. (4)

According to the principle of gyro attitude measurement, the value of the three-axis angular
velocity at time t can be obtained by the following formula:

ω(t) =
[
ωx ωy ωz

]T
= T(t) ·

[
ω cosφ 0 ω sinφ

]T
, (5)

where ω is the earth’s rotation speed (rad/s); ωx, ωy, and ωz are the components of the earth’s
rotation speed on each axis in the XYZ coordinate system; T(t) is the value of the three Euler rotation
transformation matrix at time t; φ is the measured local latitude.

According to the transformation relationship between three Euler angles and quaternion,
the rotation matrix T which is represented by quaternion can be expressed as follows [21]:

T =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

. (6)

Assuming that the initial state of the state variable in the classical UKF is Q(0), the classical UKF
solution steps can be found in [5].

2.2. IAFSR-UKF Based Multi-Sensor Combined Measurement

2.2.1. The Description of Square Root Filter

The square root UKF uses the square root to replace the state covariance matrix in the filtering
equation, and thereby ensure the non-negative quality of the covariance matrix and the numerical
stability of the filtering algorithm. In addition, the square root UKF uses the square root S(SST = P)
of the covariance matrix, and the Cholesky decomposition only requires a n3/6 calculation (n is the
dimension of the state variable). Therefore, aiming at problem 1 of the UKF algorithm mentioned in
the introduction, it can be solved with the help of square root filtering, which can be divided into the
following two steps:

Step 1: QR Decomposition

Square root matrix S can be obtained by QR decomposition instead of Cholesky decomposition.
For a matrix A∈Rn×n, we find an orthogonal matrix Q∈Rn×n and an upper triangular matrix R∈Rn×n,
so that AT = QR represents the return value of R in QR decomposition with qr(·). According to the
theory of matrix analysis, the upper triangular matrix in R is ST, S = chol(P), P = AAT.

Step 2: Cholesky Factor Update

If S = chol(P), then square root matrix S is the Cholesky decomposition of matrix P. Then,
the successive update of Cholesky decomposition of matrix P ± v

1
2 uuT is recorded as S = cholupdate{S,

u, ±v}, where u is usually a column vector.

2.2.2. The Description of Adaptive Fading Filter

The nonlinear system is defined as follows:{
Xk = f (Xk−1, uk−1) + Wk−1

Zk−1 = h(Xk−1) + Vk−1
, (7)
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where Wk and Vk are uncorrelated Gaussian white noises.
The strong tracking filter could solve the nonlinear filtering problem of the above formula, and the

sufficient condition for UKF to become a strong tracking filter is that it must satisfy the orthogonality
principle. When the filter gain matrix Kk is adjusted adaptively online, the following two conditions
are met:

E
[(

Xk − X̂k
)(

Xk − X̂k
)T

]
= min, (8)

E(εkε
T
k+ j) = 0, k = 0, 1, 2, · · · ; j = 1, 2, · · · , (9)

where ε is the residual sequence of measured values.
The precondition of the above equation is that the residual sequences εk must be orthogonal at

any time. According to the principle of orthogonality, it is essentially to add a residual output sequence
on the premise of the minimum variance performance index of state variable residual estimation.
When the state estimation of the filter is abnormal, it can be represented by the mean value and
amplitude of the output residual sequence. Strong tracking UKF can adjust the covariance matrix
of the prediction error in real-time by increasing the fading factor, realize the online adjustment of
filter gain, force (9) to hold, maintain the orthogonality of residual sequence, and achieve the purpose
of strong tracking of the actual system state. Therefore, aiming at problem 2 of the UKF algorithm
mentioned in the introduction, the strong tracking filter is introduced to solve it.

