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Abstract: Despite the advantages that the Internet of Things (IoT) will bring to our daily life,
the increasing interconnectivity, as well as the amount and sensitivity of data, make IoT devices an
attractive target for attackers. To address this issue, the recent Manufacturer Usage Description (MUD)
standard has been proposed to describe network access control policies in the manufacturing phase
to protect the device during its operation by restricting its communications. In this paper, we define
an architecture and process to obtain and enforce the MUD restrictions during the bootstrapping
of a device. Furthermore, we extend the MUD model with a flexible policy language to express
additional aspects, such as data privacy, channel protection, and resource authorization. For the
enforcement of such enriched behavioral profiles, we make use of Software Defined Networking
(SDN) techniques, as well as an attribute-based access control approach by using authorization
credentials and encryption techniques. These techniques are used to protect devices’ data, which are
shared through a blockchain platform. The resulting approach was implemented and evaluated in a
real scenario, and is intended to reduce the attack surface of IoT deployments by restricting devices’
communication before they join a certain network.
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1. Introduction

The exponential growth of the Internet of Things (IoT) brings endless possibilities to improve
our daily lives based on the data exchanged among interconnected devices and systems. Indeed,
the increasing digitalization of our surrounding environment is intended to improve existing
deployments in different sectors, such as transport systems, agriculture, and energy management.
However, the cost and time manufacturing restrictions, as well as the inherent constraints of these
types of devices, such as computation power or memory, could lead to poor or even non-existent
security mechanisms. Indeed, this situation has been exploited to launch different attacks, such as the
well-known IoT botnets [1], to jointly attack specific targets.

One of the main initiatives to enhance security aspects in IoT devices is the usage of behavioral
profiles, which describe the intended behavior of a device. Indeed, the realization of this concept
has been mainly driven by the recent Manufacturer Usage Description (MUD) [2], which is an IETF
standard encouraging manufacturers to represent the allowed/denied network communications of
their devices through a simple and flexible data format. The behavioral profiles can be used to configure
the device before it joins the network, in order to reduce the attack surface as well as to monitor its
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behavior to detect suspicious behaviors (e.g., due to an ongoing attack). MUD standard has attracted
the attention of different Standards Developing Organization (SDOs), such as the National Institute
Standards and Technology (NIST) in U.S. [3,4] that has proposed the creation of a vulnerability behavior
database based on this standard (https://www.nist.gov/itl/applied-cybersecurity/nist-initiatives-iot).
One of the strong points of the MUD standard is the potential integration with the Software-Defined
Networking (SDN) paradigm for the automated and dynamic enforcement of the restrictions included
in a MUD profile as discussed by Hamza et al. [5] and Ranganathan [6] by using OpenFlow [7].

Based on this, this work proposes an architecture and process to obtain and enforce the policies
described in an extended MUD profile. In particular, we extend the MUD model to be able to specify
a wider range of security policies. Although in a previous paper we proposed a MUD extension [8],
it was limited to access control policies and specific security aspects. The extension proposed in
this paper integrates the MUD model with the usage of the Medium-level Security Policy Language
(MSPL), which has been used in the scope of the EU H2020 project ANASTACIA [9]. It provides a
high expressiveness to specify security policies beyond network layer at medium-level abstraction
(e.g., with information of the endpoints and communications, such as IP addresses and protocols),
in an agnostic way to the enforcement process. Based on this, we extend our architecture proposed
in [10], in which the MUD management was integrated in the bootstrapping process of the device
(i.e., when the device joins a certain network). This way, MUD restrictions are enforced before the
device is connected to the network, thus reducing the attack surface. For this, we integrate the
MUD management and enforcement process with a lightweight bootstrapping approach based on the
Constrained Application Protocol (CoAP) as a lower layer protocol of the Extensible Authentication
Protocol (EAP) [11]. The resulting architecture is intended to enforce the extended MUD profiles
based on the model extension. In particular, we show the definition and enforcement of network
access control policies through SDN technologies, including restrictions about the communication
itself. Furthermore, we define data privacy policies to protect the access to sensitive data, which are
enforced through Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [12], as well as restrictions
over devices’ resources through an extension of CBOR Web Tokens (CWT) [13] and the eXtensible
Access Control Markup Language (XACML) [14]. In addition, we propose the usage of blockchain to
share devices’ information to different authorized devices and users.

In summary, the contributions of this paper are manifold:

• Extension of the current MUD model with MSPL to define a wide variety of security policies
beyond network access control

• Integration of the MUD obtaining and enforcement processes in a lightweight bootstrapping
process based on CoAP-EAP [15]

• Definition of the architecture and message exchange required to obtain and enforce MUD
restrictions, improving security aspects of IoT devices’ operation

• Integration of SDN techniques with attribute-based security for the enforcement of the extended
MUD restrictions

• Usage of the Distributed Ledger Technology (DLT) (e.g., blockchain) technology to ensure
accountability and data provenance features for IoT devices and InterPlanetary File System
(IPFS) technology to improve the scalability of the blockchain.

• Implementation and validation of the proposal in a real testbed showing its feasibility and
performance to manage security profiles in IoT deployments

The remainder of this paper is organized as follows. Section 2 provides a review of the current
literature related with the definition and enforcement of behavioral profiles in the context of IoT.
Section 4 details the MUD standard as well as the extension proposed to represent additional types of
security policies. Section 5 defines the proposed architecture, whereas Section 6 details the different
processes and steps to manage the extended MUD profiles. Then, Section 7 describes the performance
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evaluation of the different processes. Finally, Section 8 concludes the paper and provides an outlook
about our future work in this area.

2. Related Work

Behavioral profiles can help to reduce the attack surface and mitigate security attacks by enforcing
security policies as well as monitoring the device’s expected behavior [16]. Traditionally, policy-based
approaches have been used to specify the allowed/denied communications from/to a certain system.
One of the most significant approaches is the Policy Core Information Model (PCIM) [17] standard from
the IETF, which was used in several European projects focused on policy frameworks, such as PoSecCo
(https://cordis.europa.eu/project/id/257129) and POSITIF (https://cordis.europa.eu/project/id/
002314), to represent firewall and channel protection configurations, due to its high expressiveness.
Other approaches have been proposed in last years, such as those proposed by Molloy et al. [18] and
by Barrera et al. [19], which define a novel policy enforcement architecture to restrict the network
behavior of IoT devices. Another more recent standard to specify these policies is the YANG Data
Model for Network Access Control Lists (ACLs) [20], which is considered in the MUD standard [2].
MUD gives the responsibility to the manufacturer to specify the expected network behavior of an IoT
device, describing the communications allowed to/from the device. It uses the mentioned YANG
standard to represent the network behavior by using JSON [21] for serialization.

The MUD standard has attracted the attention of different SDOs. Recent NIST reports support
the use of MUD [3,4], and consider the creation of a National Thing Behavior Database (NTBD)
(https://www.nist.gov/itl/applied-cybersecurity/nist-initiatives-iot) based on it. One of the main
advantages of MUD is the potential combination with SDN technologies in order to enforce the
network restrictions described in a MUD file. This integration has been already considered in current
literature. In particular, Hamza et al. [22] proposed an SDN-based architecture to translate MUD
policies into flow rules to be enforced. These rules are used to detect attacks by using an Intrusion
Detection System (IDS). The same authors [5] also proposed an SDN-based approach to monitor the
MUD behavior of a device. An SDN-based framework was also considered by Al Shaboti et al. [23]
to enforce network access control policies and mitigate spoofing attacks in the scope of smart homes.
Furthermore, the MUD standard allows future potential extensions, for example, to consider Quality
of Service (QoS) aspects of the communications.

Although the MUD model provides a standardized and flexible way to specify network policies,
the provided semantics does not allow the specification of more fine-grained security aspects and
other types of security policies beyond network access control. In this work, we extend the MUD
model integrating the MSPL language to describe additional security aspects, which could be relevant
to protect an IoT device, as well as detect and mitigate potential attacks. In particular, we describe
the extension and enforcement of four different types of policies: extended network access control
to restrict the communications of the device; channel protection, intended to apply fine-grained
restrictions on a device’s communications; authorization, which is intended to protect the access to
devices’ resources; and data privacy, which is used to encrypt the data provided by a device. In this
context, while SDN technologies have been considered in the literature to enforce MUD restrictions,
the enforcement of such additional restrictions requires the integration of additional mechanisms.

