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Abstract: The Inertial Navigation System (INS) is often fused with the Global Navigation Satellite
System (GNSS) to provide more robust and superior navigation service, especially in degraded
signal environments. Compared with loosely and tightly coupled architectures, the Deep Integration
(DI) architecture has better tracking and positioning performance. Information is shared among
channels, and the assistant information from INS helps to reduce the dynamic stress of tracking
loops. However, this vector tracking architecture may result in easy propagation of errors among
tracking channels. To solve this problem, a Fault Detection and Exclusion (FDE) method for the
deeply integrated BeiDou Navigation Satellite System (BDS)/INS navigation system is proposed
in this paper. This method utilizes pre-filters’ outputs and integration filter’s estimations to form
test statistics. These statistics can help to detect and exclude both step errors and Slowly Growing
Errors (SGEs) correctly. The monitoring capability of the method was verified by a simulation which
was based on a software receiver. The simulation results show that the proposed FDE method works
effectively. Additionally, the method is convenient to be implemented in real-time applications
because of its simplicity.
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1. Introduction

The Chinese BeiDou Navigation Satellite System (BDS) plays an important role in GNSS, and it
has been able to provide positioning and navigation service to global users since 28 December 2018 [1].

Position and velocity solutions based on GNSS are not subject to error accumulation by nature.
However, in degraded signal environments, satellite signals are easily interrupted by building
blocks, interference, and jamming [2]. For urban area navigation, the received signal intensity is
typically 10–30 dB lower than the actual level of open environments [3]. In high dynamic scenarios,
the bandwidth of the GNSS receiver is a tradeoff between dynamic adaptation and noise suppression
[4]. Furthermore, the GNSS receiver usually cannot estimate the attitude of the user. In contrast,
the INS is immune to interference and jamming. It has superior dynamic adaptation ability, and it
supports attitude estimation. However, the INS is subject to error accumulation. All types of INS
exhibit biases, scale factor and cross-coupling errors, and random noise to a certain extent. Therefore,
the INS needs to be calibrated by the INS alignment and/or integration algorithms when it is used [5].

The integration of GNSS and INS can provide more accurate and reliable navigation information
than either system alone, primarily in degraded signal environments. Traditional integration employs
a loosely- or tightly-coupled architecture. The Deep Integration (DI) is promoted as having a superior
performance to loose and tight coupling in scenarios with low C/N0 ratios. In a deeply integrated
system, the INS can measure vehicle dynamics, which is fed into receiver tracking loops to reduce the
tracking loop bandwidth and improve satellite signal acquisition ability. Furthermore, lowering the
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bandwidth results in greater noise suppression. In turn, the performance of the receiver is to be
improved because of longer time integration and optimization of tracking loop parameters [6].
Edwards et al. described the implementation details of an embedded deeply integrated Global
Positioning System (GPS)/INS software receiver on an FPGA platform [7]. A federated ultra-tightly
coupled (UTC) algorithm based on pre-filters is proposed and the performance in high dynamic
environments of the system is presented in [8]. The performance of a non-coherent deeply integrated
navigation algorithm is compared with a tightly coupled navigation algorithm [9]. In [10], field tests
of a UTC architecture with a Micro-Electro-Mechanical System (MEMS) IMU are performed both in
indoor and outdoor environments.

There are mainly two deeply integrated architectures, named centralized filtering architecture
and federated filtering architecture [5,11], respectively. Several DI varieties are compared in [6].
The centralized filter estimates INS and clock errors from I-Q integration values updated with high
frequency and the dimension of the model is high. This architecture suffers from a heavy computation
burden due to the complicated design, which is a problem for hardware implementation. In the
federated architecture, the signals are firstly processed by a batch of pre-filters and then sent to the
integration filter, which is updated with lower frequency. The dimension of the integration filter also
decreases. The deep integration architecture proposed in this paper is a federated one based on the
one in [12].

The GNSS receiver tracking structures can be classified into scalar tracking and vector tracking.
In the scalar tracking loop, each channel only processes the input signal of its own. On the other
hand, the vector tracking loop adjusts the Numerically Controlled Oscillator (NCO) by generating
commands using the receiver’s velocity and position. In this approach, all the tracking channels
share tracking information from each other, which is beneficial for strong signals assisting the weak
signals’ reception. Hence, the vector tracking loop presents more superior performance than the scalar
loo [6,13]. The deeply integrated BDS/INS navigation system whose NCO commands are generated
from estimated or predicted solutions of the whole system has similar architecture and advantages
with the vector tracking loop. While the vector tracking architecture provides an effective solution for
dealing with situations in signal attenuation environments, it also allows easy propagation of errors
among tracking loops [14]. The fault in a channel of the vector tracking system not only affects this
channel’s measurements but also manifests itself in other channels’ measurements. This may easily
cause the integrated filter to diverge.

