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Abstract: Since requirements of related applications for time series remotely-sensed images with 
high spatial resolution have been hard to be satisfied under current observation conditions of 
satellite sensors, it is key to reconstruct high-resolution images at specified dates. As an effective 
data reconstruction technique, spatiotemporal fusion can be used to generate time series land 
surface parameters with a clear geophysical significance. In this study, an improved fusion model 
based on the Sparse Representation-Based Spatiotemporal Reflectance Fusion Model (SPSTFM) is 
developed and assessed with reflectance data from Gaofen-2 Multi-Spectral (GF-2 MS) and Gaofen-
1 Wide-Field-View (GF-1 WFV). By introducing a spatially enhanced training method to dictionary 
training and sparse coding processes, the developed fusion framework is expected to promote the 
description of high-resolution and low-resolution overcomplete dictionaries. Assessment indices 
including Average Absolute Deviation (AAD), Root-Mean-Square Error (RMSE), Peak Signal to 
Noise Ratio (PSNR), Correlation Coefficient (CC), spectral angle mapper (SAM), structure similarity 
(SSIM) and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) are then used to test 
employed fusion methods for a parallel comparison. The experimental results show that more 
accurate prediction of GF-2 MS reflectance than that from the SPSTFM can be obtained and 
furthermore comparable with popular two-pair based reflectance fusion models like the Spatial and 
Temporal Adaptive Fusion Model (STARFM) and the Enhanced-STARFM (ESTARFM).  

Keywords: sparse-representation; spatiotemporal fusion; SPSTFM; two image-pair; GF-2 and GF-1 
WFV images 

 

1. Introduction 

High Resolution of the Earth Observation System Major Special Project [1] that consists of seven 
civil satellites covering multispectral, hyperspectral, multi-view and lidar sensors with spatial 
resolution ranging from 0.8 to 50 m was ratified and started by the State Council, China in May, 2006. 
Since launched in August 19, 2014, Gaofen-2 (GF-2) A/B satellites carrying a four-channel 
multispectral camera (spatial resolution is 3.2m) and a panchromatic camera (spatial resolution is 
0.8m) aims to be a high-resolution earth observation tool (Table 1). However, the actual annual 
observation frequency of GF-2 satellites is rather low due to satellite orbital transfer for observation 



Sensors 2020, 20, 1789 2 of 15 

 

requirements of disasters, emergency events, military, scientific researches, et al, which significantly 
reduces the application value of GF-2 data especially for available observations. In consideration of 
similar spectral channels and high observation frequency of four identical Wide-Field-View (WFV-1, 
WFV-2, WFV-3 and WFV-4) cameras carried by the Gaofen-1 (GF-1) satellite launched in 26 April 
2013 [2,3], temporal-spectral information of GF-1 WFV data can be borrowed to GF-2 multispectral 
images for the spatiotemporal interpolation of GF-2 reflectance data. Among developed 
spatiotemporal interpolation methods to date, spatiotemporal fusion technique has been proved to 
be credible owing to its advantages in the synthesis of spatial, temporal and spectral information 
from multi-source satellite images. 

The multi-resource spatiotemporal fusion technique based on surface retrievals like reflectance, 
temperature, vegetation index and even land cover mapping [4] has been validated as an effective 
tool to reconstruct time series remotely sensed data with middle-high spatial resolution, and 
furthermore can be integrated into a spatio-temporal-spectral fusion framework for multisource, 
multi-view remotely sensed images [5]. Spatiotemporal fusion methods can be classified as different 
types in accordance with employed mathematic models and their application frameworks [6], or 
detailed methods in modelling spatiotemporal correlation [7]. Generally, methods based on spectral 
transformation, unmixing, spatiotemporal smoothing and sparse-learning are mostly developed in 
current studies.  