2.2.3. The Design of IAFSR-UKF

According to the classical UKF, (8) has been already satisfied, and the method to determine the
filter gain when (9) is satisfied is given in [27]. In this section, on the basis of the UKF algorithm,
the adaptive fading filter and square root filter are combined to classical UKF, the determination
method of the fading factor will be optimized, and finally, the IAFSR-UKF is presented. The main
steps are as follows:

The system equations based on quaternion are discretized as follows:{
Qt+1 = (I + tsAt)Qt + wt

Zt+1 = h(Qt) + vt
, (10)

where Qt is the value of the quaternion at time t; I is the unit matrix; ts is the sampling period; wt and
vt are the system noise and the sensor observation noise, respectively, meeting the requirements of
wt~N(0, Ot), vt~N(0, Rt); h(·) is the nonlinear observation matrix.

Step 1: Initialization

The initial state variable is a small random number and the initial variance matrix is a
diagonal matrix.

Step 2: Sigma Point Update

Calculating 2n + 1 sample points at time t − 1 as follows:
χ0

t−1 = Qt−1
χi

t−1 = Qt−1 + γSt−1 i = 1, 2, · · · , n
χi

t−1 = Qt−1 − γSt−1 i = n + 1, n + 2, · · · , 2n
, (11)

where χ is the sigma point; S is the square root of the state covariance matrix; γ = (n + λ)1/2, λ = α2(n +

K) − n. α is the scale factor, regulating the distribution distance of particles, generally between 0.001
and 1; n is the dimension of the system state variable; K is the third scale factor, generally taken as 0.

Step 3: Prediction Process

χi
t/t−1 = (I + tsA(t− 1))χi

t−1, (12)
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Qt/t−1 =
2n∑

i=0

Wm
i χ

i
t/t−1, (13)

Ŝt/t−1 = qr[
√

Wc
1(χ

1:2n
t/t−1 −Qt/t−1),

√
Ot−1], (14)

St/t−1 = cholupdate(Ŝt/t−1,χ0
t/t−1 −Qt/t−1, Wc

0), (15)

ζi
t/t−1 = h(χi

t/t−1), (16)

Zt/t−1 =
2n∑

i=0

Wm
i ζ

i
t/t−1. (17)

Step 4: Renewal Process

P(XZ)
t/t−1 =

2n∑
i=0

Wc
i [χ

i
t/t−1 −Qt/t−1][ζ

i
t/t−1 −Zt/t−1]

T
, (18)

Ŝ
Z
t/t−1 = qr[

√
Wc

1(ζ
1:2n
t/t−1 −Zt/t−1),

√
Rt], (19)

SZ
t/t−1 = λt · cholupdate[Ŝ

Z
t/t−1,ζ0

t/t−1 −Zt/t−1, Wc
0], (20)

where P(XZ) is the cross-covariance matrix, SZ is the square root of the output covariance matrix, and λ
is the fading factor.

In the above process, the weight coefficients of mean and covariance are respectively

Wm
i =

{
λ/(n + λ), i = 0
1/2(n + λ), i , 0

, (21)

Wc
i =

{
λ/(n + λ) + (1 + β− α2), i = 0
1/2(n + λ), i , 0

. (22)

Step 5: Calculating the Fading Factor

Currently, the standard calculation method of the fading factor is a one-step algorithm [26], as
shown below:

λt = max
{
1, tr(Nt)/tr(Mt)

}
, (23)

where the symbol tr(·) represents matrix trace, and the expressions of Mt and Nt are as follows:{
Mt = HtFt/t−1Pt/t−1FT

t/t−1HT
t

Nt = Ct −HtQtH
T
t −Rt

, (24)

where
Pt/t−1 = St/t−1ST

t/t−1, (25)

Ct =

 YtYT
t , t = 1

ρCt−1+YtYT
t

1+ρ , t ≥ 2
, (26)

Yt = Zt −HtXt/t−1, (27)

Ft/t−1 =
∂A(Xt)

∂Xt
Ht =

∂h(Xt/t−1)

∂Xt/t−1
, (28)
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where ρ is the forgetting factor; Zt is the measurement value of the attitude measurement sensors at
the t-th data update; Ft/t-1 and Ht are the Jacobi expansion of the state equation and the measurement
equation, respectively.