The principle of Receiver Autonomous Integrity Monitoring (RAIM) is to use the least square
or parity space vector algorithm to detect and exclude the faulty satellite using multiple redundancy
measurements and obtaining the positioning integrity in time [15,16]. An algorithm detecting SGEs
for a tightly integrated GPS/INS system which belongs to the scalar architecture is proposed in [17,18].
The authors suggested a rate detector based on the Autonomous Integrity Monitoring by Extrapolation
Method (AIME) algorithm for SGE and a modification to the original algorithm is shown in [19]. There is
extensive research on RAIM for the scalar tracking architecture [20–22], but it is unsuitable for application
in vector tracking architecture because of easy propagation of errors among channels [23]. For deep
integration and vector tracking architecture, few researchers concentrate on the identification and
exclusion of fault channels. In [24], the pseudorange and pseudorange rate residuals computed from the
code and carrier discriminators of every tracking loop are used as test statistics to analyze and determine
interferences’ existence and which tracking channel is interfered. Zou et al. [25] proposed a novel robust
algorithm based on a convolutional neural network (CNN) which can successfully suppress the fault
propagation, but CNN is not suitable for the applications with the high real-time requirement.

A fault detection and exclusion method for the deeply integrated BDS/INS system is proposed in
this paper. It can detect and exclude both step error and SGE effectively and it can be implemented
in real-time application conveniently. A simulation test based on a software receiver was carried
out for verification of RAIM algorithm monitoring ability. The remainder of this paper is organized
as follows. Section 2 describes the framework of the deeply integrated BDS/INS system and the
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principles of pre-filters and integration filter. In Section 3, the fault detection and exclusion method
for the integrated system with a vector loop architecture is introduced. Following this, the simulation
setup and the performance results of the FDE method are provided in Section 4. Finally, in Section 5,
concluding remarks and future work close this paper.

2. Deeply Integrated BDS/INS System

2.1. Implementation of DI BDS/INS System

The framework of the deeply integrated BDS/INS navigation system is presented in Figure 1.

Figure 1. The framework of the deeply integrated BDS/INS navigation system.

In the deeply integrated BDS/INS System, as shown in this figure, the Intermediate Frequency
(IF) signal from the Radio Frequency (RF) Front End is mixed with a local replica of the carrier to obtain
in-phase and quadrature-phase signals. The signals are then transmitted to the receiver’s correlators,
which can correlate in-phase and quadrature-phase signals with the one-half chip early, prompt,
and one half chip late replica codes in N satellite tracking loop channels. The I-Q integration values of
the correlators are further processed by pre-filters. The pre-filters can estimate the tracking errors and
their covariances. Then, the outputs from all channels are sent to the RAIM and integration Kalman
filter module. The RAIM module can identify and exclude faults in the satellite signal. The integration
filter estimates a vector of error states which can periodically correct INS outputs, biases of the IMU
and the clock bias and drift. The specific force and angular rate measurements collected by IMU are
sent to the Inertial Navigation Processor to obtain high-frequency position and velocity estimates.
Then, using Ephemerides, the receiver status is projected along the line of sight of each satellite
to generate NCO commands, which control the generation of local carrier and code. Because all
the satellite tracking channels share the dynamic information with each other and every satellite is
integrated with the IMU, the tracking and positioning performance of the whole system is improved.

2.2. Pre-filters Based on Extended Kalman Filter (EKF)

There is one pre-filter for each channel to estimate tracking errors and their covariances.
The structure of the pre-filter is based on the model described in [26]. The Intermediate Frequency (IF)
signal for a visible BDS satellite can be modeled as follows [4]:

r(t) = AS · D · C(t− τ) · cos(2π( f I F + f )t + φ0) + n(t) (1)
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where As represents the signal amplitude, D is the data modulation, t is time, C is the pseudorandom
noise (PRN) code modulation, τ is the code delay in chips, f I F is IF in Hz, f is the carrier Doppler
frequency in Hz, φ0 is the initial carrier phase, and n is additive white Gaussian noise.

After an integrate-and-dump operation, six baseband integral values IE,P,L and QE,P,L can be
obtained from the correlator outputs at the end of the integration interval. IE,P,L and QE,P,L represent
the early, prompt, and late In-phase/Quad-phase values, respectively.

Im = AN ·
sin( δωT

2 )
δωT

2

· R(δτ + ∆m) · cos(δφ) + nIm (2)

= A · R(δτ + ∆m) · cos(δφ) + nIm

Qm = AN ·
sin( δωT

2 )
δωT

2

· R(δτ + ∆m) · sin(δφ) + nQm (3)

= A · R(δτ + ∆m) · sin(δφ) + nQm

where m = E, P or L, AN is the signal amplitude, R(·) represents the code normalized correlation
function, ∆E = −d/2, ∆P = 0, ∆L = +d/2 (d is the time difference between the late and early
correlators, usually 1 chip), T is the coherent integration time interval, and nIm and nQm are the noise
component of the In-phase and Quad-phase values. Since the attenuation due to frequency error is
difficult to separate, the sin(x)/x term and AN are combined into A. δφ is the average carrier phase
error over the integration interval and it can be further expanded as [27,28]

δφ = δθ + δω
T
2
+ δα

T2

6
(4)

where δθ, δω, and δα are the carrier phase error, carrier frequency error, and carrier frequency error
acceleration at the start of an integration interval, respectively.