Spectral transformation techniques have been introduced to reconstruct a high-resolution multi-
spectral image traditionally with unclear temporal information. A notable exception by [8] utilized 
wavelet transformation to fuse Landsat Thematic Mapper (TM) and Moderate Resolution Imaging 
Spectroradiometer (MODIS) images, and the resulting image with spatial resolution of 240 m was 
obtained by replacing the MODIS low-frequency component of the image with the Landsat TM high-
frequency component. As another spatiotemporal analysis tool, the unmixing-based fusion model 
was proposed by [9] and used to estimate high-resolution reflectance from low-resolution values with 
the least square method, while [10] developed a linear unmixing model. Since only abundance on the 
class level (the ratio of one-class high-resolution pixels in a low-resolution pixel area) derived from 
high-resolution data can be obtained, the spatial variability of pixel-level reflectance has not been 
considered by above two methods. This problem was then addressed by [11] and [12] that introduce 
spectral information of neighborhood pixels into the unmixing of low-resolution images. For those 
areas that land cover types changed, methods based on spline interpolation [13] can be introduced to 
address this problem.  

The Spatial and Temporal Adaptive Fusion Model (STARFM) [14] is considered as the most 
popular spatiotemporal algorithm and its spatiotemporal adaptation can be improved by reducing 
errors of different land covers from satellite sensors [15]. Up to now, the STARFM has been widely 
applied in winter wheat yield estimation [16], evapotranspiration mapping [17], disturbance 
monitoring [18–20], gross primary productivity evaluation [21], classification improvement [22,23], 
public health studies [24], etc. As to the situation that significant changes of temporal reflectance 
happened over land covers, [25] developed an Enhanced STARFM (ESTARFM) algorithm applied 
for a complex heterogeneous land surface. When seasonal characteristics are similar between 
observation dates and the modelled date, it has higher fusion accuracy, especially for changing land 
covers like vegetation, and can be improved as a customized fusion model [26]. However, their 
performances intend to be barely satisfactory while an abrupt land cover change happened [27].  

A semi-physical spatiotemporal fusion model, in which a backup MODIS reflectance calculation 
algorithm was separately applied to Landsat and MODIS pixel-scale reflectance, was proposed for 
addressing the problem caused by the Bidirectional Reflectance Distribution Function (BRDF) [28]. 
To overcome the scale difference problem in the fusion process, an optimized semi-physical fusion 
model was developed to accurately predict reflectance changes happened in the scale between high-
resolution pixel and low-resolution pixel, and then applied in a regional fusion demonstration [29]. 
By orderly compositing Regression Model fitting (RM fitting), Spatial Filtering (SF), and Residual 
Compensation (RC), a spatiotemporal fusion method named Fit-FC was designed to fuse one-pair or 
two pairs of Sentinel-2 and Sentinel-3 images for generating nearly daily Sentinel-2 images [30].  
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The Sparse Representation-Based Spatiotemporal Reflectance Fusion Model (SPSTFM) is firstly 
introduced for fusing two observed image pairs (Landsat and MODIS) [31] and then developed with 
single image pair [32] for a wide application extension. From the view of computation complex and 
performance for large image patches, an Extreme Learning Machine (ELM) with rich local structural 
information is introduced to model learning-based spatiotemporal fusion by learning a mapping 
function on difference images that is also adopted in SPSTFM [33]. Training and learning steps are 
known to be key for learning-based fusion methods. For instance, dictionary learning step is both 
employed in two-image-pair-based fusion model and single-image-pair-based fusion model, of 
which their fusion strategies and detailed steps are strikingly different. For the single-pair learning-
based fusion model that combined dictionary learning and high-pass modulation in a two-layer 
fusion framework, a dictionary training enhanced strategy with spatially or temporally extended 
training samples was proposed by preliminarily testing Landsat and MODIS multispectral images 
[34].  

In this paper, an improved learning-enhanced fusion model is developed by introducing the 
strategy of spatially extending dictionary training samples to the SPSTFM fusion framework, which 
is primarily based on weighted difference images reconstruction with dictionary learning. We 
introduced the details of this improved fusion model in Section 2. Experimental satellite data with 
similar spectral response function (GF-2 MS and GF-1 WFV) and their fusion results were exhibited 
in Section 3 and then discussed in Section 4. This paper is finally concluded in Section 5. 