Step 6: Calculating the Gain Matrix

Kt = (P(XZ)
t/t−1/(SZ

t/t−1)
T
)(SZ

t/t−1)
−1

. (29)

Step 7: Status Update

Qt = Qt/t−1 + Kt(Zt −Zt/t−1), (30)

U = KtSZ
t/t−1, (31)

St = cholupdate(St/t−1, U,−1). (32)

The results of the above filtering are applied to the attitude calculation of the drilling tool, and the
filtered attitude angle of the drilling tool is obtained.

2.2.4. The Improved Calculation Method for Fading Factor

From (28), it can be seen that the Jacobi matrix needs to be calculated when the fading factor λ
is solved. For the nonlinear model of MWD based on quaternion, the calculation of the algorithm
will be significantly increased by using three-axis accelerometer and three-axis magnetometer as the
measurement sensors. Therefore, by studying the equivalent description of a strong tracking filter,
this section gives an equivalent calculation method of the fading factor.

Theorem 1. It is assumed that the state covariance matrix, cross-covariance matrix, and output covariance
matrix of UKF are respectively as follows:

Pt/t−1 = E[(Qt −Qt/t−1)(Qt −Qt/t−1)
T] = Ft/t−1Pt−1FT

t/t−1 + Ot, (33)

P(ZZ)
t/t−1 = E[(Zt −Zt/t−1)(Zt −Zt/t−1)

T] = HtPt/t−1HT
t + Rt, (34)

P(XZ)
t/t−1 = E[(Qt −Qt/t−1)(Zt −Zt/t−1)

T] = E[(Qt −Qt/t−1)(Ht(Qt −Qt/t−1))
T] + E[(Qt −Qt/t−1)vT

t ]

= Pt/t−1HT
t + E[(Qt −Qt/t−1)vT

t ]
(35)

Then, the matrices Mt and Nt for solving the fading factor can be expressed by the following equations:

Nt = Ct − (P
(XZ)
t/t−1)

T
(St/t−1ST

t/t−1)
−1
·Qt(St/t−1ST

t/t−1)
−1

P(XZ)
t/t−1 −Rt, (36)

Mt = (P(XZ)
t/t−1)

T
(St/t−1ST

t/t−1)
−1
· (St/t−1ST

t/t−1 −Qt)(St/t−1ST
t/t−1)

−1
P(XZ)

t/t−1. (37)

Proof. Since the matrix (Qt − Qt/t-1) and the noise matrix vt are orthogonal, the (35) can be written
as follows:

P(XZ)
t/t−1 = Pt/t−1HT

t . (38)

Further, the (33) can be written as follows:

Ft/t−1Pt−1FT
t/t−1 = Pt/t−1 −Qt. (39)
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Suppose Qt is a positive definite matrix, and according to the classical UKF, the inverse matrix of
Pt/t-1 must exist, so (38) can be written as follows:

HT
t = (P(XZ)

t/t−1)
T
(PT

t/t−1)
−1

. (40)

In this case, the (25), (39), and (40) are substituted into (24), so the (36) and (37) are established.
The proof of Theorem 1 is completed. �

Thus, the fading factor can be calculated by the Formulas (23), (36), (37), (26), (27), and (40), (15)
successively, and thereby avoid solving the Jacobi matrix.

According to the iterative calculation process of IAFSR-UKF, the main differences between this
algorithm and the classical UKF algorithm are as follows:

(1) By using Cholesky and QR decomposition, the square root is used instead of the error covariance
matrix to participate in the recursive operation. Therefore, the problem that the matrix is easy to
fall into negative definite is successfully avoided. Furthermore, the problem of filter divergence
is solved and the stability of numerical calculation is also ensured.

