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Abstract: Prognostics and health management technology (PHM), a measure to ensure the reliability
and safety of the operation of industrial machinery, has attracted attention and application adequately.
However, how to use the monitored information to evaluate the degradation of rolling bearings is a
significant issue for its predictive maintenance and autonomic logistics. This work presents a reliable
health prognosis approach to estimate the health indicator (HI) and remaining useful life (RUL) of
rolling bearings. Firstly, to accurately capture the degradation process, a novel health index (HI)
is constructed based on correlation kurtosis for different iteration periods and a Gaussian process
latency variable model (GPLVM). Then, a multiple convolutional long short-term memory (MCLSTM)
network is proposed to predict HI values and RUL values. Finally, we perform experimental datasets
of rolling bearings, demonstrating that the presented method surpasses other state-of-the-art prognosis
approaches. The results also confirm the feasibility of the presented method in industrial machinery.

Keywords: Gaussian process latency variable model; multiple convolutional long short-term memory
network; rolling bearing; remaining useful life

1. Introduction

Since the development of manufacturing technology, the structure of machinery tends to be
integrated, complicated and intelligent; meanwhile, health management technology of mechanical
equipment has received increasing research attention [1–3]. The core problem of health management
is how to predict the remaining useful life (RUL) through the monitoring data accurately, and then
determine the optimal maintenance opportunity. By minimizing the economic cost or risk of equipment
failure, condition-based predictive maintenance and autonomous maintenance can be realized [4].
Therefore, it is still a great challenge for RUL prediction research of rolling bearings based on vibration
data [5,6].

Nowadays, the RUL prediction methods of rolling bearings can be divided into two categories,
i.e., model-based and data-driven approaches. Model-based approaches are mainly based on
fracture mechanics, damage mechanics, stress, strain and other methods [7–9]. El-Tawil et al. [10]
developed a prognostic methodology based on nonlinear damage to predict the RUL of the system.
Pu et al. [11] studied the effect of sliding motion on the contact fatigue life of bearings. Wang et al. [12]
investigated a hybrid prognosis approach for machine condition prognosis of bearings in a wind
turbine. Cubillo et al. [13] presented a potential physics based on the prediction model for rotating
machinery to describe the degradation process of the machinery. Chadli et al. [14] developed a
novel method based on the design of distributed state estimation and fault detection and isolation
filters, and its effectiveness was illustrated by a numerical example. Qian et al. [15] presented a
modified Paris crack growth model to describethe bearings’ defect propagation on a slow-time scale,
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and phase space warping was enhanced by a multi-dimensional auto-regression model for RUL
prediction. Chadli et al. [16] studied a polynomial fuzzy filter to solve the issues of fault detection. The
model-based approaches can get deep into the essence of the target machine and get more accurate
prediction results when predicting the degradation trend and remaining useful life. However, in the
majority of engineering applications, it is difficult to establish a specific mathematical model that
reflects the mechanical and physical laws of performance degradation.

The data-driven approaches can genuinely reflect the dynamic behavior of the monitoring object,
and it is easy to adjust the model parameters and update the trend of performance degradation, which
makes it develop and apply [17,18] rapidly. In general, data-driven RUL prediction includes four main
processes [7]: data acquisition, feature extraction, degradation behavior learning and RUL estimation.
An online performance evaluation method was proposed to predict the remaining life of a turbine [19].
Javed et al. [20] developed a novel approach using wavelet extreme-learning for RUL estimation task
of bearings. Liu et al. [21] proposed an integrated framework to track the degradation state of bearings.
With the development of sensor technology, data explosion has become a new problem of bearing
remaining life prediction, which has made artificial intelligence technology develop rapidly in recent
years. Zhang et al. [22] constructed a long short-term memory (LSTM) network to predict the RUL of
mechanical equipment and verified the advantages of LSTM in RUL prediction by using C-MAPSS
datasets. Zhao et al. [23] presented a recurrent neural network (RNN) means for RUL prediction
based on trend characteristics, and the effect of the presented method outperformed the other latest
methods. Wang et al. [24] proposed a novel recurrent convolutional neural network for RUL prediction
of rolling element bearings and milling cutters. Chen et al. [25] employed a new gated recurrent unit,
and the C-MAPSS datasets verified the robustness of the proposed method. Although these methods
are widely used in machinery prognostics, they have their drawbacks. The deep learning model is
still insufficient to extract the spatial and temporal characteristics of time series data. However, the
recurrent neural network can effectively obtain the temporal characteristics, but ignores the spatial
characteristics of time series data.

