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Abstract: Deep learning-based intelligent fault diagnosis methods have attracted increasing attention for
their automatic feature extraction ability. However, existing works are usually under the assumption that
the training and test dataset share similar distributions, which unfortunately always violates real practice
due to the variety of working conditions. In this paper, an end-to-end scheme of joint use of two-direction
signals and capsule network (CN) is proposed for fault diagnosis of rolling bearing. With the help of
the superior ability of CN in capturing the spatial position information between features, more valuable
information can be mined. Aiming to eliminate the influence of different rotational speeds, vertical and
horizontal vibration signals are fused as the input to CN, so that invariant features can be extracted
automatically from the raw signals. The effectiveness of the proposed method is verified by experimental
data of rolling bearing under different rotational speeds and compared with a deep convolutional neural
network (DCNN). The results demonstrate that the proposed scheme is able to recognize the fault types
of rolling bearing under scenarios of different rotational speeds.

Keywords: fault diagnosis; capsule network; two-direction signals; end-to-end scheme; rolling bearing;
different rotational speeds

1. Introduction

Rolling bearing is one of the key components of rotating machines. However, due to the hostile
working conditions, the rolling bearing is prone to failure and may cause the breakdown of the machines, or
even catastrophic consequences. Therefore, effective fault diagnosis plays an indispensable role to ensure
the safety of machinery and reduce unnecessary cost. With the rapid development of fault diagnostic
technologies, a large number of effective methods have been proposed in the past few years, including
temperature, oil-debris analysis, vibration and acoustic emission, etc. [1]. Among them, vibration analysis
is a widely used method for rotating machinery due to its exceptional adaptability and easy-to-get signal.
Many methods have been proposed based on signal processing techniques, data-driven techniques and
the combination of both [2–5].

Traditional intelligent methods for fault diagnosis, such as support vector machine (SVM) [6], back
propagation neural network (BPNN) [7], and random forest [8], require manual intervention and expert
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knowledge, which significantly depend on the quality of manual feature extraction and selection [9]. With
the evolution of machine learning techniques, deep learning has shown considerable power in the field
of fault diagnosis [10], which may overcome the inherent limitations of traditional intelligent methods.
Deep learning method can largely eliminate the procedure of manual feature extraction and avoid the
dependence on the prior knowledge about signal processing techniques, which is an end-to-end method
[11]. For example, Lei et al. [12] used a deep neural network (DNN) trained by frequency spectra for fault
diagnosis. The proposed method was tested by using different datasets from rolling element bearings and
planetary gearboxes and compared with back propagation neural network (BPNN)-based method. The
results showed that the DNN-based method has superior diagnosis accuracy and adaptability. Zhang et
al. [13] proposed a deep convolutional neural network with a wide first-layer kernel. The input of the
network is the one-dimension (1D) raw vibration signal without any pre-signal processing. The results
showed that the proposed network architecture featured high accuracy. Moreover, many convolutional
neural network methods based on two-dimension (2D) image representation have been developed, such
as in [14,15]. In these methods, the raw vibration signal is first transformed into the 2D time-frequency
images by the signal processing technique, such as short time Fourier transform (STFT). Then the 2D
images are inputted to train the network for classification purpose. Although this approach shows high
accuracy, yet the computational time to train the model by 2D images is still quite long and therefore, to
some extent, not very practical.

The above deep learning approaches have shown their superior performance compared with
traditional intelligent fault diagnosis methods. However, these fault diagnosis methods are basically
proposed under an assumption that the training and testing vibration signals are collected with the same
statistical data distribution, unfortunately it is almost impossible in real-world application. Specifically, for
rotational machines, one of the key reasons to lead to the differences between statistical data distribution
is due to the time-varying non-stationery rotational speeds. Focused on this problem, studies have
contributed to eliminating the influences of speed manually [16], including order tracking, holographic
spectrum, speed normalization and domain adaptation, etc. [17–20]. For order tracking, holographic
spectrum and speed normalization techniques, the information of speed is required to reduce influences.