Regarding authorization, the eXtensible Access Control Markup Language (XACML) [14] is the
de facto standard to define and enforce authorization restrictions. Indeed, we used XACML in our
previous works (e.g., [24,25]) to foster a high degree of interoperability among different vendors’
access control implementations. A complementary and well-known approach to enforce authorization
restrictions is based on the usage of authorization tokens (e.g., OAuth [26]). In the context of IoT,
OAuth is being considered in the scope of the IETF Authentication and Authorization for Constrained
Environments (ACE) Working Group (https://datatracker.ietf.org/wg/ace/documents/) by using
the Concise Binary Object Representation (CBOR) standard [27] to represent CBOR Web Tokens
(CWT) [13]. This way, the token size is reduced, making it suitable for constrained devices. In this
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paper, we combine the usage of CWT with AIF [28] to embed the access rights over resources in the
token. Furthermore, we use XACML as a policy-based infrastructure to generate (or not) a certain
CWT-AIF token based on the evaluation of authorization policies.

Focused on data privacy aspects, it is important to ensure that only legitimate and authorized
users are able to access the data provided by IoT devices, in order to avoid any potential privacy
leakage. In this direction, Sarkar et al. [29] proposed a layered IoT architecture for security and privacy
that uses access control policy models, based on the Seckit tool [30]. Seckit allows representing different
security requirements of the IoT behavior by using high level meta-models. The approach is based
on the Message Queuing Telemetry Transport (MQTT) protocol [31] to enforce such requirements.
Furthermore, the use of encryption techniques could mitigate the emergence of privacy issues by
protecting the data generated and shared by IoT devices. A flexible cryptographic approach is
represented by the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme, which uses an
attribute-based policy to encrypt data, so that only devices or users satisfying this policy will decrypt
such data. In this paper, we enforce data privacy aspects by using CP-ABE. In particular, we use the
attributes defined in our extended MUD model to encrypt data.

Current research also addresses other behavioral aspects of IoT devices beyond the mentioned
security policies. The proposed framework P4SINC by Phung et al. [32] represents a general execution
policy framework to enforce restrictions during the operation phase of IoT devices. Ontology-based
languages such as KAoS [33] or rei [34] have been also considered in current literature. However,
whereas some of these languages are focused on a specific type of security policy, others are excessively
complex to be employed by non-expert users. Dealing with this, Valenza et al. [35] described two
different general policy languages, which were defined in the context of the EU SECURED project
(https://www.secured-fp7.eu/). On the one hand, the High-level Security Policy Language (HSPL)
is focused on the description of security requirements for non-expert users. On the other hand, the
Medium-level Security Policy Language (MSPL) is oriented to more technical users, providing a low
abstraction to represent security configurations in a generic way.

Based on this, our proposal extends the MUD model integrating the MSPL language to describe
additional security aspects (e.g., authorization and data privacy), beyond network access control.
To manage the extended MUD profiles, we propose a security architecture that integrates the
management of MUD profiles (including the steps for obtaining and enforcing the restrictions included
in the MUD file) in the device’s bootstrapping. Towards this end, we use an integrated approach of
access control approaches and SDN techniques. Furthermore, we leverage existing approaches that
use CP-ABE in blockchain [36], adapting them for IoT constrained deployments in which devices
can delegate CP-ABE operations to an intermediate proxy. Blockchain offers accountability and data
provenance features for our IoT solution [37], which, when combined with CP-ABE, can help to
cope with blockchain privacy-preservation challenges [38]. In this regard, our architecture provides
a policy-based, privacy-preserving, accountable, and fine-grained data sharing solution for IoT
constrained deployments.

3. Motivation, Challenges, and Proposed Solutions

As discussed in Section 1, the continuous attacks leveraging the weaknesses associated with IoT
devices require measures to prevent and reduce the attack surface, protecting both these devices and the
networks in which they interact. In this sense, the definition of behavioral profiles could be considered
as a promising mechanism to define the expected behavior of devices in order to enforce security
restrictions over them (e.g., reducing the communication endpoints), as well as to detect suspicious
behaviors that could lead to an attack. Toward this end, standardized and widely accepted mechanisms are
crucial to homogenize and harmonize the definition and management of such profiles, in order to foster
secure and interoperable deployments. For this reason, the MUD standard could be considered as a
relevant effort to define the devices’ intended behavior during the manufacturing phase. The aim of
the MUD standard [2] is to reduce the attack surface of a certain specific-purpose device by delegating
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the task of creating a behavioral profile to the manufacturers rather than a network administrator.
Some examples of these restrictions could be “allow communications between devices of the same
manufacturer” or “deny the access to a specific service though a specific port”. However, as discussed
in Section 2, while the MUD data model provides a standardized and flexible way to specify network
policies, the provided semantics does not allow the specification of more fine-grained security aspects,
leading to a lack of expressiveness beyond network restrictions. In this paper, we extend the MUD model
with the aim to represent different kinds of security policies beyond network access control restrictions.
In particular, the extended MUD is able to describe four types of security policies:

• Extended network access control (filtering) policies restrict the communications from/to the device
at network layer. Although the standard MUD is aimed to describe these policies, the proposed
extension adds more fine-grained conditions (e.g., MAC address or interface).

• Channel protection aims to specify fine-grained security aspects of devices’ communications such
as the ciphersuite to be used by a certain protocol (e.g., the Datagram Transport Layer Security
(DTLS) protocol [39]).

• Data privacy is intended to specify combination of attributes to encrypt the data provided by IoT
devices. Therefore, those entities that possess the necessary attributes specified in the extended
MUD profile, can access to the encrypted data.

• Authorization over resources is focused on protecting the access to devices’ resources.
These policies describe the authorized actions over a resource, as well as the entity that is allowed
to do that.

As a result of the proposed extension, a new challenge arises related with the enforcement of
the extended security policies. Indeed, the MUD standard does not define the required components
and interactions to enforce network access policies. The enforcement of such restrictions has been
considered through SDN techniques in recent years by the research community. Furthermore,
the enforcement approach has to deal with the resource constraints of IoT devices, which usually do not
have enough computational power to use heavy cryptographic algorithms and security mechanisms.
In addition, the enforcement mechanism has to be as automated as possible to increase the scalability of
the approach and the usability, reducing (or even removing) any human interaction. An additional
security challenge of IoT scenarios is how to ensure auditability, data provenance, and verifiability of the
exchanged data while ensuring confidentiality in transactions.

To cope with these challenges, our approach leverages on different technologies for a
comprehensive enforcement approach of the different security policies proposed through the extension
of the MUD model. In particular, for the enforcement of network policies, we use SDN technology,
which is strongly considered in current literature, as shown in Section 2, and it provides a high
degree of automation. Furthermore, we use the CP-ABE cryptographic scheme to enforce data privacy,
which provides the flexibility to protect data based on the combination of attributes. Furthermore,
to deal with the expensive operations of CP-ABE, we propose the usage of a proxy (as described by
Perez et al. [40]), so that IoT devices can delegate CP-ABE operations. For authorization policies over
resources, we use a lightweight token approach combining CWT and AIF, which leverages the compact
format of CBOR representation. Finally, to cope with trust and accountability challenges, our proposed
framework has been integrated with blockchain technology, whereby encrypted IoT shared data are
audited in a distributed way in the ledger, strengthening accountability and trust in IoT.

4. Augmenting Behavioral Profiles through MUD Extensions

As discussed above, the MUD model provides a way to reduce the attack surface of a specific
device by limiting the communications from/to it. In particular, the network behavior is expressed
in the form of policies or ACLs based on the YANG standard. The MUD model is composed by
two main containers: “mud” and “acls”. The first one specifies high level information about the
MUD profile, such as the MUD URL in which the MUD file is located (field “mud-url”), when it
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expires (“cache-validity”), when it was created (“last-update”), and its version (“mud-version”),
as well as information about the device, such as the model (“model-name”) and firmware/software
revision (“firmware-rev”, “software-rev”). Finally, this container enumerates the ACLs restricting the
communications from/to the device, “to-device-policy” and “from-device-policy”. Then, the second
container describes the details of the ACLs. Although the definition of the ACLS is based on the YANG
data model for network ACLs, it has been augmented by the MUD standard to define more expressive
restrictions. For example, the terms “manufacturer” and “same-manufacturer” enable the definition of
policies to allow or deny the interaction with devices from the same manufacturer. Other fields allow
referencing network components (e.g., “controller” or “local-networks”) without the need to know the
associated IP addresses.

