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Abstract: The discrimination between earthquakes and explosions is a serious issue in seismic
signal analysis. This paper proposes a seismic discrimination method using support vector machine
(SVM), wherein the amplitudes of the P-wave and the S-wave of the seismic signals are selected
as feature vectors. Furthermore, to improve the seismic discrimination performance using a
heterodyne laser interferometer for seismic wave detection, the Hough transform is applied as
a compensation method for the periodic nonlinearity error caused by the frequency-mixing in the
laser interferometric seismometer. In the testing procedure, different kernel functions of SVM are
used to discriminate between earthquakes and explosions. The outstanding performance of a laser
interferometer and Hough transform method for precision seismic measurement and nonlinearity
error compensation is confirmed through some experiments using a linear vibration stage. In addition,
the effectiveness of the proposed discrimination method using a heterodyne laser interferometer is
verified through a receiver operating characteristic curve and other performance indices obtained
from practical experiments.

Keywords: seismic discrimination; support vector machine; heterodyne laser interferometer;
Hough transform; measurement accuracy

1. Introduction

The discrimination between earthquakes and explosions is a serious issue in seismology.
Seismometers at seismic stations record all types of earth vibrations in the region without the ability
to clarify their origin. Considering that misidentified artificial seismic events, such as quarry blasts
and underground nuclear tests, can lead to erroneous analyses, the classification of the signals’ source
should be performed as a preliminary work prior to seismic signal processing and analysis [1]. General
seismic discrimination is usually performed by visually inspecting the records of earthquakes and
explosions or by calculating the characteristics of each record. However, this requires a great amount
of work and time from earthquake analysts. Therefore, several earthquake discrimination errors occur.
The seismic discrimination method using the machine learning classifier can shorten the workload
and increase the reliability of classification results.

A considerable number of seismic signal discrimination methods based on statistical machine
learning have been proposed [2–7]. Mousavi [2] developed a machine learning-based strategy to
discriminate between deep microseismic events and shallow ones using logistic regression and
artificial neural network models. The seismic features obtained from frequency and polarization
attributes have higher correlation with seismic event’s source depth. Rabin [3] proposed a graph-based
machine learning tool and the diffusion maps method for organizing a large number of events that
are captured in a seismic station and for classifying new recorded events. Rabin also intended to
apply kernel-based sensor fusion methods for extension of approach from single station to seismic
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network. Linville [4] suggested convolutional and recurrent neural network architectures on the task
of binary event classification for tectonic earthquake and quarry blasts at local scales. The objective of
this work was to build a model capable of reproducing analyst classifications on incoming data in near
real time. Kuyuk [5] proposed an unsupervised learning-based self organizing map to distinguish
micro-earthquakes from quarry blasts in the vicinity of Istanbul.

In this paper, the heterodyne laser interferometer [8] is used as a seismometer owing to its high
precision, wide dynamic range, and nanometric resolution. For the laser interferometer to be used
as a seismometer, the problem of the frequency cross-talk caused by imperfect optical components
should be solved. This problem produces a nonlinearity error that restricts the measurement accuracy
of the laser interferometer. Therefore, the Hough transform method, which is known as a line detection
method, is applied to increase the measurement accuracy of the heterodyne laser interferometer. The
precisely measured seismic data after the compensation of the nonlinearity error in laser interferometer
is used as a test data for the discrimination of earthquake and explosion. Moreover, to discriminate
between earthquakes and explosions, support vector machine (SVM) is applied as a machine learning
model, and the amplitudes of the P-wave and the S-wave of the seismic signals are used to form
the feature vectors, simplifying not only the early data processing procedure but also the computing
process in building the SVM classifier. To increase the discrimination accuracy, SVM classifier is
combined with the seismic data obtained from noncontact optical high-precision interferometer. In this
study, the SVM-based discrimination method was executed using the limited seismic data measured
from one station as a training dataset for the rapid response. In addition, as the dimensionality
of the feature vectors is 2, the whole decision-making process of the discrimination system can be
easily visualized, providing more convenience for follow-up analysis. The seismic data acquisition
using a heterodyne laser interferometer as a seismometer enables discriminating between earthquakes
and explosions. Owing to the wide dynamic range and high resolution, the microseismic waves
measured by a laser interferometer can be used as a seismic data for SVM classifier. The amplitudes
of the P-wave and the S-wave could be measured more precisely using Hough transformation-based
nonlinearity error compensation in a laser interferometer. Moreover, the seismic events of earthquakes
and explosions are realized using a linear stage.