2. Methods 

In this study, the improved model based on the SPSTFM adopted a learning-enhanced strategy 
to perform the dictionary training process. In detail, inputting two-pair high-resolution images (GF-
2 MS) and low-resolution images (GF-1 WFV) at observed dates were spatially-extended for a larger 
image size than the original inputting image size, and then taken as enhanced training samples into 
dictionary training and sparse coding steps. By this way, more “overcomplete” high-resolution 
dictionary and low-resolution dictionary, than those in the SPSTFM can be retrieved in the sparse 
learning step, and expected to promote the reconstruction accuracy of high-resolution and low-
resolution images used in the fusion process.  

The original sparse-learning fusion algorithm SPSTFM consists of three processing steps: (1) 
Dictionary learning for High-Resolution Difference Image (HRDI) and Low-Resolution Difference 
Image (LRDI), (2) HRDI reconstruction, and (3) High-Resolution Surface Reflectance (HRSR) 
reconstruction. Since the high-resolution dictionary 𝑫  of HRDI and the low-resolution dictionary 𝑫  of LRDI are both retrieved from dictionary learning operation, the completeness of 𝑫  and 𝑫  
therefore significantly affects the accuracy of presentation and prediction of high-resolution image at 
modeled date.  

In this study, an improved sparse-learning scheme for two image pair fusion was developed by 
promoting the accuracy of dictionary learning process. The main idea of the proposed fusion scheme 
was to perform the dictionary training process by using spatially-extended training samples with 
larger space range than original input training images. In this way, newly retrieved high-resolution 
and low-resolution overcomplete dictionaries 𝑫  and 𝑫 , with higher completeness than those 
derived from the dictionary training operation with original training samples, can be obtained. The 
flow chart of the proposed fusion scheme is shown in Figure 1.  

At the beginning of the proposed fusion scheme, spatially-extended high-resolution images (𝑯  
and 𝑯 ) and corresponding low-resolution images (𝑳  and 𝑳 ) with the same image size at two 
observed dates t1 and t3 were collected and then utilized to generate inputting training samples for 
subsequent dictionary learning process. Note that the pattern of the spatial extension of above-
mentioned high-resolution images and low-resolution images is performed by extending each image 
boundary (upper, lower, left and right) with the same size. In this way, similar types of surface 
features with spectrally similar characteristics can be expected in neighborhood pixels of original 
images. When the spatially-extended size of 𝑯 , 𝑳  and 𝑯 , 𝑳  was determined, a new high-
resolution difference image 𝑯 = 𝑯 −𝑯  and a new low-resolution difference image 𝑳 = 𝑳 −
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𝑳  were calculated and then taken as updated training samples. Thus, new high-resolution and low-
resolution overcomplete dictionaries 𝑫  and 𝑫  can be retrieved by optimizing the formula 
expressed below: 𝑫 ,𝑫 ,𝛼 = arg min𝑫 ,𝑫 , ‖𝑯 −𝑫 𝛼 ‖ + ‖𝑳 − 𝑫 𝛼 ‖ + 𝜆‖𝛼 ‖  (1)

where 𝛼  is the corresponding sparse coefficient for both new high-resolution difference image 𝑯  and new low-resolution difference image 𝑳 , 𝜆 is the Lagrange multiplier. By introducing a 
joint sparse coding method named K-Means Singular Value Decomposition (K-SVD) based on 
coupled dictionary training, the formula (1) can be transformed as: 𝑫𝒋𝒐𝒊𝒏𝒕,𝛼 = arg min𝑫𝒋𝒐𝒊𝒏𝒕, 𝒁 − 𝑫 𝛼 + 𝜆‖𝛼 ‖  (2)

Joint-Dictionary 
training

Spatially extended
 GF-2 image at t1

Spatially extended 
GF-2 image at t3 

Spatially extended 
GF-1  image at t1

Spatially extended 
GF-1  image at t3

Spatially extended 
GF-2 difference image

Spatially extended
 GF-1 difference image

New dictionary for 
GF-2 difference image

New dictionary for 
GF-1 difference image

Original t1 
GF-1 image

Original t3 
GF-1 image

Estimate representation 
coefficients a21

Estimate representation 
coefficients a21

Sparse reconstruction for 
GF-2 difference images

Original t2 
GF-1 image

Weighted reconstruction

GF-2 reflectance 
image at t2  

Figure 1. Flow chart of the proposed fusion method in this paper. 