To solve the aforementioned problems, the current paper presents a novel estimation method for
health indicator (HI) and RUL prediction of rolling bearings. Firstly, the correlation kurtosis of different
iteration periods is extracted from the frequency-domain data, and then a novel HI is obtained by a
Gaussian process latency variable model (GPLVM). Following that, a prognosis model, the so-called
multiple convolutional long short-term memory (MCLSTM), is proposed to predict future HI and the
RUL. Finally, the feasibility of the present approaches was validated by bearing experiment datasets.

The main contributions of this paper are summarized as follows:
(1) A special HI is constructed based on correlation kurtosis for different iteration periods and

GPLVM. The HI can effectively depict the degradation process of rolling bearing.
(2) A novel deep prognosis network, i.e., MCLSTM, is presented to mine the temporal–spatial

correlation of rolling bearing, which improves the accuracy of the HI and RUL estimations considerably.
(3) We verify the capability of the proposed approach based on experimental datasets of rolling

bearing. The results show that MCLSTM achieved better performance than the state-of-the-art
prognosis approaches.

The remainder of the paper provides a theoretical background in Section 2. Section 3 presents the
proposed deep learning model for prediction. The experimental results and thorough discussion are
given in Section 4. Finally, Section 5 concludes the whole work.
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2. Theoretical Background

2.1. HI Construct

In the field of fault diagnosis, kurtosis is an essential index to detect the health condition of
mechanical equipment [26], which can be defined as follows:

Kurtosis =

1
n

N∑
n = 1

x4
n

( 1
n

N∑
n = 1

x2
n)

2 (1)

where x denotes the signal sequence, n denotes the sampling points. However, kurtosis is difficult to
reflect the intensity of the specific periodic pulse signal in the vibration signal. To tackle this problem,
correlation kurtosis (CK) [27] is proposed based on the kurtosis.

CKM(T) =

N∑
n = 1

(
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xn−mT)

2
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x2

n

)M+1
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where N denotes the number of sampling points of the signal, M denotes the number of the shift cycles,
and T denotes the sensitive cycles. When T = 0 and M = 1, Equation (2) is equal to Equation (1).
It can be found from Equation (2) that the CK has the characteristics of the periodic correlation function.

Fourier transform the time-domain signal x(t) to frequency-domain signal y(t). Then calculate
the CK value at different offset points, which can be formulated as:

y(t) =
∫ +∞

−∞

x(t) exp(−iωt)dt (3)
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(
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2
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N∑
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y2

n)
M+1

(4)

As Equation (4) shows, T and M are unknown variables. If the number of offset points T is
regarded as a variable, and M is defined as specific values, then a multi-dimensional matrix of CK
values can be calculated by Equation (4).

2.2. Gaussian Process Latency Variable Model

Dimension disaster is a prevalent problem in statistics and machine learning [28]. Due to the high
dimensionality of the data, a complex calculation is indispensable in the data processing. Therefore, it is
vital to discover an excellent dimensionality reduction which can obtain the potential low dimensional
structure information from high dimensional data [29]. GPLVM, a flexible Bayesian nonparametric
model, has been applied to dimensionality reduction of the signal in the past few decades [30].

GPLVM assumes that the observed dataset Y = [y1, y2, · · · , yN]
T
⊂ RD is composed of n

d-dimension data; the q-dimension dataset X = [x1, x2, · · · , xN]
T
⊂ RQ is obtained after dimension

reduction. Then, the ith training sample is defined as follows [29]:

yi = f (xi) + ε (5)
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where f denotes the nonlinear function with Gaussian process(GP) prior f ∼ GP(0, K), ε denotes the
noise with Gaussian distribution ε ∼ N(0, δ2).

By using the Bayes theorem and integrating f , then we can know the marginal likelihood p(Y|X ,θ),
which is formulated as:

p(Y|X,θ ) =
D∏

j = 1

1

(2π)
1
2 |K|

1
2

e−
1
2 yT

:, jK
−1 y:, j (6)

where K denotes the kernel function, θ denotes the hyper-parameters of both kernel function and noise,
and y:, j denotes the jth column of matrix Y.