This paper is organized as follows. In Section 2, the overall configuration of the heterodyne laser
interferometer used as a seismometer is introduced, and the peak amplitude of the wave’s acceleration
measured by the heterodyne laser interferometer is used to extract the feature vectors. Section 3
suggests the seismic discrimination method using the SVM function. The results of the seismic signal
classification using different SVM kernel functions and the laser interferometer are shown in Section 4.
In addition, the radial basis function (RBF) kernel functions and the laser interferometer-based seismic
discrimination method demonstrate the improved discrimination accuracy. Finally, the conclusion is
drawn in Section 5.

2. Hough Transform-Based Interferometric Seismometer Compensation

To discriminate the earthquake signals from those of explosions, the acceleration data are traced
using the displacement variation measured by the heterodyne laser interferometer. Figure 1 shows
the schematic diagram of the heterodyne laser interferometer-based seismometer. Two orthogonally
polarized beams with two separate frequencies ( f1 and f2) are emitted from a He-Ne laser head. Then,
after passing a beam splitter (BS), the waves are equally split into two beams. The intensity of the
reference beam is measured by the photodetector A as,

SA ∝
1
2
(K2

1 + K2
2) + K1K2 cos [2π∆ f t + (Φ2 −Φ1)] , (1)
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where K1 and K2 are the magnitudes of the electric fields. Φ1 and Φ2 are the initial phases of the laser
sources. ∆ f is the difference in frequency between f1 and f2. Then, the intensity of the measurement
beam is observed by the photodetector B as,

SB ∝
1
2
(K2

1 + K2
2) + K1K2 cos [2π∆ f t + (Φ2 −Φ1) + ∆Φ] , (2)

where ∆Φ is the phase difference caused by the Doppler effect and ∆Φ = 2π( f ′2 − f2)t. In addition,
∆Φ can be transformed into the displacement variation ∆L as,

∆Φ =
4πζ∆L

λ
, (3)

where λ is the mean wavelength of f1 and f2, and ζ is the refractive index of air. With the use of
the high pass filter, only the AC elements of SA and SB can be obtained, respectively. In addition,
subsequent to passing through the lock-in amplifier, two orthogonal intensity signals are obtained as
in [9,10]:

Ix ∝
1
2

K1K2 cos(∆Φ), Iy ∝
1
2

K1K2 sin(∆Φ). (4)

Using the inverse trigonometric function of tan−1 (Iy/Ix
)
, the phase value ∆Φ can be represented as

in Equation (3).

Figure 1. Heterodyne laser interferometer-based seismometer.

Nonlinearity is introduced when laser beams pass through the PBS. In an ideal case, the two
orthogonal beams are perfectly separated by the PBS. Then, one beam source of frequency f1 would
move to the fixed retro-reflector, and the other orthogonal beam of frequency f2 would move toward
the moving retro-reflector. However, in practical measurements, imperfect polarization in the PBS
generates frequency mixing. The beam sources that proceed to the retro-reflectors are contaminated by
each other. Therefore, the intensity of the measurement signal collected in photodetector B includes
the nonlinearity error components [11–13]. Thus, the intensity of the measurement signal with the
nonlinearity from the photodetector B can be represented as follows:
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SB,N ∝
1
2
(K2

1 + K2
2 + α2 + β2) + K1K2 cos [2π∆ f t + ∆Φ + (Φ2 −Φ1)]

+K1β cos
[
2π∆ f t + (Φβ −Φ1)

]
+ K2α cos [2π∆ f t + (Φ2 −Φα)]

+K1α cos [∆Φ + (Φα −Φ1)] + K2β cos
[
∆Φ + (Φ2 −Φβ)

]
+αβ cos

[
2π∆ f t− ∆Φ + (Φβ −Φα)

]
, (5)

where α and β denote the magnitudes of frequency cross-talk components caused by nonorthogonal
source beams, inaccurate alignment, and reflection paths through the PBS. The results of Îx and Îy,
including the nonlinear errors, can be expressed as follows.