While the MUD data model provides a standardized and flexible way to specify network policies,
the provided semantics does not allow the specification of more fine-grained security aspects. To cope
with this, we extend the MUD model to accommodate more fine-grain aspects and four types of
security policies: extended network access control (filtering) policies, channel protection, data privacy,
and authorization over resources.

To realize such extended model, we embed MSPL features in the scheme. MSPL is usually
employed to define security policies at medium-level abstraction (e.g., with information of the
endpoints and communications, such as IP addresses and protocols), in an agnostic way to the
enforcement process. In this regard, Listing 1 shows the extension of the fields from-device-policy (Line
2) and to-device-policy (Line 9) in order to allow the specification of MPLs, in addition to ACLs. In fact,
mspls/mspl refers to the new MSPL module we propose (Lines 6 and 13), which includes a list of MSPLs.

Listing 1: from-device/to-device policy extension for MSPL model.

rw from -device -policy
| rw acls
| | rw access -list* [name]
| | rw name -> /acl:acls/acl/name
| rw mspls
| rw mspl-list* [name]
| rw name -> /mspl:mspls/mspl/name

rw to-device -policy
rw acls

| rw access -list* [name]
| rw name -> /acl:acls/acl/name

rw mspls
rw mspl-list* [name]

rw name -> /mspl:mspls/mspl/name

Listing 2 shows the main elements of the MSPL policy scheme. An MSPL policy is composed
of a name (Line 5) and configuration (Line 6) that describes a particular capability (Line 7);
for example, an MSPL policy can describe the authentication of the device. Apart from the capability,
the configuration is also composed of a list of configuration rules (Line 8) as well as the priority of this
security policy configuration (Line 13). In turn, each configuration rule defines the condition (Line
11) that must be accomplished in order to trigger the action (Line 10) of the rule. The priority field
can be useful to resolve policy conflicts, deciding which policy should be enforced. Depending on the
capability, conditions and actions are different so they have been modeled as independent modules for
each capability, this is, for each capability, specific actions and conditions can be defined as different
modules in order to provide extensibility, re-usability, and flexibility.



Sensors 2020, 20, 1882 7 of 33

Listing 2: MSPL module extension.

module: umu -mspl -list
| rw mspls
| rw mspl* [name]
| rw name string
| rw configuration
| capability string
| configuration -rules
| rw configuration -rule* [name]
| | rw configuration -rule -action
| | rw configuration -rule -condition
| rw name
| rw priority

end_module

Listing 3 shows the MUD extension with MSPL filtering rules. Although the MUD model also
allows defining access control policies to filter the network traffic, MSPL extension permits defining
additional aspects such as the MAC and IP addresses, as well as ports or interfaces. Nevertheless,
with independence of the method to describe these policies (the MSPL extension or the usual MUD
ACL), they are translated to SDN rules in order to enforce them in the SDN switches.

Listing 3: Filtering extension.

module: umu -mspl -filtering -condition
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule:mspl:configuration -rule -condition

| rw packet -filter -condition
| rw application -layer -condition?
| qos -condition?
|

end_module
module: umu -mspl -packet -filter -condition
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:umu -mspl -filtering -condition/
mspl:packet -filter -condition

| rw source -mac?
| rw destination -mac?
| rw source -address?
| rw destination -address?
| rw source -port?
| rw destination -port?
| rw direction?
| rw interface?
| rw protocol -type?

end_module

Listing 4 shows an example in order to extend configuration rule action and condition for
data privacy policies. The specific privacy action (Line 2) adds the type of action (Line 5, e.g.,
data privacy) and the specific privacy method (Line 6). In fact, since there can be multiple methods
(e.g., identity-based and attribute-based based privacy), each method can be defined as a new module
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(Line 7). In this case, as we enforce the data privacy policies using CP-ABE, we provide an example for
attribute-based privacy which allows to include a list of key-value attributes (Lines 10–13). The CP-ABE
policy that combines these attributes with AND statements is used to encrypt the published data.
This means that only the devices that have all the required attributes will be able to decrypt such
data. It should be noted that CP-ABE policies could be represented by more complex combination of
attributes that can be considered in future implementation at the expense of increasing complexity.

Listing 4: Data privacy extension.

module: mspl -mspl -privacy -action
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule:mspl:configuration -rule -action

| rw privacy -action -type string
| rw privacy -method

end_module
module: umu -mspl -abprivacy -method
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:mspl -mspl -abprivacy -action/
mspl -privacy -method

| rw attributes
| rw attribute ?*
| | rw key string
| | rw value string
| rw attribute -chain? string

end_module

Furthermore, Listing 5 shows the MUD extension for authorization over resources policies.
Whereas data privacy focuses on the access to data provided by IoT device, these policies are intended
to protect the access to devices’ resources (e.g., /tmp). Here, the condition (Line 7) is reused from the
filtering MSPL scheme, the AuthorizationSubject and AuthorizationTarget indicate to whom the rule
applies, and the AuthorizationAction reflects the result of the rule (PERMIT/DENY). These policies are
translated to XACML policy language, indicating the resource, the condition and the action, and stored
in a database. The enforcement of these policies is performed through the XACML policy evaluation
itself that will generate CWT-AIF credentials according to PERMIT decisions. That is, when a device
attempts to access to another device’s resource, it asks for a token, which will be granted or not based
on the XACML policies stored in the database.

Listing 5: Authorization extension.

module: mspl -mspl -AuthorizationAction
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule:mspl:configuration -rule -action

| rw AuthorizationActionType
end_module
module: umu -mspl -AuthorizationCondition
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule:mspl:umu -mspl -filtering -condition

| rw AuthorizationSubject string
| rw AuthorizationTarget string

end_module
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Finally, Listing 6 shows an example of a channel protection policy. Whereas the condition (Line 34)
can be also reused from the filtering schema, the action (Line 2) contains the capability-dependent
information. Specifically, this kind of action allows modeling the channel protection technology
(e.g., DTLS) as well as technology action parameters (e.g., ciphersuite and version), authentication
parameters (e.g., pre-shared key (PSK) and certificate), and security properties (e.g., integrity algorithm)
(Lines 6–9). By extending these fields as different modules (Lines 12 and 20), it provides flexibility
for defining different technologies with different features of channel protection configurations (e.g.,
DTLS or IPSec). In the DTLS case, technology action parameters (Line 12) can be extended in order
to represent specific technology parameters such as local and remote endpoints (Lines 15 and 16) of
the security channel or basic information related with the ciphersuite or the version of the TLS that
must be used (Lines 18 and 19). Authentication parameters (Line 20) are also extended for providing
specific authentication values like required pre-shared key (Line 23) or certificates information (e.g.,
identifier, files, or paths, Lines 28–30).

Listing 6: Channel protection extension.

module: umu -mspl -data -protection -action
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:configuration -rule -action

| +--rw technology string
| +--rw technology -action -parameters
| | +--rw technology -parameter*
| | +--rw authentication -parameters
| | +--rw authentication -parameter*
| +--rw technology -action -security -properties
| +--rw technology -action -security -property

end_module
module: umu -mspl -dtls -technology -parameter
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:technology -action -parameters/
mspl:technology -parameter

| +--rw local -endpoint string
| +--rw remote -endpoint string
| +--rw tunel boolean
| +--rw cipher -suite string
| +--rw ssl -version string

end_module
module: umu -mspl -authentication -parameters
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:technology -action -parameters/
mspl:authentication -parameters

| +--rw psk -value? string
| +--rw psk -path? string
| +--rw ca -id? string
| +--rw ca -path? string
| +--rw ca -file? string
| +--rw cert -id? string
| +--rw cert -file? string
| +--rw cert -path? string
| +--rw pub -key -path? string
| +--rw pub -key -file? string
| +--rw pub -key -pass? string
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end_module
module: umu -mspl -data -protection -condition
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule:mspl:umu -mspl -filtering -condition
end_module

It should be noted that, to define channel protection policies, it is necessary to specify additional aspects
such as the used algorithms or the key length, which conform the confidentiality and integrity level.
These aspects have been modeled independently so we are able to model the fields required according
to the channel protection policy needs. Listing 7 shows examples for confidentiality and integrity
security aspects. The module for confidentiality (Line 2) includes fields such as encryption algorithm
(Line 5), key-size (Line 6), and operation mode (e.g., CCM, Line 7), whereas the integrity module (Line
8) allows specifying integrity algorithm (e.g., SHA, Line 11) as well as the type of integrity in terms of
header or payload (Lines 12 and 13).