The object function of GPLVM can also be derived from probabilistic principal component analysis
(PPCA). In PPCA, we assume that the parameter matrix W follows a prior Gaussian distribution [30],
which is expressed as:

p(W) =
D∏

i = 1

N(wi|0, I ) (7)

After that, we can obtain the marginal likelihood probability by integrating out W, which can be
described as follows:

p(Y|X , β) =
D∏

d = 1

N(y:,d
∣∣∣0, XXT + β−1 I) (8)

As Equation (8) shows, GPLVM can be equivalent to PPCA by replacing XXT in Equation (8) with
a kernel matrix K [31].

2.3. LSTM Theory

As an improved recurrent neural network, LSTM neural network overcomes the drawbacks of
an exploding gradient or the vanishing of RNN [32]. Additionally, it has a strong ability to capture
the dynamic characteristic through cycles in sequential data. Moreover, LSTM adds a memory cell
structure to the neurons in the hidden layer, which reduces the number of unknowns significantly.

In Figure 1, the LSTM hidden layer cell structure is presented, which can be made up of memory
cell, input gate, output gate and forget gate. Among them, the memory cell remembers the activation
value over any time intervals, and three gates regulate the input and output of information flow to the
unit [33]. The update functions are formulated as follows:

it = σ(Whiht−1 + Wxixt + Wci � ct−1 + bi)

ft = σ(Wh f ht−1 + Wx f xt + Wc f � ct−1 + b f )

c̃t = tanh(Whcht−1 + Wxcxt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Whoht−1 + Wxoxt + Wco � ct + bo)

ht = ot � tanh(ct)

(9)

where � denotes the Hadamard product; σ denotes the sigmoid function; it, ft, ct and ot denote
the outputs of input gate, forgetting gate, memory cell and output gate, respectively; Wxi, Whi and
Wci denote the weight matrix of input information, last time output and memory cell to input gate,
respectively; Wx f , Wh f and Wc f denote the weight matrix of input information, last time output and
memory cell to forgetting gate, respectively; Wxo, Who and Wco denote the weight matrix of input
information, last time output and memory cell to output gate, respectively; bi, b f , bc and bo denote the
bias of input information, forgetting information, memory cell and last time output, respectively and
tanh(·) denotes the hyperbolic tangent function.
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(CNN) is a feedforward neural network in deep learning models. The convolutional layer and 
pooling layer are two critical layers of convolution neural network. In most cases, a convolutional 
layer is a useful tool for extracting sophisticated high-dimensional input features [34], and the pooling 
layer can reduce the space size of the input convolution layer and avoid overfitting of the network. 
CNN has a strong ability to extract features from the input, and it is widely applied in the field of 
image processing and text recognition [35-36]. 

As a deep learning model unit, convolutional long short-term memory (ConvLSTM) combined 
CNN and LSTM is specially designed for spatiotemporal sequence [37] and the structure is shown in 
Figure 2. LSTM has shown considerable power in dealing with temporal correlation issues, but it 
contains too much spatial redundancy. To overcome the limits, ConvLSTM integrates convolutional 
operation in the input-to-state and state-to-state transitions. Furthermore, ConvLSTM offers an 
outstanding generalization by increasing computational power, and the update functions are 
expressed as [38]:  
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2.4. Architecture of the Proposed Network

Inspired by the receptive field of mammalian visual cortex cells, Convolutional neural networks
(CNN) is a feedforward neural network in deep learning models. The convolutional layer and pooling
layer are two critical layers of convolution neural network. In most cases, a convolutional layer is a
useful tool for extracting sophisticated high-dimensional input features [34], and the pooling layer
can reduce the space size of the input convolution layer and avoid overfitting of the network. CNN
has a strong ability to extract features from the input, and it is widely applied in the field of image
processing and text recognition [35,36].

As a deep learning model unit, convolutional long short-term memory (ConvLSTM) combined
CNN and LSTM is specially designed for spatiotemporal sequence [37] and the structure is shown
in Figure 2. LSTM has shown considerable power in dealing with temporal correlation issues, but it
contains too much spatial redundancy. To overcome the limits, ConvLSTM integrates convolutional
operation in the input-to-state and state-to-state transitions. Furthermore, ConvLSTM offers an
outstanding generalization by increasing computational power, and the update functions are expressed
as [38]: 

it = σ(Whi ∗ ht−1 + Wxi ∗ xt + Wci � ct−1 + bi)

ft = σ(Wh f ∗ ht−1 + Wx f ∗ xt + Wc f � ct−1 + b f )

c̃t = tanh(Whc ∗ ht−1 + Wxc ∗ xt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Who ∗ ht−1 + Wxo ∗ xt + Wco � ct + b0)

ht = ot � tanh(ct)

(10)
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As Equation (10) shows, all notations in Equation (10) are the same as those in Equation (9). The
difference between them is that the it, ft, and ct are all calculated by convolutional operation, i.e., ∗.