Îx ∝
1
2
(K1K2 + αβ) cos ∆Φ +

1
2
(K1β + K2α),

Îy ∝
1
2
(K1K2 − αβ) sin ∆Φ. (6)

The Hough transform [14–16] is an algorithm that is frequently used to find contour lines in image
processing. The basic idea of Hough transformation is to find the intersection point among the line
equations that comprise the slopes and y-intercepts of the given data. However, it is difficult to
accumulate data using slopes and intercepts in the x–y coordinate system, as the slopes in this system
range from zero to infinity. To overcome this problem, all the lines passing through one particular data
point are represented as polar coordinates in the rθ-plane. Then, to find the intersection point, the
rθ-plane is divided into small cells similar to those of a map. After transforming all the data into the
rθ-plane, the cell in which the coordinates accumulate most is selected as the intersection point. For
the nonlinearity error compensation using the Hough transform method, the relations between the
reference signal (Ix, Iy) and the measurement signal ( Îx, Îy) are transformed into the rθ-plane as (rx, θx)
and (ry, θy), which have the following relations:

rx = Ix cos θx + Îx sin θx,

ry = Iy cos θy + Îy sin θy, (7)

where rx and ry are the distances from the origin to the points (Ix, Îx) and (Iy, Îy), respectively, and
θx and θy are the angles of (Ix, Îx) and (Iy, Îy), respectively. To apply the Hough transform method in
the laser interferometer system, the ranges of rx,y and θx,y need to be limited. Thus, the range of rx,y

is set as 0 ≤ rx,y ≤
√

2 because the maximum values of Ix and Îx are 1. In addition, because of the
periodicity, the range 0 ≤ θx,y ≤ π can be used without the loss of generality. Then, an accumulator is
utilized based on rx,y and θx,y in the Hough space for the compensation process. After the projection
into the Hough space, the Hough accumulator counts the number of projections per each cell. The
size of the Hough accumulator is m× n in two dimensions. As the values of m and n increase, the
relationship between the reference and the measurement signals can be more accurately determined.

All the datasets of (r, θ) obtained from the Hough transform are projected into two-dimensional
accumulator cells. This process is shown in Figure 2, where the cell (r̄, θ̄) that has the maximum
projection number is selected as the optimal solution. In the Hough transform method, the cell selected
in the rθ-plane represents the relation between the reference and the measurement signal. In addition,
the optimal solutions for the distance rx,y and the angle θx,y are taken as an average of the multiple
values from the selected cell, which can be expressed as follows:

r̄ =
1
n

n

∑
i=1

ri, θ̄ =
1
n

n

∑
i=1

θi, i = 1, · · · , n, (8)
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where n is the number of data points that fell in the selected cell. By using the r̄ and θ̄ obtained from
the Hough transform method, we can find the optimal solution for I∗x and I∗y as follows.

I∗k = − sin θ̄k

cos θ̄k
Îk +

r̄k

cos θ̄k
, k = x, y. (9)

Figure 2. Application of the Hough transform in laser interferometer.

3. Seismic Signal Discrimination Using SVM

In seismology, the amplitudes of the the P-wave (Ap) and the S-wave (As) are defined as the peak
values of the P-wave and the S-wave, respectively. Many studies have shown that the ratio between
Ap and As is an effective indicator to discriminate between earthquakes and explosions data with
distances from 50 to 200 km [17–21]. In many cases, earthquakes show that As is bigger than or equal
to Ap, whereas explosions show that Ap is bigger than As.

In this paper, the seismic discriminating method is processed in two phases as shown in Figure 3.
In the offline phase, which can also be called the training phase, a database is built to contain the
information of Ap and As together with the label (earthquake or explosion) of the separately-collected
seismic signal. Then, SVM classifier is trained by these data, and the decision function of the SVM
classifier is fixed. In the online phase (the testing phase), we input the values of Ap and As of the
seismic signal into the SVM classifier, and the output is the discrimination result of the seismic signal.
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Figure 3. Framework of seismic discrimination algorithm.