Domain adaptation, however, is a transfer learning method, which can align the distributions between
source and target domain data without using speed information before training the model. It makes even
less data information input to the model while remaining high classification accuracy. For example, Long
et al. [20] used maximum mean discrepancy (MMD) to joint distribution alignments in deep networks.
Qian et al. [21] proposed a novel transfer learning method to align both the marginal and conditional
distributions of both source and target domain datasets. In addition, the method is proved to be effective
for fault diagnosis on roller bearing and gearbox. Transfer learning-based domain adaptation is indeed an
effective approach to settle the problem of variable working conditions. However, the target and source
domain need to align the distribution in advance and the data of target domain must participate in the
training process of the model. In this paper, we aim at eliminating the influences of rotational speed
between measurements automatically. The unique ability of capsule network (CN) in capturing the spatial
variation of the data is explored [22]. A capsule network-based approach, in which two-directional signals
are collected for training, is proposed. To make full use of the two-direction signals, data fusion methods,
including no processing, channel overlay and stack banding, are used. Channel overlay and stack banding
can fuse the two-direction signals to form a two-dimensional data, which will be introduced in detail in
the later section. The experimental results show that the network can extract the invariable features from
the raw vibration signal, and show a better performance than traditional CNN method under different
rotational speeds.

The remainder of this paper is organized as follows. The architecture and principle of the capsule
network are introduced in Section 2. Section 3 gives an overview of the proposed scheme. In Section 4,
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the application of the proposed scheme on rolling bearing is presented in detail. Then the performance is
discussed. Section 5 concludes the paper.

2. Capsule Neural Network

Traditional convolutional neural network (CNN), called LeNet, was first proposed by Lecun in 1998
and showed excellent performance on image recognition [23]. Then, some improved CNNs with deeper
layers were consequently designed and achieved satisfactory results on image recognition, including
AlexNet, VGGNet, GoogLeNet, ResNet [24,25]. Although these networks may obtain high accuracy for
the classification of images, the spatial information in image cannot be perfectly captured, in other words,
the changes of positions or angles of objects in an image can lead to an unsatisfactory classification result.
To this end, capsule network with a so-called dynamic routing is proposed to solve this very problem
in CNN.

A general CNN is mainly composed of convolutional layers, pooling layers, fully connected layer
and activation function. The feature of input is first extracted by convolutional layers and pooling layers.
Then, a fully connected layer is applied for classification [26]. The application of convolution and pooling
operation is the key steps to contribute to a deeper layer of CNN, which reduces the number of trainable
parameters by parameter sharing. The pooling layer can reduce the size of data because the features of the
image can stay unchanged after pooling. However, Hinton [27] indicates that the usage of max-pooling
may also lead to a deficiency that the location relationship of features may be ignored. Focused on this
deficiency, Hinton and his assistant proposed a novel neural network in 2017, i.e., capsule network (CN).
This network integrates the advantages of CNN in non-linear feature extraction and retains the positional
information by using the module length of vector to describe the probability of the predicted result [27].

2.1. The Architecture of Capsule Network

A simple CN architecture for image recognition is shown in Figures 1 and 2. It includes four parts,
convolution, primary capsule, digit capsule and decoder. Each part is briefly introduced in this section. As
an example, the input size is set as 28 × 28 and the number for classification is 10 [27].

Figure 1. Architecture of a capsule network with 3 layers.
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Figure 2. Decoder structure to reconstruct the inputs.

(1) Convolution layer

The first layer of CN is a traditional convolution layer with “ReLU” activation function, which is
applied to extract the preliminary feature. After the initial convolutional operation with kernel size of 9× 9
and number of 256, the extracted features with size of 20 × 20 × 256 are then used as inputs to the primary
capsules. In addition, pooling operation is not appended after convolution to avoid the information loss.

(2) Primary capsule layer

In this layer, the capsule is preliminarily developed. Another convolution operation with the kernel
size of 9 × 9 and number of 256 is first applied. The output after the convolution is then reshaped into
capsules with size of 6 × 6 × 32 × 8, which means the dimensionality of each capsule is 8. Squashing
function, which will be interpreted later, is used to squash the vector length within the range of 0–1. This
layer can obtain low-level features in a vector form.

(3) Digit capsule layer

This layer is to get high-level features in vector form and is fully connected with primary capsule
layer between vectors by a matrix Wij. Each capsule from previous layer is multiplied by Wij with a size of
8 × 16, which will be interpreted in detail later. Therefore, the output size of this layer is 6 × 6 × 32 × 16.
In addition, a dynamic routing algorithm, which also will be introduced later, is applied between primary
and digit capsules. The weight parameter of each capsule can be determined by dynamic routing instead
of backpropagation. After dynamic routing several times, the final capsules with a size of 10 × 16 are then
sent to two different branches: one to compute the length for classification and the other to reconstruct the
input images.