The IE,P,L and QE,P,L values are nonlinear functions of satellite signal parameters (Doppler,
carrier phase, code delay, and so on); therefore, an EKF based tracking loop is implemented for each
satellite. The IE,P,L and QE,P,L values for each satellite at epoch k are incorporated into the tracking
loop filter (pre-filter) as the measurement vector:

ZPre,k = [IE QE IP QP IL QL]
T
k (5)

where the subscript ′′Pre′′ means pre-filters, while the superscript ′′T′′ represents matrix transposition.
The signal parameter errors in the correlator outputs are used to update the measurements of the

integration filter and the NCOs. Consequently, we estimate the errors of carrier and code instead of
their “real” value. The state vector of the tracking loop filter at epoch k can be written as:

XPre,k = [δθ δω δα δτ A]Tk (6)

where δθ is the carrier phase error (rad), δω is the carrier frequency error (rad/s), δα is the carrier
frequency error acceleration (rad/s2), δτ is the code phase error (chips), and A is the signal amplitude.

The state equation model of the Kalman filter for the BDS satellite signal tracking is given by [6,29]:
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XPre,k+1 = Φ · XPre,k + G ·Wk

=


1 T T2

2 0 0
0 1 T 0 0
0 0 1 0 0
0 βT 0 1 0
0 0 0 0 1

 ·


δθ

δω

δα

δτ

A


k

+


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 β 1 0
0 0 0 0 1

 ·


ωclock
ωdri f t
ωaccel
ωcode
ωA


k

(7)

where β is used to convert the units of radians to units of chips, while Wk is the process noise vector
for clock bias, clock drift, frequency rate error, code phase error, and the signal amplitude.

The nonlinear measurement equation, which is an abbreviated form of Equations (2) and (3),
is defined as:

ZPre,k = h(XPre,k) + VPre,k (8)

≈ HPre,k · XPre,k + VPre,k

where h represents the nonlinear function of state variables, and the measurement noise vector VPre,k
consists of nIm and nQm (m = E, P or L). HPre,k is the sensitivity matrix of h(XPre,k), which is defined as:

HPre,k =
∂h(XPre,k)

∂XPre,k
(9)

The noise variance of the measurement vector is computed as a function of the carrier-to-noise
(C/N0) [6]:

σ2
nI

= σ2
nQ

=
1

2 · 100.1C/N0 · T
(10)

where nI and nQ are the noise of I and Q prompt values, respectively.

2.3. BDS/INS Integration Kalman Filter

The integrated BDS/INS system is based on a 17-state EKF, which is based on the first-order
linearization on the nonlinear system model with the assumption of Gaussian distributed noises.
The components of the state vector XNav,k are defined as follows and described in Table 1.
The subscript ′′Nav′′ stands for navigation.

XNav,k = [δϕ δvn δp εb ∇b bclk dclk]
T
k (11)

Table 1. State vector of the BDS/INS integration Kalman filter.

Symbol Index Description

δϕ 1–3 Attitude error vector
δvn 4–6 Velocity error vector
δp 7–9 Position error vector
εb 10–12 Gyroscope bias error vector
∇b 13–15 Accelerometer bias error vector
δbclk 16 Receiver clock bias error
δdclk 17 Receiver clock drift error
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The attitude and velocity are resolved in the local navigation frame and they are Earth-referenced.
The superscript n represents the local navigation frame and the superscript b represents the body frame.
The position error is expressed in terms of the latitude L, longitude λ, and height h, respectively:

δp = [δL δλ δh]T (12)

The propagation of the errors can be obtained from a set of difference equations. The discrete-time
state transition matrix ΦNav,k and error dynamics are derived from [5,30]. Thus, the linearized system
propagation equation is expressed as

XNav,k+1 = ΦNav,k · XNav,k + WNav,k (13)

where WN AV ,k is the system noise vector. The measurement equation could be given as follows:

ZNav,k = HNav,k · XNav,k + VNav,k (14)

where VNav,k is the measurement noise vector. The outputs of the pre-filters are taken as measurements
for the integration filter update. Since the NCO commands are generated using the INS status
information, the tracking errors estimated by the pre-filters have relationships with the residual errors
of the INS. The measurement vector ZNav at epoch k of the integration filter can be defined as:

ZNav,k = [δρ, δρ̇]Tk (15)

= [δρ1, δρ2, . . . , δρN , δρ̇1, δρ̇2, . . . , δρ̇N ]
T
k

The pseudorange error δρi and the pseudorange rate error δρ̇i(i = 1, 2, ..., N) are obtained from
code phase error and carrier frequency error estimated by pre-filters, respectively. The transformation
is shown in Equations (16) and (17).