Due to the time–space correlation of the vibration signal in the degradation process of rolling
bearing, a new prognosis model based on MCLSTM is proposed. Specifically, the MCLSTM is
constructed by stacking multiple ConvLSTM units, and then batch normalization [39] technology is
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added between each ConvLSTM layer. After that, a dense layer is employed. Finally, the regression
layer is built on the last layer.

3. The Proposed Framework

To evaluate the rolling bearings degradation, a novel prognosis approach is presented in this paper.
Firstly, HI is carefully designed by correlation kurtosis for different iteration periods and GPLVM.
Then, a novel prognosis network, i.e., MCLSTM is constructed by stacking multiple hidden layers. At
last, experimental results confirm the feasibility and superiority of the presented method. The detailed
steps of the proposed approaches are illustrated and the corresponding flowchart is shown in Figure 3.Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 
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was 20 kHz, the sampling interval was 10 min, and the rotation speed was 2000rpm. Under the same 
experimental conditions, three groups of experiments were carried out, and each of which collected 
the vibration signal of four bearings from the normal to failure. In this paper, the experimental data 
of bearing 1 (outer ring failure) in the second group of experiments were selected for analysis, 
including 984 groups of vibration signals.  

Figure 3. A flowchart of the proposed method.

(1) Data acquisition: The accelerometer is placed in the horizontal and vertical directions of the test
bearing, and obtained the whole life experimental data of the rolling bearing. The sampling frequency
of experimental data is 20 kHz, the sampling interval is 10 min, and the rotation speed is 2000rpm.



Sensors 2020, 20, 1864 7 of 16

(2) HI designed: The correlation kurtosis values of frequency domain signals with different iteration
periods by Equation (4) are calculated from the experimental data. GPLVM is utilized for fusing the
correlation kurtosis of the different iteration periods, and the low dimensional sensitive features are
selected as the HI of rolling bearing.

(3) Proposed neural network: The prognostics neural network is constructed by stacking multiple
ConvLSTM units, and batch normalization technology is added between each ConvLSTM layer. The
last two layers are the dense layer and regression layer. The network parameters are set as: the number
of iterations is 200, the convolution kernel size is 3 × 3 the activation is sigmoid, the filter is 64, the loss
function is mean square error, the optimizer is Adam.

(4) HI and RUL prediction: The designed HI is input into the proposed neural network to predict
the future HI and RUL of rolling bearings. As a result, the health status of rolling bearings is evaluated,
and the maintenance plan is provided with reference.

4. Case Verification

4.1. Data Description

In our case, a full-life-cycle experimental datasets of rolling bearings is indispensable to verify
the feasibility of the proposed method. The experimental datasets were carried out on an accelerated
aging platform by the center for Intelligent Maintenance Systems (IMS) [40], and the test rig structure
is displayed in Figure 4. The test rig consists of four bearings of type Rexnord za-2115, mechanical
spring system and motor. The mechanical spring system imposes radial load to the shaft and bearing,
and the motor drives the test bearing to run. Two accelerometers were placed in the horizontal and
vertical directions of each bearing to pick up vibration data. The sampling frequency of vibration data
was 20 kHz, the sampling interval was 10 min, and the rotation speed was 2000rpm. Under the same
experimental conditions, three groups of experiments were carried out, and each of which collected
the vibration signal of four bearings from the normal to failure. In this paper, the experimental data of
bearing 1 (outer ring failure) in the second group of experiments were selected for analysis, including
984 groups of vibration signals.Sensors 2020, 20, x FOR PEER REVIEW 8 of 17 
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4.2. Evaluation Indexes

For the sake of confirming the performance of the presented method, appropriate evaluation
indexes are required. In this paper, we selected four indexes to judge the performance of the different
models for remaining useful life estimation of rolling bearings, including the root mean square error
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(RMSE), the mean absolute percentage error (MAPE), mean absolute error (MAE) and the R-Square.
The evaluation indexes are described as:

RMSE =

√√√
1
N

N∑
i = 1

(
yi − ŷi

)2
(11)

MAPE =
1
m

m∑
i = 1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣ (12)

MAE =
1
m

m∑
i = 1

∣∣∣(yi − ŷi)
∣∣∣ (13)

R− Square = 1−

m∑
i = 1

(yi − ŷi)
2

m∑
i = 1

(yi − yi)
2

(14)

where yi and ŷi denotes the actual value and predicted value. y denotes the mean value of the actual
values. m denotes the total number of testing samples.