where 𝑫𝒋𝒐𝒊𝒏𝒕 = [𝑫 ,𝑫 ], 𝒁 = [𝑯 ,𝑳 ]. Here, the original SPSTFM algorithm uses image blocking 
strategy to train high-resolution and low-resolution difference images, and the default image patch 
size is set as 7×7 pixels, the number of atoms is set as 2000 for training a difference image with 500 × 
500 pixels. In consideration of spatial extension of new high-resolution difference image and low-
resolution difference image utilized for dictionary training, the number of atoms for the new training 
image size should be reassigned a higher value (above 2000) with the same patch size (7 × 7 pixels).  

Once 𝑫  and 𝑫 , respectively, for new high-resolution and low-resolution difference images 
were retrieved, updated sparse coefficient 𝛼  for the 𝑘 -th difference image patch between t1 and 
t2 can be expressed by the corresponding 𝑘 -th low-resolution difference image patch 𝑥  and the 
new dictionary 𝑫 : 𝛼 = arg min 12 𝑥 − 𝑫 𝛼 + 𝜆 𝛼  (3)

The 𝑘 -th HRDI patch 𝑦  between t1 and t2; therefore, can be solved by: 𝑦 = 𝑫 𝛼  (4)

The 𝑘 -th HRDI patch 𝑦  between t2 and t3 can be calculated in the same way as 𝑦 . On a 
basis of predefined weighting parameters 𝜔  and 𝜔 , the 𝑘 -th high-resolution surface reflectance 
(HRSR) image patch at the modeled date t2 can finally be predicted as: 
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𝐻 = 𝜔 × 𝐻 + 𝑦 + 𝜔 × 𝐻 + 𝑦  (5)

where 𝐻 , 𝐻  are the 𝑘 -th high-resolution surface reflectance (HRSR) image patch, respectively, 
at the observed date t1 and t3. The whole HRSR image at the modelled date t2 is derived by 
mosaicking each HRSR image patch 𝐻 . 

In consideration of the heterogeneity and the diversities of the spatial extension of surface 
features in different directions, a robust extension strategy was to drive spatially-extended directions 
of training samples to yield to the same central position from their original fusion images. However 
in our preliminary experiment, fusion quality of the proposed method was not so sensitive to the 
spatial extension directions. In this study, GF-2 and GF-1 WFV reflectance images acquired at two 
observed dates were cropped as different image sizes to validate the effect of training-sample sizes 
on fusion quality of proposed method. A spatially-extended areas with the actual study area as the 
center and covering 64 km2 (2000 × 2000 GF-2 pixels) was determined as the maximum image size of 
training samples just inputted in the sparse coding process. Moreover, 20 groups of training samples 
with image size ranging from 500 × 500 GF-2 pixels to 2000 × 2000 GF-2 pixels were gradually obtained 
with a resized step of 0.4 × 0.4 km (100 × 100 GF-2 pixels). As a result, spatially-extended study areas 
covered by two-pair high-resolution and low-resolution images at observed dates were orderly 
classified to training samples with image sizes resized as 500 × 500, 600 × 600, …, 2000 × 2000 GF-2 
pixels. Note that, above spatially-extended training samples were only used in the dictionary learning 
process rather than the weighting calculation for predicting GF-2 reflectance at the modelled date. 

3. Results 

3.1. Study Area and Data Preprocessing 

To avoid the effect of shadows from buildings and mountains on the fusion between high-
resolution images and low-resolution images, a study area located in the North China Plain 
(Shandong province, China) covering cropland, residential area (low rise buildings), and water body 
was selected to perform fusion experiments. As shown in Figure 2, only the center part of the study 
area covering 2 × 2 km (500 × 500 GF-2 pixels) takes part in fusion process (see yellow solid box in 
Figure 2), and employed satellite images with larger image size than the center part are taken as 
training samples for the proposed sparse learning-based fusion scheme.  