(4) Decoder

Decoder is an extra layer in CN compared with CNN. It serves as the function very similar to an
autoencoder. The capsule with maxlength from digit capsules is selected to input the 3 fully connected
layers for reconstruction as described in Figure 2. The reconstruction loss is also considered to update the
parameters. Therefore, the total loss of CN contains two parts, namely classification and reconstruction,
and is the weighted sum of both.



Sensors 2020, 20, 1841 5 of 15

2.2. The Principle of Capsule Network

In CN, many capsules with special significances, including orientation and length, are the key
components of the network. The activation of the neuron within the capsule represents a variety of
properties present in the image. These properties can include many different types of instantiation
parameters in the image, such as posture, deformation, velocity, tone, and texture. A very special property
of the capsule is the existence of an instance of a category in the image. Due to these unique capabilities of
CN, in this work, we will explore this method to solve the problem of fault classification problem under
different rotational speeds.

Compared with the traditional neural network, the output of neuron is a vector rather than a
scalar, whose length can represent the estimated probability of the existence of the object. In addition,
the non-linear activation function is replaced with a “squashing” function to ensure that short vectors are
confined to almost zero length and long vectors are confined to a length slightly below one. Therefore, the
length after squashing can be represented as the probability of a given character.

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(1)

where sj is the total input of capsule j and vj is the its vector output.
The computational procedure of vector neuron vj of capsule j between primary capsule layer and

digit capsule layer can be summarized as three steps and described in Figure 3. First, the initial vector
ui from primary capsules is multiplied by weight matrix Wij to get the predicted vector uj|i. Secondly, a
weighted sum over all predicted vectors uj|i is performed to obtain the following vector sj. Finally, the
vector sj is transformed into vector vj using the "squashing" function.

sj = Σcijuj|i, uj|i = Wijui (2)

where cij is called coupling coefficients and are determined by the iterative dynamic routing algorithm.

Figure 3. The computation of vector neuron.

The coupling coefficients between capsule i and all the capsules in the layer above sum to 1 and are
calculated through a “routing SoftMax” whose initial logits bij are the log prior probabilities that capsule i
should be coupled to capsule j [27].

cij =
exp(bij)

Σexp(bik)
(3)

The key function of CN is to obtain the coupling coefficient cij and it is determined by the iterative
dynamic routing process. The detail of routing algorithm is shown in Algorithm 1, where r is the times
of routing.
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Algorithm 1 Dynamic routing algorithm

1: Procedure Routing(uj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1):bij ← 0.
3: for r iterations do
4: for all capsule i in layer l:ci ←So f tMax(bi)
5: for all capsule j in layer (l + 1):sj ← Σicijuij
6: for all capsule j in layer (l + 1):vj ←squash(sj)
7: for all capsule i in layer l and capsule j in layer (l + 1) : bij←bij + uj|i·vj
8: return vj

3. The Procedure of the Proposed Scheme

In this paper, an end-to-end scheme based on CN and two-dimensional (2D) input data is proposed
for health state identification of the rolling bearing under different rotational speeds. Specifically, the 2D
data is constructed by fusing the signals collected from two sensors perpendicular to each other. The detail
of data fusion method will be introduced later. Taking the structured 2D data as input, 2D convolution is
used in CN.

Figure 4 displays the flowchart of the proposed method. In addition, there are four main steps:

(1) The vibration signals are collected by multiple sensors;
(2) Vibration signals from two-direction sensors, including horizontal and vertical, are normalized and

sliced into segments;
(3) The segments from two directions are fused and then input to the CN;
(4) The CN is trained and tested using the data from different speeds. The test accuracy of the output

result is used to evaluate the effectiveness of the proposed scheme.

Figure 4. Flowchart of the proposed scheme.

4. Case Study and Experiment Results

In this section, the performance of the proposed method is tested. All data are collected from an
MFS-MG test rig in University of Electronic Science and Technology of China (UESTC), as shown in
Figure 5. The model of the capsule network is constructed in Python 3.6 using Pytorch and carried out on
a PC with an Intel i7-8750H CPU, a GTX 1050 Ti GPU and operating system Win10.
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Figure 5. Comprehensive experimental platform for mechanical fault simulation.