The SVM is a supervised and non-probabilistic learning model that is popular and effective [22–24].
In the offline phase, the set of training data can be expressed as {(xi, yi)}, xi ∈ R2, yi ∈ {+1,−1},
i ∈ {1, 2, · · · , k}, where xi is a two-dimensional feature vector with the value of the amplitudes (Ap and
As) of the P-wave and the S-wave of a seismic signal; yi is a label, with +1 representing an earthquake
and −1 representing an explosion; and k is the number of the training data. As a hyperplane of the
SVM can be written as

wxi + b = 0, (10)

then the decision function of the SVM is

f (x) = sgn(wxi + b), (11)

where w is the weight vector and b is the unregularized bias term. To maximize the margin between
the two classes of data, as shown in Equation (12),

maximizew,b
2
‖w‖ ,

subject to yi(wxi + b) ≥ 1, (12)

Lagrange multipliers method with Karush–Kuhn–Tucker (KKT) conditions [25,26] are then applied. As
maximizing the margin value 2/‖w‖ is equivalent to minimizing ‖w‖2/2, we transform the objective
function into a minimum form, and the Lagrange function is represented in Equation (13),

L(w, b, µ) =
‖w‖2

2
−

n

∑
i=1

µi [yi(wxi + b)− 1] , (13)

where µi is the Lagrange multiplier, which is nonzero for the support vectors. According to the
complementary slackness in KKT conditions,

µi [yi(wxi + b)− 1] = 0. (14)
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By taking the partial derivative of the Lagrange function of Equation (13) with respect to w and
according to the KKT conditions, we obtain

w =
n

∑
i=1

µiyixi. (15)

Therefore, the decision function of the SVM can be transformed to

f (x) = sgn

{
n

∑
i=1

µiyi(xi · x) + b

}
. (16)

Considering that the seismic signal discrimination problem is a linear non-separable case, the kernel
functions K(xi, xj) = ψ(xi) ·ψ(xj) are used to map the original input vector space to a high dimensional
feature space where an optimal hyperplane can be found [27].

4. Simulation and Experiment for Seismic Event Discrimination

In this section, the performance of the seismic event discrimination method using a SVM classifier
and a heterodyne laser interferometer is verified. As a precision seismometer, the laser interferometer
(Wavetronics: WT-307B) was used. The high performance of the laser interferometer-based precision
seismometer can be confirmed in [10]. The laser interferometer is installed on the optical table (EKSMA
Optics: 778-5060) to isolate the system from the vibration of a seismic wave. The linear motion stage
(Sciencetown: PSA6520) is activated by a two-phase stepping motor for the seismic event realization.
Figure 4 shows the seismic wave measurement system. In the experiment, the amplitudes (K1 and K2)
of the laser signal, the air refractive index (ζ), and the two-frequency beams ( f1 and f2) in Equation (3)
were 1 V, 1.00000002665, λ1 = 632.9912576 nm, and λ2 = 632.9912604 nm, respectively.

Figure 4. Seismic wave measurement using a laser interferometer.

Using the Hough transform method proposed in Section 2, the nonlinearity error was compensated
to increase the accuracy of the seismic signal measurement. Figure 5 shows a simulation result of
the nonlinearity error compensation by the Hough transform method for a linear stage that moves
following a triangular input command. In the figure, the thin dotted line is an uncompensated laser
interferometer signal, the thin solid line is a reference signal, and the thick solid line represents
the compensated signal. The compensation result was closer to the reference signal than to the
uncompensated signal, thereby validating the ability of the Hough transform compensation algorithm
in reducing the nonlinearity error. Therefore, the amplitudes of P-wave and S-wave can be measured
precisely through Hough transformation-based laser interferometric seismometer. To demonstrate
the performance of our proposed method, the simulation and experiment process were performed
following the three procedures. As a first step, we obtained the seismic dataset recorded by Sitting
Bull Academy station in Apple Valley, California. The dataset was measured and discriminated
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in 2017 by the United States Geological Survey (USGS) and the Incorporated Research Institutions
for Seismology (IRIS). The seismic dataset was used as training data for the configuration of SVM
classifiers. Unusual seismic events such as ultra-low frequency earthquakes were excluded as training
data. As a second step, the other seismic test dataset was selected in the same way. The acceleration
information of the selected dataset was used as an input to a linear stage for data reconstruction.
The seismic dataset reconstructed by a linear stage was measured by the Hough transform-based
heterodyne laser interferometer. As a third step, to discriminate the seismic data which were precisely
measured by the Hough transform-based laser interferometer, the SVM classifier was applied to
test data.
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Figure 5. Nonlinearity error compensation by Hough transform method.