δρi =
c

fcode
δτi (16)

δρ̇i =
c

2π fcarr
δωi (17)

where i means the ith satellite tracking channel of all N channels. The symbol c is the speed of light.
fcode represents the code frequency and fcarr represents the carrier frequency. δτ and δω are defined in
Equation (6). The noise covariance matrix RNav,k of the measurement vector is directly related to the
pre-filter’s state covariance matrix and more details can be found in [12].

The observation matrix HNav at epoch k is given in Equation (18). It is linearized to accommodate
the measurement vector of the integration filter.

HNav,k =

[
ON×6 Hρ1 ON×6 Hρ2

ON×3 Hρ̇1 ON×9 Hρ̇2

]
k

(18)

where OM×N is a zero matrix of size M× N. Hρ1, Hρ2, Hρ̇1, and Hρ̇2 are defined as follows:
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Hρ1 = −


u1

u2
...

uN

 · C1, Hρ2 =
[

1N×1 ON×1

]
(19)

Hρ̇1 = −


u1

u2
...

uN

 · C2, Hρ̇2 =
[

ON×1 1N×1

]
(20)

C1 =

 −(R + h) cos λ sin L −(R + h) cos L sin λ cos L cos λ

−(R + h) sin λ sin L (R + h) cos L cos λ cos L sin λ

R(1− e2) + h 0 sin L

 (21)

C2 =

 − sin λ − sin L cos λ cos L cos λ

cos λ − sin L sin λ cos L sin λ

0 cos L sin L

 (22)

where ui is the unit vector of the line-of-sight direction from the user navigation solution to the ith
satellite. C1 and C2 are coordinate transformation matrixes of different frames. 1M×N is an M× N
matrix whose elements are all 1s. R is the radius of curvature in prime vertical and e is the primary
eccentricity of the ellipsoid of the Earth’s surface.

3. Fault Detection and Exclusion Method

It is important to maintain reliability and stability for the deeply integrated system. RAIM is a
receiver-based autonomous integrity method to ensure the smooth running of the whole system and
provide a timely warning to users when the positioning is not reliable. The process of RAIM usually
contains two main steps. The first step is fault detection and exclusion. It typically uses multiple
redundancy measurements to check the consistency. The second step is calculating Protection Level
(PL). In this paper, we only concentrate on the first step.

RAIM for the conventional scalar tracking is not suitable for the deeply integrated BDS/INS
system, especially for fault exclusion. The vector tracking architecture of the system brings not only
performance improvement but also easy propagation among channels. As a result, the pseudorange
measurements are contaminated by the faulty channel. A simulation was performed to validate this.
As shown in Figure 2, a slowly growing error of slope 1 m/s in satellite 5 is injected into the IF signals
at t = 10 s. The code phase error estimations obtained from pre-filter outputs are plotted in this figure.

The figure shows seven satellite channels’ code tracking error information. It is obvious that,
after the fault injection into one channel’s signal, the average absolute values of other six channels’
code phase errors more or less increase with the fault’s amplitude.
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Figure 2. Propagation of errors among channels of the DI BDS/INS system.

It should be noted that the RAIM methods for the scalar loop and the tightly-coupled system
typically use pseudorange residuals computed by subtracting predicted or estimated pseudorange
from pseudorange measurement for integrity monitoring. Nevertheless, the pseudorange residuals
mentioned above are not suitable for fault detection of the vector loop RAIM algorithms [31].
The corrupted pseudorange measurements due to propagation of fault violate the scalar loop RAIM
assumption that faulty channels should be less than N − L [32], where L is the number of states to
be estimated. As discussed in [14], the code phase error estimations of vector loop have a similar
mathematical model with the pseudorange residuals of the scalar loop which can be used to form
statistics for integrity monitoring. They can be modeled in meters at epoch k as follows:

δρk = HP,k(XP,k− X−P,k) + εk (23)

= HP,k∆XP,k + εk

or εk = δρk − HP,k∆XP,k (24)

where the definition of δρk can be found in Equations (15) and (16). XP,k is a vector of the real receiver
position and clock bias and the subscript ′′P′′ means positioning related. X−P,k is the priori estimation of
XP,k extracted from INS and clock status. ∆XP,k represents the error state vector of the prior estimation
X−P,k, and HP,k is the pseudorange conversion matrix. εk is additive Gaussian noise. Ephemeris errors,
satellite clock errors, and atmospheric delay errors are not modeled in detail and they will be explored
in future work. XP,k and HP,k are defined below:
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XP,k = [x y z bclk]
T
k (25)

HP,k =


−u1 1
−u2 1

...
...