Listing 7: Channel protection properties extension.

module: umu -mspl -confidentiality -technology -action -security -property
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:technology -action -security -
properties/mspl:technology -action -security -property

| +--rw encryption -algorithm? string
| +--rw key -size? string
| +--rw mode? string

end_module
module: umu -mspl -integrity -technology -action -security -property
augment /mspl:mspls/mspl:mspl/mspl:configuration/mspl:configuration -
rules/mspl:configuration -rule/mspl:technology -action -security -
properties/mspl:technology -action -security -property

| +--rw integrity -algorithm? string
| +--rw integrity -header? boolean
| +--rw integrity -payload? boolean

end_module

Once we have defined the extension of the MUD standard model, the next section describes the
main components and technologies we propose to obtain and enforce the policies of the extended MUD.

5. Architecture

The proposed architecture is described in Figure 1, in which different components are identified for
obtaining and enforcing the extended MUD profiles. It should be noted that we consider two different
domains, the manufacturer domain, in which the device and its MUD file are created, and the deployment
domain, in which the device is installed. For the sake of simplicity, we divide the architecture into two
figures, in which we additionally show the main processes of our approach. On the left, we show the
architecture of the bootstrapping phase by which the MUD file is obtained by the deployment domain’s
components. We understand the bootstrapping as “the phase of a smart object’s lifecycle in which it
is installed and commissioned within a network” [41]. As part of this phase, we consider the device
authentication, the obtaining and translation of the MUD file, and the deployment of the policies
into different components to enforce the MUD restrictions. On the right, we show the architecture
components required for enabling a secure data sharing process based on the extended MUD profiles,
after the device has completed the bootstrapping process.
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Figure 1. Proposed architecture.

Our approach extends the architecture proposed by Matheu et al. [10], in which the MUD
architecture was integrated in the bootstrapping phase. In this phase, we obtain the device’s
information required to protect the device before it joins the network. Furthermore, it should be noted
that we integrate the architectural components defined in the MUD standard, such as the MUD Manager
(in charge of obtaining, translating ,and enforcing the MUD file based on the MUD URL provided by
the device), and the MUD File Server, which hosts the MUD files from a particular manufacturer.

As mentioned above, Figure 1 shows an overview of the main processes involved in our proposal
that will be further detailed in Section 6. For the Device Authentication (Step 1) and MUD Obtaining
(Step 2) phases, we use a similar approach to the one proposed by Matheu et al. [10], which is
based on a combination of the Extensible Authentication Protocol (EAP) [42] and the Authentication,
Authorization and Accounting (AAA) Framework [43]. Instead of using the Protocol for Carrying
Authentication for Network Access (PANA) [44], we employ the Constrained Application Protocol
(CoAP) standard as an EAP lower layer specifically designed for devices with constrained memory
and computational resources [15]. Furthermore, the Remote Authentication Dial In User Service
(RADIUS) [45] is used for the communication between the EAP authenticator and the EAP server, and
it is employed to send the MUD URL after the device is authenticated.

Moreover, as in our previous work [10], we use an SDN approach based on the architecture
defined in the EU H2020 project ANASTACIA [9] to enforce network access control restrictions
included in the MUD file. In particular, we integrate some components of the SDN architecture into
the MUD Manager, which represents the main building block of the MUD standard. We extend the
MUD Manager functionality to support the MUD Translation (Step 3), and enforcement of flow rules
into the network components (e.g., SDN switches). For this purpose, we use the OpenFlow protocol
[7], so a SDN controller can install, modify, and remove SDN flows in such SDN switches. However,
as described in Section 4, we extend the MUD data model to represent other security restrictions,
beyond network access control, requiring additional entities to deploy and manage such policies.
Therefore, after translating the MUD file, the set of restrictions is installed in different components
during the Policy Deployment phase (Step 4). In particular, XACML and CP-ABE are used to translate
authorization and data privacy policies, which are deployed in the Policy Decision Point (PDP) and
Blockchain Security Handler (BSH), respectively. After the device completes a successful bootstrapping
process, and the different policies are deployed, it can perform its intended functionality by publishing
their data (i.e., we consider a sensor device). For this purpose, an authorization token is required.
Such credential can be obtained by the device through the Authorization Token Request process (Step 5).
This process requires the evaluation of the XACML authorization policies before generating the access
credential based on the CWT-AIF tokens.
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For data publication, we provide data provenance and secure storage of the data generated by the
devices through a combination of blockchain (e.g., Hyperledger) and scalable and distributed storage
system, such as IPFS.

Blockchain not only offers a decentralized solution in which the immutability of the data is
guaranteed, but also allows to trace in a public way the data generated by the devices, and mechanisms
to verify the integrity and the provenance of such data. Blockchains are a subset of DLTs that represent
the data as a chain of linked blocks. In our solution, we adopt permissioned blockchain as it facilitates
the access control in the distributed ledger. Nonetheless, other DLT technologies (not necessarily
blockchains, e.g., those DLT based on directed acyclic graphs instead of chains), might also be
integrated in our architecture, as all of them are distributed and support auditability and provenance
of shared data.

Our solution is intended to rule security and provenance in deployment domains that might
belong to a Federated/Consortium of potentially large set organizations, and therefore, require
permissioned blockchains that are not open to the general public. The consortium shares a distributed
blockchain with multiple nodes that reach consensus on the content stored, assuming that there could
be malicious or curious nodes. In particular, Hyperledger Fabric stands out for being a permissioned
blockchain with a business approach, not attached to any cryptocurrency, which avoids speculation
and miner fees. In addition, Hyperledger allows the creation of smart contracts of high functionality,
and support Byzantine Fault Tolerance consensus mechanism to reach consensus between nodes with
some potential number of malicious actors.

As mentioned above, the access to the blockchain is done through our trusted Blockchain Security
handler component of the architecture, which is deployed in each deployment domain with proper
rights to publish transactions in the permissioned blockchain. The IPFS network is used for saving
the published data outside the blockchain network (i.e., off-chain data) to improve the scalability of
blockchain network, and minimize security and privacy risks of publishing data in blockchain (even if
encrypted). This way, the IPFS stores the real data during the Data Publication phase (Step 6), whereas
the blockchain registers the data transaction of the IoT devices, saving metadata and a IPFS content
identifier of published data (hash) during the Hash Publication stage (Step 7). Combining the Blockchain
and the IPFS approach, we have two decentralized solutions working together to provide traceability
and immutability of published data.

Based on the described technologies and protocols, the architecture comprises several entities
and roles:

• Device represents the entity joining the network through a bootstrapping process. It acts as
EAP peer and establishes an EAP session with the EAP Server, with the EAP authenticator as
intermediary.

• SDN Switch is the entry point of the network. It is in charge of filtering the device traffic based on
the network access control policies.

• Authentication Agent, which acts as EAP Authenticator, is an intermediate entity in the EAP
communication between the device and the EAP Server.

• AAA Server acts as EAP Server to establish an EAP session with the device.
• MUD Manager is the main entity to manage MUD files, including the processes required for

obtaining and enforcing the different security restrictions. It comprises several roles:

– IoT Controller is intended to obtain the extended MUD file from the MUD File Server.
– Policy Interpreter translates the extended MUD file to MSPL policies and specific configuration.
– SDN Controller is in charge of enforcing the network access control policies of the extended

MUD file in the SDN switch.
– Security Orchestrator coordinates the enforcement of the extended MUD policies.
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• MUD File Server is located in the manufacturer domain and stores the MUD files of the
different devices.

• Policy decision Point is in charge of evaluating the authorization policies after they are translated
from the MUD file.