GF-2 multispectral images acquired on 30 April, 23 July, and 8 November 2017 and 
corresponding GF-1 WFV images acquired on 29 April, 24 July and 8 November 2017, respectively, 
shown in Figure 3a,c,d,b,f,e are collected and then employed for substantial fusion experiments, in 
which the GF-2 image acquired on 23 July 2017 is used for the validation of fusion results and other 
images from GF-2 and GF-1 WFV are used to perform fusion methods in this study. Since GF-2 and 
GF-1 WFV data have very similar spectral channels, band width and spectral response function, no 
extra spectral normalization operation for GF-2 and GF-1 WFV images are needed before fusion. For 
a reliable reflectance computation, all above experimental images with DN (Digital Number) values 
are radiometrically corrected, and converted to surface reflectance by atmospheric correction and 
then rescaled to [0, 10,000]. Since spectral response characteristics of the Gaofen-2 multispectral 
sensor is exactly similar with Gaofen-1 WFV satellite sensors (Figure 4), their land surface reflectance 
data produced from atmosphere correction have no need of radiometric normalization. After 
geometrical correction, GF-2 images are up-resampled from 3.2 to 4 m for a receivable spatial scale, 
and GF-1 WFV images are accordingly down-resampled from 16 to 4 m for pixel-to-pixel fusion 
processing, and then GF-1 WFV images are registered to GF-2 images.  
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Figure 2. The selected study area in this study and the corresponding Gaofen-2 (GF-2) false-color 
composite of NIR (Near-Infrared), red and green bands acquired on 30 April 2017. 

Table 1. Employed Gaofen-2 (GF-2) and Gaofen-1 Wide-Field-View (GF-1 WFV) multispectral data 
for fusion experiments. 

Band 
Name 

GF-2 Multispectral GF-1 WFV 

Band Width 
Spatial 
Resolution 

Revisit 
Cycle 

Employed 
Dates 

Band Width 
Spatial 
Resolution 

Revisit 
Cycle 

Employed 
Dates 

Blue 0.45–0.52μm 

4 m 5 days 
04/30/2017 
07/23/2017 
11/08/2017 

0.45–0.52μm 

16 m 2 days 
04/29/2017 
07/24/2017 
11/08/2017 

Green 0.52–0.59μm 0.52–0.59μm 
Red 0.63–0.69μm 0.63–0.69μm 
NIR 0.77–0.89μm 0.77–0.89μm 

 
Figure 3. Employed GF-2 and GF-1 WFV images in this study. (a,d) and (b,e) are, respectively, GF-2 
images acquired on 30 April, 8 November 2017 and GF-1 WFV images acquired on 29 April 8 
November 2017 with 2000 × 2000 GF-2 pixels (6.4 km2). The center image of (a,b,d,e) covers 500 × 500 
GF-2 pixels (yellow solid box) and is then used in all fusion experiments companying with (f) GF-1 
WFV image acquired on July 24, 2017. (c) is the actual GF-2 image acquired on 23 July 2017. 
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Figure 4. Spectral response curves of multispectral channels (blue, green, red, and NIR) from the GF-
2 sensor and GF-1 WFV multispectral sensors. 

3.2. Experimental Results 

To give a credible description on fusion quality, seven quantitative indices (Table 2) including 
Average Absolute Deviation (AAD), Root-Mean-Square Error (RMSE), Peak Signal to Noise Ratio 
(PSNR), Correlation Coefficient (CC), Spectral Angle Mapper (SAM) [35], Structure Similarity (SSIM) 
[36] and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) [37] are chosen to validate 
fusion results from employed fusion methods.  