(2) According to the theory of the strong tracking filter, a fading factor is introduced to adjust the
square root of the filter gain matrix and the output covariance matrix in real-time. When there
is a significant error in the equivalent measurement value, the parameter Ct increases, and the
corresponding adaptive factor increases, resulting in the increase of the square root of the output
covariance matrix, thereby reducing the filter gain, and then reducing the impact of measurement
noise on the state update. Therefore, compared with the classical UKF, the proposed algorithm
has better model mismatch robustness and excellent strong tracking ability.

(3) In addition, the improved calculation method of the fading factor can effectively reduce the
computational complexity while ensuring the filtering accuracy.

3. Performance Evaluation and Discussion

The multi-sensor combined measurement method developed in this paper was tested through
laboratory bench and field measurement data, respectively. Comparison analysis with classical UKF [5]
was conducted to comprehensively evaluate the performance of the proposed IAFSR-UKF.

3.1. Laboratory Testing

The nonlinear filtering algorithm for multi-sensor combined measurement was tested first in a
laboratory environment, as shown in Figure 2. The geographical conditions of the laboratory are as
follows: 34.21◦ N, the earth’s rotation speed is 15◦/h, the geomagnetic inclination is 55.42◦, the magnetic
field intensity is 52.7 µT, and the earth rotation velocity is 9.8 m/s2.
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The main instruments and equipment for laboratory testing included a set of inclinometer
calibration device, whose model was TX-3S, and the six-degree space vibration experimental platform,
as shown in Figure 2a,b, respectively. Other selected experimental equipment included RIGOL DS1204B
oscilloscope, a data acquisition system, DC power supply, etc.

The measurement schematic diagram is shown in Figure 3. Firstly, the three-axis accelerometer
and the three-axis magnetometer sensor were obtained by rotating the control valve in the three
directions of the inclinometer; the vibration frequency, amplitude, and vibration mode of the six
degree space vibration experimental platform were set to obtain the required vibration signal. Then,
the electrical signal was converted to digital and stored in the data acquisition card. The obtained
digital signal was processed by classical UKF and the proposed IAFSR-UKF, respectively. Finally,
the output signal of the measurement sensor and the attitude angle parameters were compared to
verify the effectiveness of the proposed method.
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The error characteristics of the triaxial accelerometer and the triaxial magnetometer were the same.
The interference measured in the laboratory environment can be approximated to the Gaussian white
noise with zero mean. The relevant parameters in the proposed algorithm were set as α = 0.06, β = 4,
and ρ = 0.95.

It should be noted that the research object of this article is the data fusion algorithm for multi-sensor
combined measurement. The sensor data, which was obtained through uplink communication, can be
processed by the control center on the ground. Therefore, the adverse influence of high temperature
environment on the algorithm was not discussed in the laboratory testing.

Under the laboratory condition, simulating the server vibration environment in the well, the drilling
tool was kept in the rotating state with the angular velocity of 1 rad/s. In the initial 500 groups of
the experiment data, the intensity of the vibration signal was set to two times of the useful signal,
to the middle 500 groups of data, the vibration intensity was adjusted to five times of the useful signal,
and finally, 500 groups of data restored the intensity of the vibration signal to two times of the useful
signal to verify the adaptive ability and stability of the proposed algorithm.

In order to verify the performance of the proposed algorithm, under the same experimental
conditions, the same experimental data was filtered with classical UKF and IAFSR-UKF. The filtering
results of the three-axis accelerometer and the three-axis magnetometer data are shown in Figures 4–9.

It can be seen from Figures 4–9 that the fluctuation of each measurement sensor after filtering by
the IAFSR-UKF is significantly smaller than that of the classical UKF algorithm, which shows that
the proposed algorithm has better noise suppression ability. Moreover, the accelerometer noises are
relatively much larger than the magnetometer signal noises. The main reason is that accelerometers
are hypersensitive to drill string vibrations. In the field test, the vibration of the drill string will be
more violent.
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Figure 5. Filtering results of y-axis accelerometer sensor.