• Blockchain Security Handler is in charge of managing the access over the blockchain in a transparent
way for the devices. It comprises two roles:

– Proxy module is in charge of enabling the access to the blockchain, and encrypting and
publishing the data generated by the devices in the blockchain. It is also responsible for
validating the CWT-AIF tokens to allow or not the access to the blockchain, as well as to
enforce the data privacy and channel protection policies from the extended MUD.

– Authentication Module is in charge of managing the token requests device, forwarding them
to the Credential Manager.

• Credential Manager is responsible for managing a CWT-AIF token request and generating the token
if the device is allowed, based on the policy evaluation in the PDP.

• Distributed storage (IPFS node) is in charge of storing the published encrypted data.
• Blockchain (Hyperledger Fabric) stores the transactions of the published data.

The interaction between the components of the different phases depicted in Figure 1 are further
described in Section 6.

6. Message Exchange

As mentioned above, this section details the message exchange flow among the different
components of the architecture previously discussed. According to the two pictures of Figure 1,
we distinguish between the bootstrapping (picture on the left) and the post-bootstrapping phase (picture
on the right) to describe the main processes.

6.1. Bootstrapping Phase

The bootstrapping phase comprises the processes required to authenticate and protect the device
and the network before accessing. As mentioned above, such processes include Device Authentication,
MUD Obtaining, MUD Translation, and Policy Deployment. Figure 2 shows the messages exchanged in
these processes, which are further described below.

6.1.1. Device Authentication and MUD Obtaining

The device acting as CoAP client starts the bootstrapping by sending a CoAP POST /boot
request to the CoAP Server, using CoAP-EAP. After an initial handshake, the exchange starts by
using EAP-PSK [46] as authentication method. Further details of this exchange were provided by
García-Carillo [15]. This exchange is grouped in Message 1 (Authentication Process of Figure 2). At the
end of the exchange, the Authentication Agent receives cryptographic material from the AAA server
along with the EAP Success message in an Access-Accept message. Although the MUD standard
proposes mechanisms to communicate the MUD URL from the device, it leaves open the possibility
for considering other options for constrained devices that cannot communicate the MUD URL, or in
scenarios with limited Internet connection. As described by Matheu et al. [10], our approach proposes
the usage of the AAA architecture to deliver the MUD URL. In particular, the MUD URL is embedded in
the attribute “vendor-specific” of the RADIUS protocol (EAP Success, Message 2). The Authentication
Agent does not forward immediately the EAP success to the device. Instead, it forwards the information
of the MUD URL to the IoT Controller (as part of the MUD Manager) (Message 3). Then, this entity
uses the MUD URL to contact the MUD File Server in order to get the MUD file (and an associated
signature file) for the joining device (Messages 4–7). Furthermore, the IoT Controller verifies the MUD
signature and requests the enforcement of the extended MUD file to the Security Orchestrator by
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sending such file (Message 8). It should be noted that a similar process was proposed in our previous
paper [10] based on the MUD standard specification.
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Figure 2. Message exchange of the bootstrapping phase.

6.1.2. Extended MUD Translation

After receiving the previous message, the Security Orchestrator requests the translation of the
extended MUD file to a domain-specific extended MUD translator, that is, the Policy Interpreter.
The standard MUD file is only able to describe network access control policies, expressed by ACLs,
limiting the expressiveness of other security policy types. Our proposal extends the MUD model in
order to specify different security behaviors, not only ACLs. Specifically, our proposed extended MUD
file is composed by additional policies, including authorization (the access of the device to the network
and resources is limited in the Proxy Module), data privacy (device must ensure privacy at data level),
and channel protection (the communication between the device and the endpoint must be protected).

The translation of the extended MUD file requires additional information from the domain
to translate the high level terms of the MUD such as “same-manufacturer” or “my-controller”.
According to Figure 2, this information is obtained during the translation request from the Security
Orchestrator (Message 9). Here, the Policy Interpreter retrieves the technological information from
the endpoints involved in the extended MUD and identifies the main capability of the extended
MUD policy (e.g., forwarding, channel protection, privacy, etc.). Then, for each capability, the Policy
Interpreter instantiates a capability-specific policy modeled in MSPL, which is the policy language we
use in our deployment for internal management and orchestration purposes. As it has a medium-level
abstraction, the MSPL policies are interoperable and agnostic of the enforcement process (e.g., a filtering
MSPL policy could be enforced in a traditional firewall or in an SDN network). In this case, the extended
MUD file is translated in four different MSPLs (MSPL forwarding, MSPL authorization, MSPL data
privacy and MSPL channel protection). These MSPL policies are forwarded to the Security Orchestrator
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(Message 10), which decides the best enforcement point for each one of them. According to the current
deployment, the Security Orchestrator decides that the authorization policies will be enforced by
using the deployed XACML-based PDP. As the devices are supposed to be constrained, they are not
able to apply the privacy level specified, thus the Security Orchestrator decides that data privacy
policies will be enforced in the Proxy Module by using a CP-ABE based solution. To do so, the CP-ABE
policy is stored in the proxy module. The CP-ABE policy contains the combination of the attributes
using AND statements (e.g., if the MUD extension requires that the data should be only accessible to
UMU professors, the CP-ABE policy will be “UMU and professor”). For channel protection, devices
implement the required crypto-suite, thus the Security Orchestrator will enable also the Proxy Module
as DTLS channel protection endpoint. Then, the Security Orchestrator requests policy translations
specifying the selected security enabler for each one of them (Message 11). We consider a security
enabler as a software component in charge of implementing the security function associated with a
MSPL policy, i.e., it allows enforcing the security policy in the managed system through a specific
technology (e.g., filtering policies could be enforced through Netconf protocol [47] or SDN through
Openflow [7]).

6.1.3. Policy Deployment

Once the Security Orchestrator receives the final configurations for each enforcement point
(Message 12), it requests the configurations enforcement to each security enabler. XACML configuration
is enforced in the PDP in order to configure the authorization policies for the specific device (Message
13). CP-ABE and DTLS configurations are enforced in the Proxy Module. On the one hand, CP-ABE
configuration prepares the proxy to encrypt the data received from the device by using the CP-ABE
scheme to provide data privacy. On the other hand, DTLS configuration prepares the proxy to receive
DTLS requests according to the specific cipher-suite defined in the security policy (Message 14).
ONOS configuration is enforced by using ONOS northbound API which communicates with the
SDN switches in order to provide the required connectivity (Messages 15 and 16). Once the policies
have been enforced, the Security Orchestrator notifies the IoT Controller, which, in turn, notifies the
Authentication Agent, which answers the EAP success to the device to complete the bootstrapping
phase (Message 17). Table 1 summarizes the policies of the extended MUD, as well as the techniques
and mechanisms for the translation and enforcement processes.

Table 1. Overview of the security policies.

Policy Type Translation Enforcement

Network access control ONOS SDNs
Channel protection DTLS configuration Proxy configuration

Data privacy CP-ABE policies Proxy configuration and CP-ABE encryption
Authorization over resources XACML policies XACML policy evaluation and CWT-AIF tokens

6.2. Post-Bootstrapping Phase

Once the device has been successfully bootstrapped, it starts to perform its intended operation
by publishing their data. As already mention, we consider three main processes as part of this phase:
Authorization Token Request, Data Publication, and Hash Publication. Figure 3 shows the detailed message
exchange of these three processes. It should be noted that all device’s communications pass through
the SDN switch. The next subsections detail step by step such processes.
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Figure 3. Message exchange of post-bootstrapping phase.

6.2.1. Authorization Token Request

To enforce the authorization policies over the resources (e.g., the access to the blockchain), we use
an integrated approach based on XACML and authorizations tokens. As mentioned above, since the
blockchain will be used by IoT devices with constrained capabilities, we use a Proxy Module as
part of the Blockchain Security Handler that is in charge of providing the access of these devices to
the blockchain. Furthermore, to cope with the requirements of resource constraints of IoT devices
and networks, we use a lightweight approach based on CWT [13], which represent CBOR-encoded
tokens [27], and the AIF format [28] to represent the access privileges in the token itself. Table 2 shows
the resulting structure of CWT-AIF tokens. Furthermore, the table shows the value type for each claim
and the numerical key used in the CBOR codification.

Table 2. Summary of the CWT+AIF claims.