−uN 1

 (26)

where [x y z]T are receiver coordinate in Earth-Centered Earth-Fixed (ECEF) frame and bclk is
the clock bias. [u1, u2, ..., uN ]T is defined below Equation (19).

In this paper, we only consider the single fault scenario and two types of errors are taken
into account. One is the abrupt step error whose magnitude remains constant and another is SGE,
which grows with time. The fault vector fk injected into a single channel can be modeled as:

fk = [0, 0, · · · , fi, · · · , 0]TK (i = 1, 2, · · · , N) (27)

fi = a · ∆t + b (a = 0, b 6= 0 or a 6= 0, b = 0) (28)

where fk is an N × 1 vector and fi is the fault amplitude of the selected faulty channel’s signal. a is the
slope of the SGE and b is the amplitude of the abrupt step error. ∆t means the time difference between
the epoch where SGE starts and epoch k. Once a fault occurs in one channel, the code phase errors
of all the vector tracking channels will change. In such circumstance, derived from Equation (23),
the code phase error estimations from pre-filters’ outputs can be given as:

δρk = HP,k∆XP,k + fk + εk (29)

or it can be expressed as the noise term rk of the pseudorange error estimations:

rk = δρk − HP,k∆XP,k = fk + εk (30)

As illustrated in Figure 2, the term HP,k∆XP,k + fk represents the mean values of the code phase
error estimations. The mean values of all channels’ estimations begin to change after t = 4 s and they
look the same, but there is a distinction between the faulty channel and the contaminated channels.
For the faulty channel (Sat 5), the element fi is non-zero and increases with time. HP,k∆XP,k and fk
contribute to the change of the mean value of estimations together. On the other hand, the element fi
for other channels is zero. It means that changes in the mean values of other channels are only caused
by the term HP,k∆XP,k.

∆XP,k is the vector of position error and clock bias error between receiver real position and a prior
estimation. Assuming that the deeply integrated system is aligned and the receiver works steadily,
when there is no fault in the satellite signals, the expectation value of the term ∆XP,k should be zero
and ∆XP,k is generally small. On the other hand, the measurement update process of the deeply
integrated navigation filter estimates corrections for the INS and clock status. The corrections updated
every fixed interval for the position and clock bias amendment accumulate into the term ∆XP,k. Hence,
the expectation value of the corrections’ accumulation is zero, too. Once a fault appears in the signal,
the filter will be polluted and the corrections estimated after that will be led into the opposite direction,
which means the minus sum of the corrections can be regarded as an estimation for the term ∆XP,k.
It can be described as:

̂∆XP,k = −
k

∑
j=k−(M−1)

∆X+
Index,j (31)
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where ̂∆XP,k is the estimation of the term ∆XP,k. ∆X+
Index,k is a subset of the state vector estimation

after measurement update of the integrated filter at epoch k and it is expressed in the ECEF coordinate.
M is the accumulation window length. The subscript ′′ Index′′ indicates this term is extracted and the
index numbers, which can be found in Table 1, are 7, 8, 9, and 16. The superscript ′′+′′ stands for
posterior estimation.

In this paper, we adopt the weighted RAIM algorithm introduced in [20] for integrity monitoring.
It is a snapshot fault detection method, which means that the test statistic to flag fault only depends on
the measurement residuals of the present epoch. The test statistic s at epoch k is defined as the square
root of the Weighted Sum of the Squared Errors (WSSE). WSSE at epoch k is described as follows:

WSSEk = s2
k = rT

k Wkrk (32)

= (δρk − HP,k∆XP,k)
TWk(δρk − HP,k∆XP,k)

where Wk is the weight matrix related to the standard deviation of the noise term εk. Wk is given
by the inversion of the covariance matrix Rρ,k, which is a diagonal matrix. Rρ,k is the pseudorange
corresponding part of RNav,k mentioned above. Therefore, Wk can be computed as:

Wk = (E{εkεT
k })−1 = R−1

ρ,k (33)

Substituting Equations (31) and (33) into Equation (32), we can get the square of the statistic s at
epoch k:

s2
k = (δρk + HP,k

k

∑
j=k−(M−1)

∆X+
Index,j)

T R−1
ρ,k(δρk + HP,k

k

∑
j=k−(M−1)

∆X+
Index,j) (34)

The fault detection test is a binary hypothesis test. At the epoch k, if the statistic s is below the
threshold Tth, which is a prepared constant, the pseudorange error estimations are considered reliable.
On the other hand, if the statistic exceeds the threshold, they are assumed as unsafe. Under fault-free
conditions, s2

k obeys a chi-squared distribution with the freedom of N − 4 degrees. Once a fault with a
magnitude of fi occurs in one channel’s signal, s2

k will be a noncentral chi-squared distribution with
the freedom of N− 4. Under normal conditions, the threshold Tth can be selected analytically [20]. It is
a function of the probability of false alarms (Pf a) and the number of visible satellites (N). Given the
Pf a, the Tth can be calculated by inverting the incomplete gamma function:

1− Pf a =
1

2aΓ(a)

∫ T2
th

0
e−s/2sa−1ds (35)

where a = (n− 4)/2, Γ is the Gamma function. The values can be computed and stored beforehand
for fault detection, and several sets of Tth for different N and Pf a are plotted in Figure 3.