It is worth noting that the filtering effect of the classical UKF is poor while the noise intensity
suddenly increases at the 500th~1000th sampling point, and the filtered output waveform still contains
a strong noise signal. On the contrary, the proposed IAFSR-UKF algorithm has a better filtering effect
in which the output waveforms of x-axis and y-axis measurement sensors are close to the sinusoidal
signal, showing the better adaptive ability to the sudden change of the measurement environment and
excellent calculation stability.
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Figure 7. Filtering results of x-axis magnetometer sensor.

In order to verify the influence of the proposed algorithm on the accuracy of the drilling tool
attitude solution, the classical UKF and the IAFSR-UKF were used for attitude solution, respectively,
and the simulation results are shown in Figures 10 and 11.

The azimuth is determined by three-axis magnetometers, while the inclination is determined by
three-axis accelerometers. Therefore, without filtering, the error of the continuous measurement will
be dramatically amplified due to drill string vibration and rotation, as shown in Figures 10 and 11.
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Figure 9. Filtering results of z-axis magnetometer sensor.

It can be seen that the deviation of the inclination and the azimuth value, which were obtained by
classical UKF, was more significant. Therefore, it was impossible to accurately judge the drilling tool
attitude according to the solution result; especially on the data points with increased noise intensity,
the error fluctuation amplitude obviously increased, and the maximum error value exceeded 3◦ and
18◦, respectively.



Sensors 2020, 20, 1897 13 of 19
Sensors 2020, 20, x FOR PEER REVIEW 14 of 21 

 

 

Figure 10. Calculating results of inclination. 

 

Figure 11. Calculating results of azimuth. 

Further statistics show the detailed error results, as shown in Table 1. 

Table 1. Error statistics of attitude solution after filtering. 

Algorithm Drilling Tool Attitude Angle 
Statistics of Filtering Solution Error 
Max Error RMS Error 

IAFSR-UKF 
inclination(°) 1.42 0.46 

azimuth(°) 8.78 2.18 

Classical UKF 
inclination(°) 3.11 0.72 

azimuth(°) 18.61 5.47 

0 500 1000 1500
0

10

20

30
In

cl
in

at
io

n(
°)

 

 

0 500 1000 1500
2

4

6

8

In
cl

in
at

io
n(

°)

 

 

0 500 1000 1500
2

4

6

8

Discrete measurement data points

In
cl

in
at

io
n(

°)

 

 

without filtering

UKF

IAFSR-UKF

0 500 1000 1500
0

200

400

Az
im

ut
h(

°)

 

 without filtering

0 500 1000 1500
80

100

120

Az
im

ut
h(

°)

 

 UKF

0 500 1000 1500
80

100

120

Discrete measurement data points

Az
im

ut
h(

°)

 

 IAFSR-UKF
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Figure 11. Calculating results of azimuth.

On the other hand, the deviation of the drilling tool attitude angle calculated by the proposed
IAFSR-UKF was obviously smaller, which is more close to the actual attitude parameters. Especially,
in the case of a sudden increase in noise amplitude, the attitude calculation result is relatively stable,
without noticeable error fluctuation. It can be seen that under the server vibration and noise interference,
the proposed algorithm can obtain more accurate and stable attitude calculation parameters; and when
the measurement system is abnormal, the proposed algorithm can still effectively track the attitude
parameters while drilling.

Further statistics show the detailed error results, as shown in Table 1.
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Table 1. Error statistics of attitude solution after filtering.

