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Abstract: A real-time electric nose (E-nose) with a metal oxide sensor (MOS) array was developed 

to monitor 5 highly flammable liquids (ethanol, tetrahydrofuran, turpentine, lacquer thinner, and 

gasoline) in this work. We found that temperature had a significant impact on the test results and 

temperature control could efficiently improve the performance of our E-nose. The results of our 

qualitative analysis showed that principal component analysis (PCA) could not efficiently 

distinguish these samples compared to a back-propagation artificial neural network (BP-ANN) 

which had a 100% accuracy rate on the test samples. Quantitative analysis was performed by 

regression analysis and the average errors were 9.1%–18.4%. In addition, through anti-interference 

training, the E-nose could filter out the potential false alarm caused by mosquito repellent, perfume 

and hair jelly. 

Keywords: electronic nose; flammable liquids; qualitative and quantitative analysis; back 

propagation artificial neural network 

 

1. Introduction 

With the acceleration of urbanization worldwide, public transportation systems such as buses 

are playing an increasingly important role in urban economic development [1]. According to data 

from the China National Bureau of Statistics, there were 367,292 buses operated in 2008, which 

increased to 554,820 in 2017 [2]. With the increase in the number of buses, we are facing more serious 

safety issues. Bus safety accidents caused by arson occurred in both developing and developed 

countries [3,4]. For example, there are about 70 bus fires per year in Australia, and in Norway, 

Sweden, and Finland about 1% of all buses in service suffer from a fire or arson incident each year 

[4]. The most common substances used for bus arson are commercial flammable liquids such as 

gasoline, ethanol and, lacquer thinner, which are easy to purchase and ignite. According to 41 

reports of bus fires in China, more than 58% of the casualties were caused by flammable liquid arson, 

which caused 91 deaths and 323 injuries [3]. Therefore, monitoring equipment for flammable liquids 

is extremely important to prevent bus arson. 

Detection and analysis of flammable liquids have been developed due to strong demand in 

many fields, especially in the field of public safety [5–7]. The ideal flammable liquid detectors for 

buses need to have the following characteristics: a recognition model to identify liquid species to 
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prevent false positives, a quantitative model to analyze danger levels, and a temperature controller 

to manage temperature changes inside the vehicle. The ideal detector also needs superior 

repeatability, lower-cost, and real-time detection. 

Gas chromatography (GC) [8,9] and chromatography/mass spectrometry (MS) [10–13] are able 

to accurately recognize and analyze flammable liquids. However, due to drawbacks such as tedious 

sample pretreatment, long detection time, excessive volumes, and high prices, they are hardly 

applied on buses [14]. For flammable liquid detection, the metal oxide sensor (MOS) detectors might 

be applied on buses due to its small size, low cost [15], and real-time detection, such as the 

HYCWY-01 dangerous gas and liquid detector (produced by Huiwei Security) and the 

CSD-TWY-CL01 Vehicle Safety Instrument (produced by Zhongshendun Security). In those 

detectors, the sensor voltage grows as the concentration of flammable liquids grow. The voltage 

alarm of these two detectors will be triggered when the concentration of the ethanol is higher than 

100 ppm.  

However, a single MOS is sensitive to a large number of target materials, such as leather, 

perfume, etc. Lowering the alarm threshold to increase detection sensitivities may trigger false 

alarms due to interferences. In contrast, raising the alarm threshold to decrease detection 

sensitivities may neglect dangerous liquids with lower sensitivities. Fortunately, the use of an E-nose 

with different cross-reactivity array sensors can improve the specificity of semiconductor sensors for 

gas recognition and overcome the shortcomings of single-sensor detectors [16,17]. 