For fault exclusion, a w-test method is applied. The fault exclusion statistic for the ith satellite
channel is constructed as:

wi,k =

∣∣∣∣∣∣ −eT
i rk√

eT
i Rρ,kei

∣∣∣∣∣∣ (36)

rρ,k = δρk + HP,k

k

∑
j=k−(M−1)

∆X+
Index,j (37)

where ei = [0, 0, ...0, 1, 0, ..., 0]T whose the ith element is 1 and the others are 0. When a fault occurs
and it is detected by WSSE test at epoch k, the statistic wi,k will be calculated for every channel.
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The maximum value among them is regarded as the faulty channel’s statistic and this channel should
be excluded from the integration measurement set.
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Figure 3. Threshold Tth for different Pf a and satellite number N.

4. Simulation and Results

A simulation test was carried out to validate the proposed FDE method. This test was
implemented on a Matlab-based software receiver. It would be complex to analyze FDE method
with real data because faults rarely occur in real data and they are hard to grasp. Therefore,
simulation studies were adopted here, and they can help to get better insights into the ability of the
monitoring algorithm. Additionally, the fault should be injected in IF signals rather than pseudorange
measurements because of the vector tracking architecture. Otherwise, the simulation test is neither
effective nor convincing.

Before showing the simulations and results, a summary of the assumptions is made to develop
the fault detection and exclusion method for the deeply integrated BDS/INS system. Further research
will be conducted in future work.

• The receiver noise in the simulations had negligible residuals such as ephemeris errors,
satellite clock errors, atmospheric delay errors, and multipath errors. IF signals were generated
with standard atmospheric models.

• For INS simulation, only constant bias and random walk noise were modeled. Scale factor
errors, askew installation errors, correlated bias errors, and lever arm errors were not modeled in
the simulation.

• The DI system was calibrated properly and it worked steadily before the fault occurs.

4.1. Simulation Setup

The framework of simulation is shown is Figure 4. The figure mainly describes the generation
approach of IF signals and IMU measurements. Moreover, the functions of the framework’s modules
and their relationships are illustrated. Noise generation and Fault injection are expressed in gray boxes.

In this simulation, IF signal samples were generated according to the receiver trajectory designed
in advance. The starting point coordinate was set as ”40◦N, 116◦E” and the altitude was 100 m.
The movement states of the receiver included acceleration, uniform moving, climbing, and turning.
To reveal the receiver movement more apparently, the receiver trajectory, velocity, and attitude
references are plotted in Figure 5a–c, respectively.
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Figure 4. The framework of the simulation scheme based on Matlab.

(a) Trajectory Reference
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Figure 5. Receiver trajectory, velocity, and attitude reference.

The IMU measurements without noise were calculated according to the trajectory, velocity,
and attitude references of the receiver. Then, we added artificial IMU bias and random walk noise to
the raw measurements. Finally, the IMU measurements were stored and prepared for later processing.
The noise parameters were designed in accordance with the MEMS grade IMU [33]. Table 2 shows the
IMU noise parameters and sample rate.
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Table 2. Accelerometer and gyroscope configuration parameters in simulation.

Parameters Accelerometer Gyroscope

Bias 4 mg 8 deg/h
Random walk noise 0.16 m/s/

√
h 0.16 deg/

√
h

Output rate 200 Hz 200 Hz

Pseudolite model was applied in this simulation scenario. Actual BDS satellite ephemerides were
achieved from International GNSS Service (IGS) products for pseudolite simulation. The broadcast
ephemerides were collected on 1 February 2020 from BCEmerge. The BDS satellite orbits and
movements were simulated using the ephemerides mentioned above. Through this approach,
the position and velocity of BDS satellites could be calculated for IF signal generation. The DI
system utilizes the same ephemerides for positioning and integration. We selected seven of the visible
BDS satellites in the ephemerides for this simulation. The sky plot of the seven BDS satellites at the
starting epoch is shown in Figure 6.
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Figure 6. BDS satellite visibility in simulation.

With the dynamic information of users and satellites, the line-of-sight (LOS) range and doppler
could be computed. Clock bias, clock drift, and atmospheric delay generated with standard
atmospheric models were added to get pseudorange and pseudorange rate. The carrier phase and
code phase were then calculated for IF signal samples. The fault for RAIM monitoring algorithm
validation was added into the code phase in this step. According to the BDS B3I signal format, the IF
signals’ parameters were set as follows. The carrier frequency was 1268.52 MHz and the PRN code
frequency was 10.23 MHz. The sampling frequency for IF signals was 25 MHz. A random sequence
only including −1 and +1 at a rate of 50 Hz was used for bit modulation. Next, artificial white
Gaussian noise was added to the digital IF data based on the C/N0 value predefined. The digital IF
data have a C/N0 value of 44 dB-Hz for all satellites. Finally, the digital IF data were quantized and
stored in a text file.