Name Key Value Type

iss 1 text string
sub 2 text string
aud 3 text string
exp 4 integer or floating-point number
nbf 5 integer or floating-point number
iat 6 integer or floating-point number
cti 7 byte string
aif 8 AIF structure

It should be noted that the resulting authorization token follows a similar approach to our
previous capability-based access control approach [48]. In particular, we add a new claim (aif) to CWT,
in order to integrate the AIF format with the aim to specify the resources and methods granted to the
token’s holder. The AIF format follows a capability list structure, whose elements are the combination
of a subject (the resource) and a list of actions (the methods). These pairs are specified with a URI [49]
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and a subset of CoAP methods. To reduce the size of the structure, AIF requires that the CoAPs
methods are translated to their numerical expressions minus one. Then, the numerical set is combined
into a single number by taking each number to the power of two and computing the inclusive OR of
the binary representations of all the numbers.

As the original CWT, the proposed approach comprises three blocks:

• COSE Header with COSE parameters following the specification in [50]. It describes the
cryptographic operations applied to the token and optional properties. These parameters can be
cryptographically protected or not.

• Payload, containing the claims:

– Issuer (iss) identifies the entity that issued the token in a string or URI format.
– Subject (sub) represents the entity that is the subject (holder) of the token in a string or

URI format.
– Audience (aud) indicates the recipients that the token is intended for, in a string or URI array.

If the entity processing the token is not indicated in this field, the token should be rejected.
– Expiration Time (exp) specifies the expiration time, after which the token will not be valid,

in a Numeric Date format.
– Not before (nbf) represents the time, before which the token is not valid, in a Numeric

Date format.
– Issued At (iat) specifies the time when the token was issued, in a Numeric Date format.
– CWT ID (cti) provides a unique identifier for the token, in a string format.
– Authorization Information (aif) specifies the resources and methods the token allows to,

by using the AIF format

• COSE Signature, COSE MAC or COSE Encrypt, depending on the protection mechanism of the
token [50].

Based on this, when the device wants to access a certain resource (e.g., to publish data in the
blockchain), it will make a request to the Authentication Module (as part of the Blockchain Security
Handler) to obtain an authorization token (Step 1 in Figure 3). The Authentication Module will forward
the request to the Credential Manager (Step 2), indicating the resource, action, subject, and the device
attributes that were stored in the BSH during the bootstrapping. Then, the Credential Manager makes
a XACML request to the PDP (Step 3), which will create a XACML response, based on the policies
stored in the PDP database (or a Policy Retrieval Point according to XACML notation) that were
translated from the extended MUD. The evaluation result is sent to the Credential Manager (Step 4).
In the case the device is allowed, the Credential Manager generates a CWT-AIF token and forwards it
to the Authentication Module and the device (Steps 5 and 6).

6.2.2. Data and Hash Publication

As mentioned above, the privacy of the stored data required by the extended MUD policies is
assured through the usage of the CP-ABE approach. During the bootstrapping, the CP-ABE policy
is generated based on the attributes described in the extended MUD file and stored in the Proxy
Module for further use during the post-bootstrapping phase. The CP-ABE policy is used to encrypt
data in a way only the devices whose CP-ABE key contains the required attributes to access the
data, are able to decrypt it. We consider that the Proxy Module also has an internal database to
store the CP-ABE configuration. As the CP-ABE cryptography is too heavy for very constrained
devices, we propose that the device delegates on the Proxy Module the CP-ABE operations. This way,
it provides a privacy-preserving, yet accountable, fine-grain and user-controlled data sharing solution
for constrained IoT deployments.

Following the message exchange of Figure 3, after obtaining the CWT-AIF token, the device can
publish its information in the blockchain by using such token. For this purpose, the device sends a
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request to the Proxy Module (Step 7), which validates the CWT-AIF token. If the token is valid and
the device is able to access the resource, the Proxy Module will encrypt the data with the CP-ABE
policy, which embeds the required attributes for data protection of the extended MUD file. Once
the data are encrypted to protect its privacy, the Proxy Module will request the publication of the
data to the IPFS using a HTTP REST interface (Message 8). The IPFS will answer the proxy module
with a content identifier (CID) obtained as a hash of the published data (Step 9). Then, the Proxy
Module requests the registration of the CID and the metadata to the Hyperledger (Step 10). This way,
the CID allows referencing the published data in a simple, public, and lightweight way, as the CID is
shorter than the data itself. Finally, the Proxy Module will answer the device with an identifier of the
transaction (Step 11), and finally, the device is also notified (Step 12). Furthermore, it should be noted
that, while not shown in the figure, the Proxy Module is endowed with the APIs required by other
devices to query the provenance information in blockchain and the shared encrypted data in the IPFS,
as well as methods to assist devices by decrypting the data whenever needed.

7. Performance Evaluation

This section presents the evaluation of our proposal. For this purpose, we implemented and
deployed the architectural components described in Section 5 as well as the processes described in
Section 6.

7.1. Testbed

Table 3 provides an overview of the hardware and software used for each component and role.
It should be noted that, for the implementation design, roles belonging to the same component may be
implemented in different machines/devices.
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Table 3. Testbed specifications.

Component Hardware Role Software

Smart Object Zolertia Z1 with 92 kB of nominal
ROM and 8 kB of RAM

EAP peer Cooja (Contiki OS 2.7)
CoAP Client cantcoap
CoAP Server cantcoap

Authentication
Agent

Linux Ubuntu VM with 2 GB of RAM,
30 GB HDD and a processor Intel(R) Core(TM)

i7-8550U at 1.9 GHz, using 1 core

EAP Authenticator FreeRadius 2.0.2.
CoAP Client cantcoap
CoAP Server cantcoap

AAA Server

Linux Ubuntu VM with 2 GB of RAM,
30 GB HDD and a processor Intel(R) Core(TM)

i7-8550U at 1.9 GHz, using 1 core
AAA Server FreeRadius 2.0.2.

EAP Server C application

MUD Manager

Intel Core Processor (Haswell) at 1.5 GHz
using 2vCores, 2 GB of RAM and 15 GB of HDD IoT Controller Python application

Intel(R) Core(TM) i7-2600 CPU at 3.4 GHz,
using 3 vCores, 3.5 GB of RAM

and 30 GB of HDD

Security Orchestrator Django 2.2.2 and Falcon 2.0

SDN Controller ONOS
Policy Interpreter Django 2.2.2 and Falcon 2.0

MUD Server
Linux Ubuntu VM with 2 GB of RAM,

30 GB HDD and a processor Intel(R) Core(TM)
i7-8550U at 1.9 GHz, using 1 core

MUD Server Apache 2.4.39

Border router
Zolertia Z1 with 92 kB of nominal

ROM and 8 kB of RAM Border router Contiki OS 2.7

Blockchain Security Handler

Windows 10 Pro with processor Intel(R)
Core(TM) I7-7700K at 4.2 GHz, 24GB of

RAM DDR4 and SSD M.2
Authentication Module Jersey 1.19.1, Apache Tomcat

Proxy Module Jersey 1.19.1, Apache Tomcat, CP-ABE

PDP
Windows 10 Pro with processor Intel(R)
Core(TM) I7-8550U at 1.8 GHz, 8GB of

RAM DDR4 and 500 GB of SSD M.2
PDP Apache Tomcat

Credential Manager
Windows 10 Pro with processor Intel(R)
Core(TM) I7-8550U at 1.8 GHz, 8GB of

RAM DDR4 and 500 GB of SSD M.2
Credential Manager Java Application, cbor-2.4.1, Californium 2.1.0

Blockchain
Windows 10 Pro with processor Intel(R)
Core(TM) I7-7700K at 4.2 GHz, 24GB of

RAM DDR4 and SSD M.2
Blockchain Hyperledger Fabric 1.2, Hyperledger Composer 0.20.7

IPFS
Windows 10 Pro with processor Intel(R)
Core(TM) I7-7700K at 4.2 GHz, 24GB of

RAM DDR4 and SSD M.2
IPFS IPFS version 0.4.19
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As shown in Table 3, we integrated different existing libraries with our own implementations.
In the case of the device, we simulated its behavior by using the Cooja Network Simulator (https:
//anrg.usc.edu/contiki/index.php/Cooja_Simulator), based on Contiki OS. Cooja requires a border
router to enable the communication between the simulation environment and the external entities.
The border router was also simulated in Cooja. Furthermore, we used our own implementation for
the REST API of the SDN Orchestrator and the Policy Interpreter. To enforce the MUD network
access control policies, we used ONOS Controller (ONOS:https://onosproject.org/), widely used
in productions systems. The Policy Interpreter implemented the translator from MSPL into SDN
low-level configurations understandable by ONOS controller.