4.1. Experimental Rolling Bearing Data Description

To test the performance of the proposed scheme, we conduct experiments on the setup. As shown
in Figure 5, the test rig mainly consists of a motor, two support bearing and a rotor. Experiments are
conducted on the rolling bearing away from motor under four health states, including normal, inner race
fault, rolling element fault and outer race fault. For each health state, vibration signals are collected when
the drive motor operates under different rotational speeds to form up different domain datasets. The
settings of speed include 800 rpm, 1500 rpm and 1800 rpm, resulting in different speed gaps. Therefore,
the experimental dataset contains 4 different health states and 3 sets for each health state. In addition, four
accelerometers are employed in this experiment. For each rolling bearing, two accelerometers are installed
perpendicular to each other to collect vibration data in the horizontal and the vertical synchronously. To
display the location of four sensors clearly, the layout is described using a schematic diagram, shown in
Figure 6. As sensors 3 and 4 are directly installed on faulty bearing orthogonally, only vibration signals
collected from these two sensors are used for follow-up work. The sampling frequency and measurement
time are 20 KHz and around 3.2 s respectively, contributing to 65,536 sample points for each collected
signal.

Figure 6. Schematic diagram of sensors layout.
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4.2. Data Processing

The collected signals need to be processed to input the network. First, the collected signals perform
global normalization to speed up training. Then the preprocessing data are sliced into segments.
Considering that a longer segment could be contain more information but fewer samples will be obtained,
which may lead to overfitting issue during the network training, therefore, the size of each segment is set as
2048 to balance the length and the number of samples. In addition, the same vibration signal is sliced with
overlap and no overlap respectively. In addition, the shift is set as 300 for overlap. Therefore, vibration
signal with 65,536 points can provide 212 segments with overlap and 32 segments with no overlap. The
obtained segments are then prepared for postprocessing.

Three different data fusion methods are conducted on the segments from different sensors, as shown
in Figure 7, namely no processing, channel overlay [28] and stack banding. No processing indicates that
the segments from one single sensor are used and sensor 3 is selected in this study since training and test
datasets are from the same rotational speed scenario and measured vibrations from either sensor 3 or 4
can be largely treated as the same input. The format of no processing is (1,2048) and one-dimensional
convolution is used in the following studies. Channel overlay and stack banding fuse the two segments,
namely the horizontal and the vertical vibration signals, to be an input data with the same period
but different arrangement. The segments are first expanded into a three-dimensional representation, i.e.,
(1,1,2048), to in line with the input format of two-dimensional convolution (in_channel,in_width,in_height).
Channel overlay refers to concatenating the segments of sensors 3 and 4 according to the “in_channel” to
form up one data sample. In this way, the shape of the fused data sample will be (2,1,2048). Similar to
channel overlay, stack banding concatenates the segments of sensors 3 and 4 according to the “in_width”,
and results in a data of (1,2,2048). The whole dataset in detail is shown in Table 1. It should be noted that
no processing, channel overlay, and stack bonding are represented by A, B and C, while three different
speeds are represented by a, b and c.

Table 1. Description of bearing datasets.

Health State Normal Inner Race Fault Rolling Element Fault Outer Race Fault
Label 1 2 3 4

A/B/C

set a (800 rpm) overlap 212 212 212 212
no overlap 32 32 32 32

set b (1500 rpm) overlap 212 212 212 212
no overlap 32 32 32 32

set c (1800 rpm) overlap 212 212 212 212
no overlap 32 32 32 32
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Figure 7. Three different methods of data fusion.

4.3. Parameters of the Proposed Model

The model parameters will have a significant influence on the experimental results. Therefore,
reasonable selection of model parameters needs to be studied here, including batch size, iteration, the size
and number of convolutional kernels. To perform the process of parameter selection, dataset with the
“stack banding” (C) is used. Considering the large speed gap scenario between set a and set c in Table 1,
the training set is from set a with overlap while the test set is from set c without overlap.

(1) Selection of batch size

Batch size refers to a certain number of samples at each training step. Reasonable selection of batch
size can reduce training time and improve classification accuracy. Considering the limited memory
capacity of computer and the number of training samples, the selected batch size are 8, 10, 16, 20, 24, 32
and 64, respectively. In addition, the number of iterations is preliminarily set as 70. For the convolution
layer, two convolution kernels are used. As illustrated in [21], the high frequency noise commonly in
vibration signals disturbs the local feature extraction, and the kernels of the first layer should be wide for
suppressing the noise. Therefore, a wide kernel is used in the first layer and the size is 2 × 64, following a
convolution kernel of 1 × 8 in the second layer. The experiment is repeated for ten times, and the average
value is taken as the final classification accuracy. The relationship between the classification accuracy, time
and batch size is shown in Figure 8. Balancing the training time and accuracy, the batch size is selected
as 24.
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Figure 8. Relationship between classification accuracy-time and batch size.