Algorithm Drilling Tool Attitude Angle Statistics of Filtering Solution Error
Max Error RMS Error

IAFSR-UKF
inclination (◦) 1.42 0.46

azimuth (◦) 8.78 2.18

Classical UKF
inclination (◦) 3.11 0.72

azimuth (◦) 18.61 5.47

Without filtering inclination (◦) 24.01 5.54
azimuth (◦) 257.57 65.17

It can be seen from Table 1 that the root mean square (RMS) error of the inclination and the
azimuth was only 0.46◦ and 2.18◦, respectively after IAFSR-UKF. It is not only far less than the
attitude calculation error of the original measured value, but also better than the solution result of
the classical UKF. Furthermore, the feasibility and validity of the proposed algorithm was proved in
laboratory testing.

3.2. Field-Drilling Testing

In order to further verify the feasibility and overall performance of the proposed multi-sensor
data fusion algorithm, field-drilling data were used for test and analysis. The experimental data came
from the field-drilling process of a well in western Sichuan from 20 November to 24 November, 2014.
The field acquisition process and installation position of the triaxial sensor are shown in Figure 12,
and the drilling and production environment parameters are listed in Table 2. During drilling,
the guiding tool was in a stable and straight state.
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Figure 12. Schematic of the field test. The electronic circuit was installed in the axis of the drill collar
near-bit, and the measurement data can be stored in real-time.

The HMC5983 high-precision sensor of the Honeywell Company was selected as the magnetometer
in a field-drilling test, and the CS-3LAS sensor, which was developed by the Zhongxing measurement
and control company, was chosen as the accelerometer in this test. The accelerometer is suitable for the
specific requirements of downhole drilling. The specific parameters of the sensors are shown in Table 3.
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Table 2. Basic parameters of the field-drilling test.

Parameter Value

Well depth 1740–1807 m
WOB 10 MPa

Downhole temperature 40 ◦C
Pump pressure 6.6 MPa

Drilling fluid density 1.15 g/cm3

Suspended load 79 kN
Operation time 75 h
Rotary speed 120 rpm

The setting value of inclination 2.5◦

Table 3. Characteristics of sensors.

Parameter Accelerometer (CS-3LAS) Magnetometer (HMC5983)

Range ±10 g ±100 µT
Scale factor 200 mv/g 5 V/G ± 5%

Non-linearity 0.8% -
Calibration <50 mg ±0.005 G

Noise 0.14 mg/Hz1/2 ≤0.2 nT
Bandwidth 1000 Hz 300 Hz

Figure 12 shows the schematic of the field test. From the measurement data stored in real-time,
we can obtain the vibration signals measured by the accelerometer (x, y, and z axes), which contain
the gravity acceleration on the x, y, and z axes. We used the real field-test data to demonstrate the
feasibility of our algorithm. The comparison results are shown in Figures 13–15. It can be seen that the
accelerometer signals of the field tests are entirely different from those obtained via our laboratory
survey. We cannot estimate the error of this process, because the data came from the field test where
exact measurements are impossible to determine. However, it is evident that the fluctuation amplitude
of each accelerometer sensor data, which was processed by IAFSR-UKF algorithm, was significantly
smaller. It showed better noise anti-interference ability.
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Figure 13. Filtering results of the field-drilling signal of x-axis accelerometer sensor.
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Figure 14. Filtering results of the field-drilling signal of y-axis accelerometer sensor.
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Figure 15. Filtering results of the field-drilling signal of z-axis accelerometer sensor.

To further evaluate the overall performance of the proposed algorithm, the data after filter
processed were solved to obtain the real-time drilling tool attitude parameters. There was no
interference of vibration acceleration in the attitude measurement of stopping drilling, which can
ensure the accuracy of azimuth and inclination. Therefore, it was used as a reference value to verify the
performance of the proposed algorithm. The attitude calculation results and static measurement results
obtained after filtering by two filter algorithms during rotary steering drilling are shown in Table 4.
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Table 4. Comparison of attitude calculation after filtering with static measurement results.