Electronic olfactory systems, known as “E-nose”, can be implemented to analyze various gas 

components based on a sensing method similar to the human olfactory system [18–22]. In the field of 

fire safety, Luo et al. developed an E-nose that had successfully classified four industrial gas 

included CO2, CH4, NH3, VOCs [23]. Sun et al created an E-nose that could successfully identify 

methanol, ethanol and acetone samples [16]. Despite their advantages, those E-noses still have 

limitations when they are applied on a bus such as being affected by interference in complex 

environments. As an interference, the temperature could affect the response values of MOS sensors 

[24] which can be overcome in two common ways: constant temperature control [23,25] and 

temperature compensation [26–30]. As far as we know, no electronic nose has been reported for 

detecting flammable liquids on buses.  

In this research, we developed a real-time electronic nose for qualitative and quantitative 

analysis of flammable liquids to prevent bus arson. According to The list of prohibited flammable 

and explosive belongings for bus passengers (Beijing) [31], ethanol, tetrahydrofuran, turpentine, 

lacquer thinner, and gasoline were chosen as experimental samples and analyzed by the E-nose 

established in our lab. Our E-nose has a sensor array and an MCU (microcontroller unit) with an 

optimized recognition model that can perform real-time detection. PID (proportion integration 

differentiation) temperature control was applied to cope with the temperature change inside the 

vehicle. Back-propagation artificial neural network (BP-ANN) and principal component analysis 

(PCA) models were selected to classify flammable liquid species and classify mosquito repellent, 

perfume, and hair jelly samples as interferences to prevent false positives. The univariate regression 

analysis model was used for the quantitative analysis of flammable volatiles in the air by our E-nose. 

2. Materials and Methods 

2.1. Materials 

Ethanol, turpentine, and lacquer thinner were purchased from Sinopharm (Shanghai, China). 

Tetrahydrofuran was purchased from Enox (Changshu, China) and No.95 gasoline was purchased 

from the gas station of Minhou County, Fuzhou. 

The E-nose in our laboratory could be divided into six components, including a sampling 

module, a metal oxide sensor array, a temperature and humidity sensor (DHT22), an MCU 

(Arduino-mega 2560), a PID-temperature control module, and an operating interface. The sensors 

named S1-S14 in the array were purchased from FIGARO (Japan) and the relevant information of the 

sensors is listed in Table 1. These sensors were cross-sensitive to flammable liquids such as ethanol, 
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tetrahydrofuran, and petrol. The sensor array was wrapped in a stainless steel shell (03 L) which was 

attached to a heating sheet. The heating sheet was controlled by a PID controller and the shell was 

connected to the lid of the air chamber (10 L). The flow rate of the inlet fan was 52 L/min. Our 

E-nose and air chamber are shown in Figure 1. 

Table 1. Properties of metal oxide sensors in the array. 

Sensor Number Sensitive Substances Detection 

Range (ppm) 

Average Error of 5  

Repeated Test 

S1 H2 1–300 1.4% 

S2 CO, H2S, VOC(volatile organic 

compounds) 

1–500 2.0% 

S3 VOC, Tetrahydrofuran, Ethanol 1–10 4.1% 

S4 H2S, VOC, Turpentine 10–200 9.8% 

S5 Stench, H2S 500–10,000 9.8% 

S6 Ethanol, Stench 1–500 3.6% 

S7 Butane, VOC 1–500 15.1% 

S8 Petroleum, Gasoline 50–500 2.1% 

S9 Methane 50–1000 4.4% 

S10 Natural gas, Ethanol, Lacquer thinner 50–1000 2.5% 

S11 Tetrahydrofuran 50–7000 1.8% 

S12 Ethanol, VOC, Tetrahydrofuran 50–5000 2.5% 

S13 Methane, Propane 1–30 5.6% 

S14 Butane, Lacquer thinner 1–200 6.0% 

 

Figure 1. Cross-sectional diagram of the gas chamber and our E-nose. 

2.2. Experimental Methods and Data Process 

The experimental process was divided into three parts: sampling, training, and recognition. The 

initialization time of the E-nose for warming up before detecting/sampling is 5 min. 