A software-defined DI BDS/INS system based on Matlab processed the IF signals and IMU
measurements to valid the RAIM algorithm monitoring capability. The simulation results are
presented next.
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4.2. Simulation Results

In this simulation, two types of faults including step error and slowly growing error were injected
in IF signals. RAIM algorithm performance was evaluated by fault detection time from when the
fault was onset. The alteration of statistics and noise are presented and analyzed. The probability of
false alarm Pf a is 10−5/h and the satellite number N is 7, thus the threshold Tth for fault detection is
supposed to be 5.089, as shown in Figure 3.

4.2.1. Step Error Simulation

We added a step fault of 20 m at 4 s in the PRN code phase during the IF signal generation process.
In Figure 7, the changes of code phase error estimations and position errors are presented. The code
phase error estimations for all channels were obtained from pre-filters’ outputs at 50 Hz. The position
error is the difference between INS positioning estimations and trajectory reference.

0 2 4 6 8 10

Time [sec]

-15

-10

-5

0

5

10

C
o
d
e
 P

h
a
se

 E
rr

o
r 

[m
]

Sat 3

Sat 4

Sat 5

Sat 9

Sat 23

Sat 25

Sat 32

Fault Onset 

(a) The Code Phase Error

-10

-5
X [m]

Position Error in ECEF Frame

5

10

Y [m]

1 2 3 4 5 6 7 8 9 10

Time [sec]

5Z [m]

(b) The Position Error

Figure 7. The position error and code phase error estimation for step fault of 20 m.



Sensors 2020, 20, 1844 15 of 22

After the fault appearance at t = 4 s, the code phase error estimation of Satellite 5 has an abrupt
change. Then, the code phase error decreases and tends towards stability, as shown in Figure 7a.
The reason the code phase error estimation of Satellite 5 at t = 4 s is about −15 m rather than −20 m
is that pre-filer has inertial and smooth properties. The rapid fault propagation among channels can be
observed after t = 4 s. The code phase error estimations of contaminated channels float more or less.

The position error is presented in ECEF frame, as shown in Figure 7b. The propagation of errors
is mainly aroused by position error since NCO command generation of all channels uses the same
positioning result estimated by the INS. Therefore, the trend of fault propagation is consistent with the
trend of positioning error, which can be watched in Figure 7a,b.

Figure 8 shows the test statistics over time for both fault detection and exclusion.
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Figure 8. Fault detection and exclusion for step fault of 20m.

For fault detection, the test statistic defined in Equation (34) is applied. The test statistic s in
Figure 8a bumps up and exceeds the threshold Tth at t = 4 s where the step fault occurs. It reveals that
the RAIM algorithm can detect the fault immediately. The mean and 1-σ bound of the statistic s over
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time is also plotted in Figure 8a. They are calculated by using a sliding window including 10 statistic
samples. The mean and standard deviation values of all sliding windows are plotted with a thicker
green line in this figure. On account of the abrupt increase of the statistic, s at t = 4 s, the 1-σ bound
fluctuates fiercely at the same time.

To contrast the faulty channel’s noise with the counterparts of contaminated channels, the statistic
rρ,k defined in Equation (30) is plotted in Figure 8b for fault exclusion. The term rρ,k consists of fk and
εk. fk is only non-zero for the faulty channel ′′Sat5′′ and εk has almost same noise deviation for all
channels. As can be seen in Figure 8b, the components of the term rρ,k, which stands for the noise in
code phase error estimations, show striking differences between the faulty channel and contaminated
channels after the fault emergence. The component for ′′Sat5′′ decreases abruptly at t = 4 s and then
fluctuates around −20 m, which is the same as the fault amplitude. It reveals that the statistic rρ,k
excludes the faulty channel successfully.

To express the changes of test statistic explicitly, the faulty channel is not isolated during the
integration process which is illustrated by above figures. Figure 9a,b indicates the situation when the
fault is detected and excluded successfully with the proposed method.
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Figure 9. Code phase error estimations and position error for step fault of 20 m after fault exclusion.
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In Figure 9a, after the fault is excluded at t = 4 s, the code phase error estimations of other
channels are no longer contaminated. The faulty channel ′′Sat5′′ still maintains tracking state because
of vector tracking architecture. The reason the mean value of the code phase error estimation of ′′Sat5′′

is not −20 m is that the pre-filter’s measuring range is ±15 m. Additionally, the signal is tracked at a
low carrier-to-noise ratio. Figure 9b shows the position error of the system when the fault is isolated.
We can conclude that the positioning results are not affected by the 20 m step fault with the help of the
proposed method.