For the simulation of the seismic discrimination, 20 earthquake and 20 explosion seismic data
with distances from 50 to 200 km were used to train the SVM classifiers. Both earthquake and
explosion seismic data were measured by the same station under the identical condition of geological
characteristics and measurement environment. By choosing different kernel functions, various SVM
classifiers can be built according to the same training data. As shown in Figure 6, the linear kernel
K(xi, xj) = xi · xj, the fifth polynomial kernel K(xi, xj) = ((xi · xj) + 1)5, and the RBF kernel K(xi, xj) =

exp(−‖xi − xj‖2/σ), (σ = 1, 0.14) were used to train the SVM, respectively. The x- and y-axis are the
amplitudes of the P-wave and the S-wave, respectively. The symbols of the asterisks represent the
earthquake data, and the cross symbols represent the explosion data, respectively. In addition, the
support vectors that determine the hyperplane are marked with circles. The selection of the parameter
(σ) in RBF kernel function is important since the decision of σ affects the discrimination accuracy and
causes the overfitting problem. In this study, we obtained the optimal parameter (σ = 0.14) through
some simulations with different σ values. As shown in Figure 6, the outstanding discrimination
performance of SVM with RBF kernel (σ = 0.14) is confirmed.
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Figure 6. SVM classifier with different kernel functions.

To prove the performance of the SVM classifier, the seismic signal that was observed by the USGS
and IRIS was reconstructed by the linear stage and measured by the heterodyne laser interferometer.
Then, to verify the accuracy of the seismic wave measurements, an accelerometer (Mitutoyo: JEP-8A3)
was mounted on the linear stage. The frequency response, measurement range, dynamic range, and
sensitivity of JEP-8A3 were 0–400 Hz, ±3000 Gal, 145 dB, and 0.306 V/(m/s2) ±3%, respectively.
Figure 7 shows an example of Ap and As of a reconstructed seismic signal. The linear stage was
activated to artificially simulate the earthquake and explosion data, and the seismic signals generated
by the linear stage were measured by the laser interferometer. The precisely measured seismic data,
of which the nonlinearity error was compensated through Hough transform method, were used as a
test seismic dataset to discriminate between earthquake and explosion. Then, to determine the new
seismic signal reconstructed by laser interferometer, we classified the seismic signal using SVM, which
was trained by 40 seismic data from USGS. Moreover, the seismic magnitude of training dataset was
restricted between 1.8 and 3.0. The SVM classifier using a RBF kernel function (σ = 0.14) was applied
to 40 new datasets. The test dataset has the same condition of magnitude 1.8 < M < 3.0 with training
data. Figure 8 shows the classification results of the reconstructed dataset with the linear stage and the
laser interferometer.
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Figure 7. Amplitudes of P-wave and S-wave using laser interferometer.

Figure 8. SVM classifier with RBF kernel function (σ = 0.14) using laser interferometer.