The sampling part included the following steps. Firstly, the evaporation chamber which was 

full of fresh air was covered by the lid with the sensor array to detect baseline information. Secondly, 

a liquid sample was injected into the air chamber through the sampling hole by a pipette. Next, the 

sampling hole was closed promptly and the flammable liquid began to evaporate quickly. The 
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intake fan would keep drawing the liquid-vapor into the sensor array and then push them to the air 

chamber through the circulation hole. When the liquid in the gas chamber had completely 

evaporated, one sampling was complete. Sampling data (sensor voltage, temperature, and 

humidity) was collected throughout the process above for subsequent analysis. Finally, the lid was 

opened and the sensors were exposed to fresh air until the voltage of sensors returned to the baseline 

and the next sampling could be started. After sampling, we could acquire the characteristic values: 

ΔVi: voltage difference between steady-state and baseline of each metal oxide sensor. (i 

represent the sensor index). 

T: temperature inside the steel shell.  

H: relative humidity inside the steel shell. 

An input data could be put into a column vector x as follows:                            

x = [ΔV1 ΔV2··ΔVi··ΔV14 T H]T, (1)

All the input data could constitute an input matrix X as follows: 

X = [x1 x2 x3···xn], (2)

The input matrix of the training set was applied to build recognizing models by MATLAB 

which were then transplanted to the MCU to achieve real-time detection. During the detection 

process, the response values of the MOS array and the temperature and humidity detectors were 

used as inputs and the outputs were the name and concentration of a test sample which were 

calculated by our recognition model.  

The models of the BP-ANN, PCA, and regressions were built on the matlab2017-a platform. The 

training process and the recognition process of the E-nose are shown in Figure 2. 

 

Figure 2. Working principle of the E-nose. 

In this study, the E-nose was used to collect and analyze five flammable liquid vapors—ethanol, 

tetrahydrofuran, turpentine, lacquer thinner, and gasoline—with concentrations ranging from 0.70 × 

102 ppm to 5.0 × 102 ppm, as well as three interferences that included mosquito repellent, perfumes, 

and hair jelly with concentrations ranging from 0.90 × 102 ppm to 4.5 × 102 ppm. The temperature 

range of the working environment was 18–35 ℃, the temperature inside the steel shell was 

controlled by a PID at about 58 ± 3 ℃, and the relative humidity inside the steel shell was about 16% 

± 10%. The collecting time of each sample was 300—500 s depending on when it completely 

evaporated. The characteristic values within 100 s of the steady state were taken to represent the 

corresponding sample and then were collected in the training set. The E-nose collected the voltage 

value from the sensor array with a sampling frequency of 10 points per second. 
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2.3. Principal Component Analysis (PCA) 

In our study, after these five flammable liquids and interfering samples were detected by the 

E-nose, and PCA as a qualitative method was applied to compute and analyze the 14-dimension 

characteristic values (ΔV1-ΔV14) to classify these samples. 

2.4. Back-Propagation Artificial Neural Network (BP-ANN) 

The number of neurons in the input layer was 16, representing 14 metal oxide sensors, 

temperatures, and humidities inside the shell. The number of neurons in the output layer was 5, 

representing 5 flammable liquids. The output layer could be expressed by a column vector [A1 A2 

A3 A4 A5]T and the output neurons in the training set were set as table 2. For a training sample, the 

corresponding element of the output layer was set to 1, and other elements were set to 0. An element 

error of ± 0.1 was set on the recognition result of the test sample. As a result, elements in test results 

between 0.9–1.1 could be regarded as positive, and elements between −0.1–0.1 could be regarded as 

negative. When an element of a test result was positive and others were negative, it could be 

regarded as the corresponding liquid. 

Table 2. The back-propagation artificial neural network (BP-ANN) output layer of the training set. 