4.2.2. Slowly Growing Error Simulation

In this part, the simulation for SGE is performed to valid the RAIM algorithm monitoring ability.
Figure 10a,b show code phase error estimations and the position error when a 1 m/s SGE fault is
injected in ′′Sat5′′ at t = 4 s.
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Figure 10. Code phase error estimations and position error for 1 m/s SGE fault.

Error propagation among channels can be observed since the 1 m/s SGE fault injection at t = 4 s.
The absolute value of some contaminated channel’s code phase error is even larger than that of the faulty
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channel ′′Sat5′′. It is hard to distinguish the faulty channel from all channels involved in integration by
code phase error estimations only. The absolute values of code phase error estimations for all channels
increase with the growth of position error. Although we are unable to know exact position error in
practical application, the corrections estimations (Equation (31)) influenced by the SGE fault can help to
establish the statistics that are defined in Equations (34) and (37) for fault detection and exclusion.

To test the RAIM method monitoring capability effectively, two groups of Monte Carlo runs were
simulated for 1m/s SGE and 0.5m/s SGE, respectively. Thirty test simulation tests were carried out for
each group. The fault detection times since the fault injection were recorded and analyzed. Table 3
summarizes the mean and standard deviation of the fault detection times.

Table 3. Fault detection times of 30 Monte Carlo tests for SGEs.

Slope Sample Mean Sample Standard Deviation

1m/s 8.79s 0.76s
0.5m/s 17.74s 0.69s

The test results of one sample in each Monte Carlo group are shown in Figure 11. In Figure 11a,
the mean and 1-σ bound of the statistic s over time for both 0.5 m/s SGE and 1 m/s SGE are presented.
The statistics for 0.5 m/s SGE and 1 m/s SGE exceed the threshold Tth at t = 22.5 s and t = 12.7 s,
respectively. The fault detection time can be computed as 18.5 s and 8.7 s. A statistic rate detector
algorithm referenced in [19] can be utilized here to reduce detection time and promote the sensitivity
of fault detection. It will be researched in future work.
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Figure 11. Fault detection and exclusion for 0.5 m/s and 1 m/s slowly growing errors.
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Figure 11b shows the statistic rρ,k for 1 m/s SGE fault exclusion. Because the statistic rρ,k for
0.5 m/s SGE has similar changing trend with 1 m/s SGE, it is not plotted in this figure in order to
observe rρ,k more explicitly. The component of statistic rρ,k for faulty channel ′′Sat5′′ decreases with
the rise of SGE amplitude. The w-test statistic of the faulty channel is the largest and it is easily
distinguished from that of contaminated channels when statistic s exceeds the threshold.

In Figures 10 and 11, the SGE fault is detected but not isolated from integration filter measurements.
Figure 12a,b indicate the situation when the 1 m/s slowly growing error is isolated.
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Figure 12. Code phase error estimations and position error for 1 m/s slowly growing error after fault exclusion.

In Figure 12a, the SGE fault is detected at t = 12.28 s. The absolute value of the faulty
channel’s code phase error estimation increases with time, and the faulty channel loses lock gradually.
Other channels are contaminated by the fault before the fault is detected, but they return to normal
after t = 12.28 s. The position errors shown in Figure 12b have similar changing trend. After the
exclusion of the faulty channel, the mean value of the position errors comes back to zero by degrees,
and the positioning result of the system becomes reasonable and correct. In conclusion, the fault
detection and exclusion method is effective and efficient.
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5. Conclusions

The deep integration system with a vector tracking architecture can promote tracking and positioning
performance, especially in a degraded environment, but errors are easily propagated among channels
in vector tracking architecture. Prior work on integrity research of the deep integration system is scant.
A fault detection and exclusion method for step errors and SGEs is proposed in this paper. We utilize
code phase error estimations and state corrections of the integration filter to form monitoring statistics.
Simulations based on a software receiver platform were carried out for RAIM algorithm monitoring
capability verification. Simulation results show that the FDE method proposed in this paper can detect
and exclude the faults successfully and effectively. Since BDS has similar signal structure with GPS and
Galileo satellite navigation system, the proposed method can also apply to these systems.

In future work, there are three aspects associated with the RAIM algorithm we need to explore.
Firstly, the performance of the FDE method monitoring capability can be promoted by the rate detector
algorithm. The algorithm may contribute to reduce detection time and improved sensitivity. Secondly,
the RAIM algorithm can be influenced by unmodeled errors such as multipath and ionospheric
scintillation. Extensive studies are required. The model of inertial sensor errors, a simple, monitoring
ability test based on a specific MEMS IMU, will be carried out. Finally, the method proposed in this
paper is only appropriate for a single fault scenario. FDE methods for the multiple faults scenario will
be explored.
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