The receiver operating characteristic curve (ROC) and the area under the curve (AUC) were
adopted as effective measures of discrimination accuracy. The ROC curve is a graphical analysis tool
that was initially proposed in the field of the signal detection to select the optimal detecting model
or the detecting threshold of the optimum model [28]. The process of plotting the ROC curve is to
calculate the true positive rate (TPR) and the false positive rate (FPR) as the threshold of the classifier
is changed. The TPR is equal to the ratio of the true positive (TP) correctly classified by the system to
the sum of the TP and the false negative (FN) incorrectly classified by the system. TPR is obtained as
TPR = TP/(TP + FN). Likewise, FPR is defined as the ratio of the false positive (FP) to the sum of the
FP and the true negative (TN), FPR = FP/(FP + TN). When the threshold increases, it becomes more
difficult for the data to be classified as the positive class, leading to a simultaneous decrease in the
values of the TPR and FPR [29]. For an ideal classifier, the ROC curve should cross the coordinate (0, 1)
when an optimal threshold value is set, which means that all the positive data were correctly identified
and no negative data were classified as a positive class. According to the principle of the ROC curve,
the AUC can be used to evaluate the performance of the classifiers. While an ideal classifier has an
AUC value of 1, the AUC values of our tested SVM classifiers with the linear kernel, the fifth-order
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polynomial kernel, the RBF kernel with a σ of 1, and the RBF kernel with a σ of 0.14 are 0.83, 0.93, 0.90,
and 0.95, respectively, as shown in Figure 9.

Figure 9. ROC curve comparison for different SVM classifiers.

Then, to verify the performance of the SVM models, the evaluation indicators of the machine
learning classifier were applied in the form of a confusion matrix [30]. In Table 1, the precision
(TP/TP+FP), recall (TP/TP+FN), and AUC values of the tested machine learning models are listed.
According to Table 1, the SVM classifier using the RBF kernel function with σ = 0.14 performs best in
the test.

Table 1. Performance evaluation of SVM models.

Machine Learning Model Precision Recall AUC

Linear kernel SVM 0.78 0.85 0.83
5-th order polynomial SVM 1.00 0.85 0.93

RBF kernel SVM (σ = 1) 1.00 0.80 0.90
RBF kernel SVM (σ = 0.14) 1.00 0.90 0.95

Moreover, we confirmed the performance of our proposed discrimination method by comparing
the results of SVM classifiers for different test datasets as shown in Figure 10 and Table 2. In Figure 10,
the solid lines denote the ROC curves of linear and RBF (σ = 0.14) kernel-based SVM classifiers
using the accelerometer measurement data, respectively. The dashed and dotted lines represent the
ROC curves of SVM classifiers using seismic datasets of which the nonlinearity error is compensated
and uncompensated, respectively. As shown in Figure 10 and Table 2, the RBF kernel-based SVM
classifier denotes the better performance compared to linear kernel-based classifier in all test datasets.
Moreover, the discrimination using seismic data compensated by Hough transform shows outstanding
performance in both linear and RBF kernel-based SVM classifications.
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Figure 10. ROC curve comparison for different test datasets.

Table 2. Performance evaluation of SVM models for different test datasets.

Measurement Method Precision Recall AUC

Linear (accelerometer) 0.81 0.65 0.70
Linear (laser interferometer) 0.75 0.75 0.75

Linear (laser interferometer+Hough) 0.78 0.85 0.83
RBF with σ = 0.14 (accelerometer) 0.86 0.80 0.83

RBF with σ = 0.14 (laser interferometer) 0.96 0.85 0.90
RBF with σ = 0.14 (laser interferometer+Hough) 1.00 0.90 0.95

5. Conclusions

In this paper, a SVM-based seismic discrimination method is proposed by using the amplitudes
of the P-wave and the S-wave as the feature vectors. A heterodyne laser interferometer was used to
obtain precise data of the seismic wave. Hough transformation method was applied to compensate for
the nonlinearity error of the measurements and to obtain accurate feature vectors from the body wave.
Moreover, the decision function of the SVM classifier was set by the collected past data and the selected
kernel function. As a new seismic signal is collected, earthquake discrimination can be executed using
the decision function of the SVM with the additional input data. As a result, seismic discrimination
using SVM and the laser interferometer has shown a high discrimination accuracy. The improved
performance of the seismic signal measurement using Hough transform-based laser interferometer was
proved with simulation results. Moreover, the effectiveness of our proposed discrimination algorithm
was confirmed through the results of ROC and AUC.
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