Ethanol Tetrahydrofuran Turpentine Lacquer Thinner Gasoline Interferences 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

2.5. Regression Analysis 

In our study, for each kind of flammable liquid, 25 samples (5 concentrations × 5 repetitions) 

were selected from the training set to construct regression equations by the power law and 

polynomial law, respectively, between ΔVi and corresponding concentration (ppm). Since the array 

contained 14 sensors, each kind of liquid will obtain 28 regression equations respectively, including 

14 power equations and 14 polynomial equations. Based on the average quantitative errors of the 12 

test samples, we could select the most appropriate regression equation to quantify each kind of 

flammable liquid. After qualitative analysis, the sample concentration can be calculated by the 

optimal regression equation according to the sample classification. 

3. Results and Discussion 

3.1. Odor Data Maps 

Typical responses of tetrahydrofuran and turpentine called odor data maps (ODM) are shown 

in Figure 3. The ODM of ethanol, lacquer thinner and gasoline were shown in Figure S1, Figure S2 

and Figure S3 (Supplemental Materials 1–3). Firstly, when the sensor was exposed to the fresh air, 

the baseline voltage was low and stable (the baseline information had been subtracted from Figure 

3). After the flammable liquid was injected into the sealed chamber, the voltage response of the 

sensor increased in line with the liquid’s evaporation. Finally, when the liquid had completely 

evaporated, the sensor voltage tended to be stable. It can be seen from Figure 3 that the odor data 

maps of the two samples are different because of their unique physicochemical properties which 

provide the probabilities of identification of these odors. Furthermore, the response voltages 

positively relate to the sample concentrations so it is feasible to conduct quantitative regression 

analysis. 
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Figure 3. The odor data maps. (a) Tetrahydrofuran, (b) turpentine. Each curve represents one sensor 

in the array. 

3.2. Temperature Control 

Because the temperatures inside the vehicle were not constant, measures had to be taken to 

eliminate the disturbance of temperatures on the response voltage of MOS. One of the measures was 

temperature compensation which could be compiled by a regression model of the temperatures and 

the corresponding sensor voltage. However, there was a significant difference among the 

temperature drift curves of these five liquids as shown in Figure 4, which suggested that the drift 

pattern relied on the liquid types. Therefore, the temperature compensation is hard to perform when 

the type of liquid is unknown.  

 

Figure 4. Temperature drift curves of sensor 4. 

Another measure was temperature control. A stainless steel shell with a heater controlled by a 

PID temperature controller was designed to supply constant temperatures for the MOS array. When 

the indoor temperature ranged from 18 ℃ to 35 ℃, the temperature ranged inside the shell from 40 

℃ to 58 ℃ due to the spontaneous heating of MOS. So, the target temperature inside the shell was 

set to 58 ℃ and the actual temperature range was about 58 ± 3 ℃. 

When the room temperatures varied from 18 ℃ to 35 ℃, the classification results of BP-ANN 

showed that the classification accuracy of the E-nose was only 39% without temperature control and 

100% with temperature control. Therefore, temperature control significantly improves the 

performance of the E-nose and makes it adapt to changing temperatures on buses. 

3.3. Classification Results of PCA 

PCA is an unsupervised linear dimensionality reduction method of multidimensional data 

analysis that ensures maximum data discrepancies and has no parameter restrictions. It is widely 

used in machine vision, odor recognition, and other fields. In our study, the total contribution rate of 



Sensors 2020, 20, 1817 7 of 12 

 

the first three principal components (PCs) was 85.6% which meant three principal components can 

represent most of the information of the 14-dimensional variables.  

As is shown in Figure 5a, the distribution of each kind of sample was not concentrated. There 

were many cases of sample overlap among them which suggested that these samples were similar so 

it was difficult to distinguish them without prior knowledge. The influence of each sensor on the 

three principal components can be seen in Figure 5b. PCA as a traditional unsupervised 

classification method only restored the basic characteristics of samples. Therefore, it is necessary to 

resort to a supervised classification method, e.g., BP-ANN, which involves a large number of prior 

samples for repeated training to improve the classification accuracy. 