4.3. Health Stage Division Analysis

In this part, the health stage division is analyzed. To cope with the problem of RUL prediction, it is
crucial to capture the degradation tendency from historical information. In this paper, we constructed
a novel HI to describe the trend of bearing performance degradation. The time-domain waveform of
the test rolling bearing is exhibited in Figure 5a. It can be observed that the amplitude of the vibration
data starts to increase at about 7000 min. With the aggravation of the bearing fault, the amplitude
of the vibration signal also increases until the experiment is stopped. As shown in Figure 5b, at the
beginning of the bearing operation, the HI cure is stable without fluctuation. The HI value gradually
rises, which can be observed at 5350 min, indicating incipient degradation of bearing. Then, there
are prominent peaks and valleys in the curve. The peaks indicate that the degree of bearing wear
has reached the maximum value at this stage. Subsequently, the curve begins to decline, which is
the so-called healing phenomenon. The failure point of the rolling bearing gradually wears out and
becomes smooth under the impact of the influence of impact force, which makes the HI curve decrease.
According to the above analysis, we can determine the bearing damage evolution process through
the HI curve and then estimate the current degradation stage of the bearing. Therefore, in this paper,
we divide the stage of bearing performance degradation into four types: normal stage (stage 1),
initial degradation (stage 2), moderate degradation (stage 3), and severe degradation (stage 4).

To further verify the inferences, we selected different stage vibration data for time-domain
analysis and envelope demodulation analysis. Figure 6 shows the analysis results on the various
stage data. Obviously, it can be observed in Figure 6 that there are obvious differences in the time
domain waveform, and we can further analyze this through the envelope demodulation waveform.
In the envelope demodulation waveform, we cannot find the characteristic fault amplitude at 550 min
(Figure 6a), and the bearing is healthy. When the bearing runs to the 5350 min (Figure 6b), we can
find the envelope amplitude appears 231.5 Hz, i.e., the characteristic frequency of outer ring fault and
its second frequency, which indicates that the bearing has failed. With the operation time increase,
the amplitude of fault characteristic frequency continues to increase, and the bearing degradation
is further intensified. It should be noted that the amplitudes of 230.7 and 460.8 Hz in envelope
demodulation waveform have nearly the same at 7040 and 8500 min, respectively (Figures 6c and 6d).
Simultaneously, we can also observe that the HI values of these two time points are approximately the
same, which verifies the feasibility and necessity of HI.
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4.4. RUL Prediction

In this section, some factors that may affect the prediction performance of MCLSTM are discussed
in detail, including the iteration times and optimizer. Then, HI prediction value started from different
time points are further discussed. At last, the performance of the proposed method for RUL estimation
is analyzed.

(1) Effect of the number of iterations: The number of iterations is a critical hyper parameter in
network structure, whose size may affect the computational cost of the proposed method. In this
paper, we directly use multiple stacked units to form a prediction model, in which the filter is valued
of 64, and the convolution kernel size is set to 3 × 3. The relationship between the loss function,
i.e., prediction error and the number of iterations is shown in Figure 7. It can be observed that when
the number of iterations is 200, the prediction error is already small enough. When the number of
iterations is 200, the loss curve shows no fluctuation. In Figure 8, MAPE and operation time of different
numbers of iterations are calculated, respectively. We can draw several conclusions: 1) As the number
of iterations increases, the MAPE value decreases, indicating that the prediction performance is better.
2) As the number of iterations increases, the prediction model training time increases, but the time gap
is only a few seconds. In total, it is proper that the number of iterations of the prediction model is 200.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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(2) Effect of the optimizer: When the model updates the network weight and bias parameters,
the choice of the optimizer directly affects the accuracy of the prediction results. It is critical to choose
the optimizer of the prediction model when updating the model weights and bias parameters. We
choose four typical optimizers (Adam, RmsProp, Adagrad and SGD) to train the prediction model.
Furthermore, the values of MAE, RMSE, R-Square, MAPE and training time are calculated to verify
the performance of the prognostic model, respectively. From Table 1, it can be seen that the Adam
optimizer has better performance compared with the other optimizers, and the optimizer for model
training is Adam in this paper.

Table 1. Evaluation indexes of different optimizers.