Moreover, the blockchain implementation was based on Hyperledger Fabric 1.2 and the IPFS was
the official Go IPFS implementation available in https://github.com/ipfs/go-ipfs. In both entities,
the REST library used to manage the requests of the blockchain handler is Jersey (JAX-RS). As the
blockchain is not the focus of the paper, the implementation was just a proof of concept to complete
the scenario. Therefore, we used a single node with the SOLO consensus algorithm. Indeed, the
blockchain is intended to be managed by the organization in which the device is deployed. Finally, for
the CWT, we used our own Java implementation of the Credential Manager, supported by the CBOR
library for the token translation and the Californium library for the implementation of CoAP-DTLS.
The CP-ABE library used is available in https://github.com/junwei-wang/cpabe/.

7.2. Evaluation of the Proposal

Figure 4 compares the time required to complete the different phases of our approach:

• EAP Authentication comprises Messages 1 (set of messages CoAP-EAP), 2, and 17 in Figure 2.
These messages require a median value of 1496 s. The reason to use the median is to provide a
more accurate time, avoiding outliers due to packet retransmission. It should be noted that, for
the other results, we employ the mean value. Although the EAP authentication is time consuming,
this process is performed once, when the device is authenticated to join the network. In addition,
the overload of the time with respect to the CoAP-EAP with EAP-PSK exchange [15] is minimum
(30.5 ms). Indeed, as the MUD URL is transferred trough a non-constrained network, the extra
time is negligible.

• MUD Obtaining evaluation was performed with a MUD file of 7.58 KB (see Appendix A),
containing policies of the different types considered (network access control, authorization,
channel protection, and data privacy). The delay for this stage is negligible (0.093 s) since the
MUD file is also transferred trough a non-constrained network. This time includes the MUD
obtaining as well as the MUD signature verification (Messages 3–7 of Figure 2).

• MUD Translation comprises Messages 8–12, including the MSPL translation, as well as the
translation from MSPL to a specific configuration. In particular, the network access control
policies are translated to ONOS configuration, the authorization policies to XACML policies, and
the channel protection policies to DTLS configuration. Finally, data privacy policies are translated
to a CP-ABE policy. This CP-ABE policy is obtained by combining the required extended MUD
attributes for data privacy with AND statements. We use the same MUD file previously mentioned,
thus it includes different types of policies. This MUD file (included in Appendix A) shows the data
privacy policy (“umu-mspl-privacy-action:privacy-action-type”: “Data-Privacy”) named “MSPL0”
with four attributes specified inside the field “umu-mspl-abprivacy-method:attribute” (“es”,
“um”, “iot” and “dep5”). These data privacy attributes are combined with an AND statement to
generate a CP-ABE policy to encrypt the published data. MUD translation time is also negligible
with respect to other phases (0.055 s).

• MUD Enforcement time includes the delay required for deploying the different types of policies
in the MUD file, including the DTLS and CP-ABE configuration in the proxy, the XACML
authorization policies in the PDP, and the SDN enforcement of the network access control
polices (Messages 13–16 in Figure 2). As the SDN enforcement involves the enforcement of the

https://anrg.usc.edu/contiki/index.php/Cooja_Simulator
https://anrg.usc.edu/contiki/index.php/Cooja_Simulator
ONOS: https://onosproject.org/
https://github.com/ipfs/go-ipfs
https://github.com/junwei-wang/cpabe/
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configuration with Openflow over the SDN switches, this enforcement is the most time-consuming
step of this phase. Nevertheless, the time required is less than 1 s (0.847 s), which is affordable
during the bootstrapping process.

• Token request and generation comprises Messages 1–6 of Figure 3. This phase includes the device
request of the CWT-AIF token, the policy evaluation of the PDP, as well as the generation of the
token in case of a PERMIT decision. The token was requested for the subject bob, the audience
coaps://CAFE:DCAF:8080, and the access to the resource tmp with a POST operation. This operation
is allowed by the PDP, as it was specified in the extended MUD (Appendix A). The token was
generated with all the claims of the CWT in addition to the AIF extension, as well as the COSE
header and the 256-bits signature with the ECDSA algorithm. As shown, this is the most time
consuming phase (3570 s). The main reason for this is the involvement of the device for requesting
the token through a constrained network. However, it should be noted that the token is meant to
be reusable during its lifetime.

• Token verification involves Message 7 and the token verification process of Figure 3. The CWT used
during the evaluation (in CBOR diagnostic notation) is shown in Listing 8. This CWT allows bob to
access to the resource tmp through the POST method. This process requires a delay of 2182 s, which
is strongly influenced by the message sent by the device, that is, the communication between the
device and the Proxy Module. Indeed, the mean time consumed only by the verification process
is 3044 ms.

• CP-ABE data encryption is referred as the encryption process in Figure 3, after Message 6.
The CP-ABE implementation is based on the curve y2 = x3 + 3 over the field Fp for some prime
p = 3 mod 4. The evaluation is performed by considering a 80-bit security level (i.e., |p| = 512 ,
|q| = 160). For the results in Figure 4, we use asix-attribute CP-ABE policy as example. However,
we further analyze the CP-ABE encryption time considering different number of attributes in
Figure 5.

• Push IPFS comprises Messages 8 and 9 of Figure 3. The data published were temperature s
measurements encrypted with CP-ABE, with the previous configuration, and it took 0.038 s.

• Blockchain hash publication comprises Messages 10–12 of Figure 3. The hash was obtained with the
SHA256 algorithm. It is worth noting that the obtained time for this phase was measured in a test
environment. For a complete evaluation of the hyperledger performance, the reader can consult
the analyses performed by Hyperledger [51] and Jiang et al. [52].
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Figure 4. Time required for the different processes.

Listing 8: CWT+AIF token used in the evaluation performance.

18([
{1: -7},
{1: "credentialmanager@odins.es",
2: "bob",
3: "coaps :// CAFE:DCAF :5684",
4: 1579637954 ,
5: 1579627954 ,
6: 1579626954 ,
7: h’64376 B6B7036736E716D367430316D6E64763273676967633031 ’,
8: [["tmp", 2]]}, h’4D4551434943786F32346B6F7A57496B4C7056464 ...’

]).

According to Figure 4, the publication over the blockchain is one of the most time-consuming
phases. This is especially relevant because, depending on its purpose, the device could potentially
publish its data very often. We reduced considerably this time by using the IPFS for storing the
real data and the blockchain to store the hash linked to the real data. This way, the data published
in the blockchain are shorter than the real data, reducing the publication time. Table 4 shows the
time required to publish the data in the IPFS, and the delay for the data publication directly over
the blockchain (without any type of encryption mechanism). By using the IFPS, the time reduction
represents more than 340 ms (97.31%) compared to the publication over the blockchain.

Table 4. Overload time between the IPFS and the blockchain (without CP-ABE encryption).

Publishing Mechanism Mean Time (ms) Confidence Interval

IPFS 9.5 4.52
Blockchain 352.75 30.24

Finally, Figure 5 shows a more detailed view of the encryption and decryption process of CP-ABE
depending on the number of attributes used (2, 4, 6, 8 ,and 10 attributes). As shown, the time is
proportional to the number of attributes used to encrypt or decrypt. It is worth noting that the number
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of attributes will usually be low (e.g., device manufacturer and model). It should also be noted that
encryption is more expensive than decryption; for example, in the case of four attributes, the encryption
time is 240 ms, whereas, for decryption time, it is 78 ms. For this reason, we delegate the encryption
process in the Proxy Module. Some proposals consider more sophisticated approaches in which the
encryption process is also delegated, such as the lightweight implementation of CP-ABE proposed
in [40] (SymCPABE), which could be considered in an extension of our work.

Figure 5. Encryption and Decryption time of CP-ABE.