 

Figure 5. The principal component analysis (PCA). (a) Classification results of five flammable liquid 

samples and three interfering samples, (b) loadings of PCA. 

3.4. BP-ANN 

3.4.1. Training of BP-ANN 

Our BP-ANN model contained three layers: an input layer, a hidden layer, and an output layer. 

In our study, there were 16 nodes in the input layer and 5 nodes in the output layer. The numbers of 

hidden layer nodes were variant and could affect network performances. As shown in Figure 6, 

when the number of hidden layer nodes was 26, the test error was minimal and the network reached 
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the training goal at the 280th iteration and mean-squared error (MSE) reached 2.6383 × 10−13. The 

BP-ANN model designed in this study, with parameters shown in Table 3, achieved a satisfactory 

simulation precision. 

 

Figure 6. Performance of back propagation artificial neural network. (a) Test error in different 

quantity of hidden nodes, (b) training curve of the model with 26 nodes in the hidden layer. 

Table 3. Parameters of back-propagation artificial neural network. 

Parameter Value 

Training function Trainbr 

Activation function Sigmoid 

Learning rate 0.01 

Learning goal (mean-squared error, MSE) 1.0×10−12 

Stopping rule (epoch) 1000 

3.4.2. Classification Results of BP-ANN 

The BP-ANN as a supervised recognition model continually approached the target by 

calculating the changes of the network weights and bias in the direction of the slope of the error 

function. BP-ANN had the learning ability that PCA lacked and had a higher fault tolerance rate 

than PCA. For each kind of flammable liquid, we selected 12 test samples with their concentrations 

spread equally in the range of our training set. In total, 60 test samples were predicted by the 

BP-ANN to test the qualitative accuracy of the electronic nose. In addition, for each kind of 

interfering liquids, 5 test samples with different concentrations were also tested by the BP-ANN. 

Moreover, in order to verify the repeatability of the E-nose, 280 ppm ethanol samples were 

repeatedly tested 5 times and predicted by the BP-ANN. All the test samples were sampled 

independently of the training samples to verify the performance of the E-nose. 

As shown in Figure 7, there was no misjudgment in all these 60 flammable liquid samples. No 

false-positives were generated among 15 interfering test samples. Five repeated samples were also 
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successfully classified as ethanol. The output values of 75 test samples of BP-ANN were shown in 

Table S1 (Supplemental Materials 4). Overall, the qualitative accuracy of the test samples was 100%. 

Therefore, the E-nose has an ability that not only recognizes these five flammable liquids in the 

concentration range of the training set but also prevents false positives from mosquito repellent, 

perfumes, and hair jelly within the concentration range of the training set. So, we suggest that it can 

be applied to complex environments such as buses. 

 

Figure 7. Back propagation artificial neural network (BP-ANN) output layer ([A1 A2 A3 A4 A5]T) of 

75 test samples. The area between the two dashed lines in the figure is the positive element interval. 

No.1–No.12 were test samples of ethanol and in each sample, A1 was positive and A2, A3, A4, and 

A5 were negative. No.13–No.24 were test samples of tetrahydrofuran and in each sample, A2 was 

positive and A1, A3, A4, and A5 were negative. No.25–No.36 were test samples of turpentine and in 

each sample, A3 was positive and A1, A2, A4, and A5 were negative. No.37–No.48 were test samples 

of lacquer thinner and in each sample, A4 was positive and A1, A2, A3, and A5 were negative. 

No.49–No.60 were test samples of gasoline and in each sample, A5 was positive and A1, A2, A3, and 

A4 were negative. Furthermore, No.61–No.65 were test samples of mosquito repellent, No.66–No.70 

were test samples of perfume and No.71–No.75 were test samples of hair jelly. In each of these 15 

interfering samples, A1, A2, A3, A4, and A5 were all negative. 