(2) Selection of iteration times

One iteration refers to forward propagation and back propagation once of the network. If the number
of iterations is too small, the model is not well trained. When the number of iterations reaches a threshold,
the model tends to be stable, which means that the accuracy will not increase, but time cost will increase
with the increase of the number of iterations. Therefore, a suitable number of iterations needs to be chosen
to reduce the training time. To simplify the complexity, the batch size is set as 24 according to the above
and the convolution kernel is same. The relationship between classification accuracy and iteration times
is shown in Figure 9. In Figure 9, the classification accuracy increases gradually with the increase of
iteration times. When the iteration times exceed 100, the classification accuracy tends to be stable. To have
a redundancy for the following parameter selection, the number of iterations is chosen as 120.

Figure 9. Relationship between classification accuracy and iteration times.

(3) Selection of the size and number of convolution kernels

The size and number of convolution kernels determines the features extracted preliminarily in CN.
Reasonable design of convolutional layer can improve the performance of CN. As mentioned in [25],
several layers with small kernels are better than a single layer with large kernels. Therefore, the small
kernels of size 3 are used except the first layer. The performance of different numbers of kernels are
compared and shown in Figure 10. The kernel size of first layer is fixed at 64 and the latter layers are
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shown in Figure 10. When the latter layers are set as 3/3/3, the accuracy is the highest. Therefore, the
kernels are set as 2 × 64, 1 × 3, 1 × 3, 1 × 3.

Figure 10. Relationship between classification accuracy and kernel configuration.

According to the above discussions, the configurations of the proposed capsule network for
experiments are shown in Table 2. In the training process of the proposed model, the total loss is the
combination of two outputs: the loss of classification and the loss of reconstruction. To reduce the effect of
reconstruction loss, we multiply by a weight λ = 0.5. Adam algorithm with default lr = 0.001 is used to
train the model. Batch size is 24 and epoch number sets as 120. In addition, L2 regularization operation is
applied to prevent overfitting.

Table 2. Details of the proposed model.

No. Layer Name Kernel Size/Stride/Filters Output Shape Padding

1 Convolution1 2 × 64/(1,8)/16 (1,256,16) (0,28)
2 Convolution2 1 × 3/(1,1)/32 (1,125,32) (0,1)
3 Convolution3 1 × 3/(1,1)/64 (1,125,64) (0,1)
4 Convolution4 1 × 3/(1,1)/64 (1,125,64) (0,1)
5 Reshape - (2048,8) No
6 Squash - (2048,8) No
7 Digitcaps - (4,16) No
8 Length(output1) - (4) No
9 Mask - (64) No
10 Decoder(output2) - (512)

- (1024)
- (4098)

11 Reshape - (2,2048,1)

4.4. Results and Discussions

In this part, the dataset shown in Table 1 is used to verify the proposed scheme. In addition, WDCNN
(a wide first-layer deep convolutional neural network) proposed in [26] is used to compare with CN. The
models are trained repeatedly with ten trials for each case.

First, to test the diagnostic performance of CN under the same rotational speed, dataset with the “no
processing” (A) in Table 1 is used. It should be noted that the training and test sets are both from data with
overlap for each rotational speed. The ratio of training set to test set is 4:1. The results are shown in Table 3
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and Figure 11. Average and variance of the test accuracies in each case are listed in a format of “average
± variance”. As shown in Table 3, the CN model achieves accuracies of “100 ± 0.00” in all three cases,
while WDCNN has misjudgments in all three cases. In particular, The proposed scheme improves by
2.27% of average when the speed is 1500rpm. In addition, comparing the training process of two methods,
shown in Figure 11, the proposed scheme remains stable after 20th epoch. However, WDCNN-based
method shows slightly turbulence after 30th epoch. Therefore, the CN model has a slight improvement on
diagnosis accuracy and stability when the training and test data are from the same rotational speed, while
the WDCNN model still is a good method for fault diagnosis under this scenario.

Table 3. Accuracies of different methods tested at the same speed.