Optimizer MAE RMSE R-Square MAPE Training Time(s)

Adam 7.90× 10−6 7.91× 10−3 0.999 1.257 19.07
RmsProp 4.41× 10−3 4.41× 10−3

−2.336 289.63 16.86
Adagrad 6.47× 10−3 9.01× 10−5 0.9187 118.4 16.88

SGD 3.83× 10−3 4.38× 10−3
−2.336 944.71 17.15
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(3) HI and RUL prediction: In this part, the HI and RUL prediction of rolling bearing is conducted.
In Section 4.3, we divided the bearing full-life signals into four stages and used the proposed prediction
model to predict the future HI. We input the previous samples at this time as training data into the
model randomly, and the remaining samples are regarded as testing to detect the model capacity. It can
be seen from Figure 9 that the prediction starts from three different moments when T = 5350 min,
T = 7040 min and T = 8500 min, respectively, and we can conclude that the proposed model can
accurately predict the trend change of future HI. The RUL prediction results demonstrated in Figure 10,
the blue curve is a 20% confidence interval of the actual value, and we can see that the error between
the predicted value and the actual value is small.
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4.5. Comparison with Other Methods

In this part, three state-of-the-art approaches are implemented to predict HI and RUL of the
bearing vibration signals for comparison, which includes BPNN, LSTM and GRU. The structure of
these methods are chosen as 10-5-1, 64-10-1, and 64-10-1, respectively, and the learning rate is chosen
as 0.001, and the number of iterations is chosen as 200. Figure 11 exhibits the HI prediction results of
the four methods. It should be noted that the proposed method achieves the outstanding predictive
performance, and the predicted HI is closer to the actual values than other approaches. In Figure 12,
the curves of the proposed method, LSTM, and GRU mostly lie in the confidence interval, while the
curves of BPNN overstepping the boundary in the later prediction stage. This indicates that the
presented method outperforms the other three models, GRU slightly better than the LSTM, and BPNN
has the maximum deviation.
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Afterwards, as tabulated in Tables 2 and 3, the demonstrated results give further details. Table 2
shows the results of estimated RUL values at different times. It is clearly seen that the proposed
method provides more accurate estimation results compared with other approaches. In Table 3, it can
be summarized that the proposed prognostics model has shown an excellent prognostic performance
compared with the other three approaches at different stages, according to the evaluation indicators of
MAE, RMSE, R-Square and MAPE.

Table 2. Estimated RUL results of the four approaches.

Method Inspection Time Actual RUL Estimated RUL Prediction Error

GRU
540 444 448.2 −0.009
704 280 283.1 −0.011
982 2 3.788 −0.894

LSTM
540 444 462.6 −0.004
704 280 289.3 −0.033
982 2 4.117 −1.058

BPNN
540 444 472.5 −0.064
704 280 329.1 −0.175
982 2 8.335 −3.167

The proposed method
540 444 446.0 0.004
704 280 280.8 −0.0028
982 2 1.553 0.2235
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Table 3. Performance comparison of four prognostic methods at different stage.

Method Start Forecast time MAE RMSE R-Square MAPE

GRU
535 6.866 7.335 0.965 40.19
705 14.89 17.10 0.954 58.51
850 20.68 25.28 0.969 58.22

LSTM
535 13.88 17.68 0.982 44.76
705 15.86 18.22 0.9487 62.79
850 15.24 16.16 0.832 87.23

BPNN
535 47.54 49.27 0.862 89.78
705 149.9 151.7 −2.550 389.6
850 106.2 106.7 −6.285 471.1

The proposed method
535 0.9161 1.153 0.999 inf
705 0.726 0.766 0.999 inf
850 1.958 2.204 0.997 inf

5. Conclusions

The reliable prognosis technique for rolling bearing predictive maintenance and autonomic
logistics is urgently needed in the industry. To address the important issues, we provided a reliable
prognosis approach for degradation evaluation of rolling bearing in this study. The correlation
kurtosis for different iteration periods and GPLVM is adopted to extract the special HI. Following
this, a prognostics model, i.e., MCLSTM, is constructed and utilized for predicting future HI and
RUL. The proposed MCLSTM is experimentally validated using the full-life-cycle vibration dataset
of a rolling bearing. Through a comparison of different classical deep learning methods, the results
validate that the proposed approach was more robust and effective than other approaches for HI and
RUL estimation.

It should be noted that more extensive studies and complex operating conditions will validate
the feasibility and effectiveness of the presented method in future work. In addition, the time to start
prediction and threshold determination are both significant and challenging in HI and RUL prediction.
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