The overload of the processes, we add with respect to the bootstrapping and post-bootstrapping
process are studied in Figures 6 and 7. Figure 6 shows the comparison between a usual COAP-EAP
bootstrapping process [15] for the device authentication, and the total time consumption with the
additional processes to manage the MUD obtaining, translation, and policy deployment. As shown,
the overload represents an extra delay of 1.0255 seconds with respect to the COAP-EAP bootstrapping
process. Nevertheless, it should be noted that the bootstrapping process is performed only once,
when the device joins the network, and, therefore, the overload does not affect to its normal operation.
Moreover, Figure 7 shows the comparison between our token approach based on CWT and AIF, and the
capability-based approach [48], which makes use of JSON representation. For the credential used in
our tests (i.e., with the same access rights), our approach reduces in 35 bytes the JSON-based token
(11.98% of the size). Due to the potentially huge number of IoT devices, and network restrictions,
the resulting approach represents a lightweight and scalable solution for constrained scenarios.
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Figure 7. Overhead of our CWT-AIF token and the capability-based approach [48].

8. Conclusions

The advent of increasing IoT-enabled scenarios poses new security challenges. In this context,
proactive approaches are essential to reduce the attack surface and potential impact of a certain attack.
This work describes an approach to enforce security restrictions during the bootstrapping process
of an IoT device. For this purpose, we propose the usage of behavioral profiles by extending the
current MUD standard to include not only network access control policies, but also data privacy,
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channel protection, and authorization policies. We also describe the processes required to obtain and
enforce such behavioral profiles. Our approach integrates the use of SDN technologies with an access
control infrastructure to ensure only legitimate and authorized entities get access to devices’ data and
resources. Furthermore, we consider a blockchain platform to share the information provided by the
devices through the use of Hyperledger. As future work, we plan to extend the proposed process in
order to manage the whole security lifecycle of an IoT device, by integrating monitoring tools to react
against potential attacks during IoT devices’ operation.
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Appendix A. MUD File

Listing 9: MUD file used in the evaluation.

[{
"ietf-mud:mud": {
"mud-version": 1,
"mud-url": "https://iot_controller/iot_broker",
"last-update": "2019-04-17T09:47:00+00:00",
"cache-validity": 48,
"is-supported": true,
"systeminfo": "Wismote IoT device",
"mfg-name": "Odins",
"documentation": "http://doc.wismote.odins.com",
"model-name": "iot_broker",
"from-device-policy": {
"access-lists": {
"access-list": [{
"name": "mud-55052-v6fr"

}]
},
"mspl-list":{
"mspls": [{
"name": "mud-55053-v6fr"

},{
"name": "mud-55054-v6fr"

}]
}

},
"to-device-policy": {
"access-lists": {
"access-list": [{
"name": "mud-55052-v6to"
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}]
},
"mspl-list":{
"mspls": [{
"name": "mud-55054-v6to"

}]
}

}
},
"ietf-access-control-list:acls": {
"acl": [{

"name": "mud-55052-v6to",
"type": "ipv6-acl-type",
"aces": {
"ace": [{
"name": "ent0-todev",
"matches": {
"ietf-mud:mud": {
"my-controller": [null]

},
"ipv6": {
"protocol": 17

},
"udp": {
"source-port": {
"operator": "eq",
"port": 5683

}
}

},
"actions": {
"forwarding": "accept"

}
}]

}
},
{
"name": "mud-55052-v6fr",
"type": "ipv6-acl-type",
"aces": {
"ace": [{
"name": "ent0-frdev",
"matches": {
"ietf-mud:mud": {
"same-manufacturer": [null]

},
"ipv6": {
"protocol": 17

},
"udp": {
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"destination-port": {
"operator": "eq",
"port": 5683

}
}

},
"actions": {
"forwarding": "accept"

}
}]

}
}

]
},
"umu-mspl-list:mspls": {
"mspl": [{

"name": "mud-55053-v6fr",
"type": "ipv6-mspl-type",
"mspls": {
"mspl": [{
"name": "MSPL0",
"configuration": {
"capability": "Privacy",
"configuration-rules":[{
"configuration-rule": {
"configuration-rule-action":{
"umu-mspl-privacy-action:privacy-action-type":
"Data-Privacy",
"umu-mspl-privacy-action:privacy-method":{
"umu-mspl-abprivacy-method:attributes":[
{"umu-mspl-abprivacy-method:attribute":{
"umu-mspl-abprivacy-method:key": "dc",
"umu-mspl-abprivacy-method:value": "es"}

},
{"umu-mspl-abprivacy-method:attribute":{
"umu-mspl-abprivacy-method:key": "dc",
"umu-mspl-abprivacy-method:value": "um"}

},
{"umu-mspl-abprivacy-method:attribute":{
"umu-mspl-abprivacy-method:key": "o",
"umu-mspl-abprivacy-method:value": "iot"}

},
{"umu-mspl-abprivacy-method:attribute":{
"umu-mspl-abprivacy-method:key": "ou",
"umu-mspl-abprivacy-method:value": "dep5"}

}
]

}
},
"configuration-rule-condition":{
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"umu-mspl-filtering-condition:packet-filter-
condition":{"umu-mspl-packet-filter-condition:
destination-address":"my-controller"}

},
"name": "Rule0",
"priority": 200

}
}]

}
}]

}
},
{
"name": "mud-55054-v6from",
"type": "ipv6-mspl-type",
"mspls": {
"mspl": [{
"name": "MSPL0",
"configuration": {
"capability": "Protection_confidentiality",
"configuration-rules":[{
"configuration-rule": {
"configuration-rule-action":{
"umu-mspl-data-protection-action:technology":
"DTLS",
"umu-mspl-data-protection-action:technology-
action-parameters":[
{"umu-mspl-data-protection-action:technology-
parameter":{"umu-mspl-dtls-technology-parameter:
remote-endpoint": "my-controller"}

}],
"umu-mspl-data-protection-action:technology-action-
security-properties":[
{
"umu-mspl-data-protection-action:technology-
action-security-property":
{
"umu-mspl-confidentiality-technology-action-
security-property:encryption-algorithm": "AES",
"umu-mspl-confidentiality-technology-action-
security-property:key-size": 128,
"umu-mspl-confidentiality-technology-action-
security-property:mode": "CCM"

}
}

]
},
"configuration-rule-condition":{
},
"name": "Rule0",
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"priority": 200
}

}]
}

}]
}

},
{
"name": "mud-55054-v6to",
"type": "ipv6-mspl-type",
"mspls": {
"mspl": [{
"name": "MSPL0",
"configuration": {
"capability": "Protection_confidentiality",
"configuration-rules":[{
"configuration-rule": {
"configuration-rule-action":{
"umu-mspl-data-protection-action:technology":
"DTLS",
"umu-mspl-data-protection-action:technology-
action-parameters":[
{
"umu-mspl-data-protection-action:technology-
parameter":{

"umu-mspl-dtls-technology-parameter:
local-endpoint": "my-controller"

}
}],
"umu-mspl-data-protection-action:technology-
action-security-properties":[
{ "umu-mspl-data-protection-action:technology-
action-security-property":
{"umu-mspl-confidentiality-technology-action-
security-property:encryption-algorithm": "AES",
"umu-mspl-confidentiality-technology-action-
security-property:key-size": 128,
"umu-mspl-confidentiality-technology-action-
security-property:mode": "CCM"
}

}
]

},
"configuration-rule-condition":{
},
"name": "Rule0",
"priority": 200

}
}]

}
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}]
}

}
{

"name": "mud-55055-v6fr",
"type": "ipv6-mspl-type",
"mspls": {
"mspl": [{
"name": "MSPL0",
"configuration": {
"capability": "AuthoriseAccess_resurce",
"configuration-rules":[{
"configuration-rule": {
"configuration-rule-action":{
"umu-mspl-authorization-action:AuthorizationActionType": "ALLOW",

},
"configuration-rule-condition":{

"umu-mspl-filtering-condition:packet-filter-condition":{
"umu-mspl-packet-filter-condition:source-address":"IoT-device",
"umu-mspl-packet-filter-condition:destination-address":
"IoT-broker",
"umu-mspl-packet-filter-condition:destination-port": 5684

},
"umu-mspl-filtering-condition:aplication-layer-condition":{
"umu-mspl-aplication-layer-condition:application-protocol":
"CoAPs",
"umu-mspl-aplication-layer-condition:method":"POST",
"umu-mspl-aplication-layer-condition:url":"/tmp"
}

},
"name": "Rule0",
"priority": 200

}
}]

}
}]

}
}

]
}

}
]
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