Method a 1 b c

A + CN 2 100 ± 0.00 100 ± 0.00 100 ± 0.00
A + WDCNN 99.48 ± 0.58 97.73 ± 1.49 98.43 ± 2.42

1 Meaning that the model is trained and tested under the same speed; 2 Known as “(data processing
method)+(model)”.

To reflect the prominent property of the proposed scheme under different rotational speeds, the
vibration signals from sensors 3 and 4 are fused as input of CN. For comparison, we replace the data fusion
methods and model in turn. Dataset with three fusion method are used in this part. It should be noted
that the training set is from the dataset with overlap under one speed while test set is from the dataset
with no overlap under another speed. The results are shown in Table 4 and Figure 12. The time is average
value of each trial. There is a 300 rpm speed gap between settings b and c, while a 1000 rpm speed gap
between settings a and c. Following, two discussions will be made.
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Figure 11. Training process of different models on A-a dataset (a) CN and (b) WDCNN.

Table 4. Accuracies and time of different methods tested at different rotational speeds.

No Method a→b 1 a→c b→a b→c c→a c→b Time

1 A + CN 94.09 ± 3.91 71.48 ± 2.39 75.53 ± 3.88 100 ± 0.00 56.73 ± 9.56 98.83 ± 0.41 162 s
2 B + CN 99.30 ± 0.58 99.30 ± 0.94 87.34 ± 2.57 100 ± 0.00 78.67 ± 2.33 100 ± 0.00 154 s
3 C + CN 98.98 ± 0.98 98.98 ± 1.04 87.58 ± 2.56 100 ± 0.00 79.53 ± 3.72 100 ± 0.00 152 s
4 B + WDCCN 69.92 ± 8.96 66.64 ± 16.56 45.00 ± 5.58 95.47 ± 2.80 47.27 ± 9.86 96.25 ± 1.46 41 s
5 C + WDCCN 74.61 ± 4.47 68.83 ± 7.53 46.41 ± 7.24 90.47 ± 9.94 50.47 ± 4.39 97.73 ± 1.93 38 s

1 Meaning that the model is trained and tested under the different speeds.
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Figure 12. Comparison of the accuracy of different methods at different rotational speeds.

(1) Comparisons on the No 1,2,3 in Table 4. They are all performed using the CN model. First, for
No 2 and No 3, datasets B and C is inputted into CN, respectively. The only difference is the data fusion
method using two sensors. The results show that the test accuracies of these two data fusions have small
difference overall. In addition, the training time of two data fusion methods is 154 s and 152 s, and is very
close. Secondly, comparing No 1 to No 3, the input data are from one sensor and two sensors, respectively.
The results show that the test accuracies using two sensors have a clear enhancement. In particular, for
“a→c” and “c→a” scenarios, which have a relatively large speed gap (1000rpm), the average accuracies
improve by 27.50% and 22.80% respectively. As for the training time, it reduces by 10s on the contrary.
These results demonstrate that the two data fusion methods based on CN model with two sensors achieve
satisfactory performance for rolling bearing diagnosis under different rotational speeds.

(2) Comparing the No 2,3 to No 4,5 in Table 4. They are performed using CN and WDCNN model,
respectively. For No 2 and No 4, the only difference is the classification network. The test accuracy using
CN model have an improvement of 4.53% for “b→c” scenario. As the speed gap increases, namely “a→b”
and “a→c”, the test accuracies improve by 29.38% and 32.68% respectively. Comparing the training time,
CN spend more time due to its special structure. Considering the great accuracy improvement, spending
more time is worthy. There is also a similar result between No 3 and No 5. The results show that the CN
model is more suitable for fault diagnosis than CNN using two-directional sensors, especially at large
speed gap.

Therefore, according to the above experiment and discussions, it demonstrates that joint use of
two-direction signals together with CN is the best choice for fault classification under different rotational
speeds scenario.
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5. Conclusions

In this paper, we proposed a 2D data input capsule network scheme for fault diagnosis of rolling
bearing. We aim to eliminate the influence of speed by taking advantage of capsule network with capturing
the spatial relationship from the input. Experimental data from three different speeds are used to verify the
performance of the proposed method. According to the results of the experiments, it may conclude that:

(1) The CN model can achieve a better performance than WDCNN when the training and test data are
from the same rotational speed and only one sensor is used.

(2) When two-directional sensors are used, the proposed scheme can largely get rid of the influence of
different rotational speeds for a significant improved diagnostic accuracy.

(3) The two different data fusion methods of 2D data have a little impact on the results of bearing
fault diagnosis.

For future work, the performance of the proposed scheme under fluctuating speeds will be further
studied.
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