Algorithm Attitude Parameters
Depth/m

1754.265 1765.36 1776.455 1787.55 1798.645

Static measurement
Inclination (◦) 2.39 2.52 2.50 2.42 2.47
Azimuth (◦) 200.8 205.5 215.2 202.4 211.8

UKF

Inclination (◦) 2.17 1.90 3.46 3.11 3.22
Relative error 9.2% 24.6% 38.4% 28.5% 30.4%
Azimuth (◦) 181.0 211.1 201.4 189.5 223.5

Relative error 9.86% 2.73% 6.41% 6.37% 5.52%

MSTSR-UKF

Inclination (◦) 2.78 2.90 3.02 2.16 2.94
Relative error 16.3% 15.1% 20.8% 10.7% 19%
Azimuth (◦) 204.3 209.8 203.7 208.3 204.5

Relative error 1.74% 2.09% 5.34% 2.92% 3.45%

3.3. Real-Time Evaluation

In order to further verify the advantages of the IAFSR-UKF algorithm in real-time, the time
required for each simulation calculation with the UKF, AFSR-UKF, and IAFSR-UKF algorithms are
recorded, respectively, and the average time required for 10 filtering calculations is taken as the real-time
statistical results. The average filtering time of UKF, AFSR-UKF, and IAFSR-UKF are represented by
tUKF, tAFSR, and tIAFSR, respectively. Based on AFSR-UKF, a set of relative execution time is defined as
follows:

tR
UKF =

tUKF

tAFSR
, tR

ASFR =
tAFSR
tAFSR

, tR
IAFSR =

tIAFSR
tAFSR

. (41)

The relative execution time of the three algorithms is shown in Figure 16.
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As can be seen from Figure 16, the execution time of a one-time filtering calculation with UKF
was the shortest, only 38.17% of the AFSR-UKF. This is because the classical UKF does not need to
calculate the fading factor and the square root of the covariance matrix. Compared with the AFSR-UKF,
the improved fading factor calculation method also showed its superiority in execution time, saving
about 35% of calculation time. This is because the IAFSR-UKF does not need the Jacobi expansion of
the state equation and the measurement equation in calculating the fading factor, which reduces the
computational complexity.

In addition, according to the statistics of the filtering time of the field-drilling data, the single
filtering and attitude solution time with AFSR-UKF was close to 0.8 s, while the single filtering and
solution time with the proposed IAFSR-UKF was less than 0.5 s. Therefore, the improved fade factor
calculation method can greatly improve the calculation efficiency of the algorithm and meet the
real-time requirements of MWD.
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4. Conclusions

This paper presents an IAFSR-UKF algorithm to improve the adaptability and numerical stability
for multi-sensor combined MWD. The contributions of this paper are (i) through the simulation test
of the vibration platform system in the laboratory and the field-drilling experiment. It can be seen
that the proposed IAFSR-UKF algorithm can effectively reduce the impact of the server vibration of
the near bit on the dynamic MWD, improve the measurement accuracy of the original signal of the
sensors, and then improve the accuracy of the attitude solution, which verifies the feasibility of the
proposed method; (ii) compared with the classical UKF, the error fluctuation amplitude of sensors
which were processed by the proposed algorithm is obviously reduced. It is proved that the proposed
algorithm has better computational stability; on the other hand, in the face of the sudden change of
noise intensity, the proposed algorithm has better data fusion performance, which shows that it can
effectively improve the adaptive ability of the mutation state; and (iii) the improved calculation method
of fade factor can effectively reduce the calculation complexity and computational time-consuming so
that the algorithm can meet the real-time requirements of MWD.

Future research studies will focus on two aspects. One is the improvement of the proposed
IAFSR-UKF. It is expected to combine the IAFSR-UKF with spectrum estimation, array signal processing,
and other methods, which provides a new idea for the multi-sensor continuous MWD. On the other
hand, according to the complex characteristics of the interference noise during the field-drilling under
the well, how to improve the comprehensive processing ability of the proposed algorithm is another
problem to be solved in future research studies.
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