3.5. Quantitative Analysis 

The ODM of samples showed that the sample concentrations were positively related to sensor 

voltages, which provided a possibility for the quantitative analysis of the gas concentration. For each 

kind of flammable liquid, the 12 aforementioned test samples were used to optimize the regression 

equations according to the average errors of test samples and the results are shown in Table 4. 

Table 4. Univariate regression analysis. 

Samples 
Sensor 

(S1-S14) 
Regression Equation 

P-value 

(≤0.05) 

Average  

Error 

Ethanol S6 
y = 4.788 + 955.6×x – 

585.5×x2 
5.800×10-3 18.4% 

Tetrahydrofuran S13 
y = –134.1 + 183.9×x + 

3.961×x2 
3.252×10-8 9.7% 

Turpentine S11 y = 106×x1.884 2.051×10-7 9.3% 

Lacquer Thinner S7 y = 75.08 – 62.93×x + 3.216×10-11 9.1% 
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135.6×x2 

Gasoline S6 
y = 5.661 + 927.6×x – 

145.8×x2 
5.076×10-9 13.7% 

In each equation in Table 4, the independent variable x represents ΔVi and the dependent 

variable y represents corresponding concentrations. As shown in Table 4, different types of samples 

established optimal regression equations with different sensors. The average error of the test set of 

each liquid was about 12%, indicating that the quantitative ability of our E-nose was relatively 

accurate. Moreover, in order to verify the repeatability of the E-nose, five repeated experiments of 

280 ppm ethanol above-mentioned were predicted by the E-nose. The 5 predict values were located 

near the real concentration as shown in Figure 8 and the average prediction error of these five 

experiments is 5.6%. Table 1 shows that the average error of S6 in five repeated experiments of 

ethanol is 3.6%, which is less than the average prediction error of the 12 groups of ethanol 

experiments (18.4%). The average error of S6 does not include biases of the regression model, so the 

quantitative error caused by the biases of the regression equation is higher than the sensor drift. In 

practical applications, we can design hierarchical alarm thresholds to mitigate the impacts of 

potential errors in quantitative analysis. 

Overall, the E-nose has satisfied quantitative accuracy and is expected to be applied to detect 

flammable liquids on buses. Based on our results, different alarm threshold values could be set 

according to actual needs. For example, the hierarchical alarms could be set according to the 

following concentration levels, 100 ppm: alert of potential prohibited items, 200 ppm: alert of 

dangerous goods, and 400 ppm: emergency evacuation. However, further studies are required to 

update our E-nose to identify mixed flammable liquids and mixed system of flammable liquid and 

interference to expand the application scenario of this E-nose. In addition, the sensitivity of each 

sensor in the array is different, we can build a segmented regression model based on the different 

sensors in future work to optimize the regression model and expand the detection range. 

 

Figure 8. Repeatability test of 5 groups of ethanol. 

4. Conclusions 

In this paper, 14 metal oxide sensors were used to construct an electronic nose for the 

qualitative and quantitative detection of five flammable liquids (ethanol, tetrahydrofuran, 

turpentine, lacquer thinner, and gasoline). Temperature control could greatly improve the 

performance of our E-nose. The qualitative accuracy rate of the BP-ANN was 100%. The E-nose 

carrying BP-ANN could not only accurately identify the five flammable liquids but also filter out the 

potential false alarms of three non-regulated liquids: mosquito repellent, perfume, and hair jelly 

which was better than PCA. Moreover, the E-nose could detect flammable gas concentrations and 
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the average quantitative error was about 12%. Therefore, combining qualitative and quantitative 

analysis, electronic noses can monitor flammable liquid threats in buses and provide timely safety 

warnings. In summary, our E-nose can be used as a new type of bus security equipment.  

Supplementary Materials: The following are available online at https://zenodo.org/deposit/3665667: Figure S1: 

The odor data map (ODM) of ethanol, Figure S2. The odor data map (ODM) of lacquer thinner, Figure S3. The 

odor data map (ODM) of gasoline, Table S1. back propagation artificial neural network (BP-ANN) output layer 

of 75 test samples. 
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