𝑆𝐴𝑀 = cos ⎝⎛
∑ 𝜌 𝜌∑ 𝜌 ∑ 𝜌 ⎠⎞ (6) 

𝑆𝑆𝐼𝑀 = 2𝜇 𝜇 + 𝐶 2𝜎 + 𝐶𝜇 + 𝜇 + 𝐶 𝜎 + 𝜎 + 𝐶  (7) 

𝐸𝑅𝐺𝐴𝑆 = 100 𝑝𝑟 ∑ 𝑅𝑀𝑆𝐸𝐵  (8) 

where 𝜌  and 𝜌  indicate reflectance in band 𝑖 ∈ [1,𝐵] of modeled image 𝑃 and actual image 𝑅; 𝜇 ,𝜇 , 𝜎 ,𝜎 , and 𝜎  correspond to the mean value, standard deviation, and covariance in 
band 𝑖 of 𝑃 and 𝑅, respectively; 𝐶 = 𝑘 ∗ 𝐿  and 𝐶 = 𝑘 ∗ 𝐿 ; 𝑘  and 𝑘  are generally set as 
0.01 and 0.03; 𝐿 is the grayscale of reflectance images; 𝑅𝑀𝑆𝐸  is the RMSE in band 𝑖 of 𝑃 and 𝑅; 𝑝 
and 𝑟 are the spatial resolutions of 𝑃 and 𝑅. Small values of RMSE, SAM, and ERGAS and a high 
value of SSIM between modeled reflectance and actual reflectance indicate a high fusion quality.  

Band-based scatter plots are provided to analyze agreements between predicted GF-2 reflectance 
and actual GF-2 reflectance and elapsed time is additionally recorded to evaluate the efficiency of 
fusion procedures. As a parallel comparison, four spatiotemporal fusion models based on two-pair 
observed high-resolution images and low-resolution images (SPSTFM, the proposed method, 
STARFM and ESTARFM) are employed to perform experimental data described in Section 3.1. Note 
that only images in yellow solid boxes of Figure 3a,b,d–f, all with 500 × 500 pixels are required for 
inputs of SPSTFM, STARFM, and ESTARFM algorithms, while spatially-extended images with a 
maximum size 2000 × 2000 pixels shown in the left image of Figure 3a,b,d,e are used as additional 
auxiliary data for enhanced dictionary training in the proposed method. Moreover, the proposed 
fusion procedure is programed by calling ksvdbox [38] and ompbox [39] in MATLAB 2014b under 
Microsoft Windows-7 64-bit system with CPU Intel Core i7 (3.4 GHz) and RAM 16 GB. 

In SPSTFM algorithm, an image blocking strategy is adopted in dictionary training process and 
related parameters are defined primarily as default. For an image with 500 × 500 pixels, default patch 
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size of both high-resolution difference image and low-resolution difference image is chosen as 7 × 7 
pixels, default sparsity parameter is taken as 0.1, and the default number of dictionary atoms (size of 
dictionary codebook) is set as 256. In order to run an essential dictionary training procedure, 
sufficient training sample patches are therefore required, so that the number of training sample 
patches in SPSTFM is adjusted as 6000 rather than 2000 used by (Song and Huang 2013). As to the 
proposed method, training sample sizes from 600 × 600 pixels to 2000 × 2000 pixels (with an interval 
of 100 × 100 pixels) that cover larger spatial areas than the area used in SPSTFM, are prepared for 
training high-resolution and low-resolution dictionaries separately with 15 spatially-extended 
difference images. Default parameters including patch size, sparsity parameter and number of atoms 
are set to be the same as SPSTFM, while the number of patches 𝑛𝑢𝑚_𝑝𝑎𝑡𝑐ℎ  can be calculated 
according to the assigned training sample size 𝑠𝑖𝑧𝑒_𝑡𝑠: 𝑛𝑢𝑚_𝑝𝑎𝑡𝑐ℎ = 𝑠𝑖𝑧𝑒_𝑡𝑠500 × 6000 (9)

where 500 and 6000 match the 𝑠𝑖𝑧𝑒_𝑡𝑠 and 𝑛𝑢𝑚_𝑝𝑎𝑡𝑐ℎ of SPSTFM algorithm. The calculation based 
on the area ratio between extended training image and original training image provides a fair 
assignment for SPSTFM and the proposed method. By this way, 8640 and 96,000 of patches are 
respectively assigned to train difference images with 600 × 600 and 2000 × 2000 pixels.  

In order to optimize fusion quality of STARFM and ESTARFM algorithms, running parameters 
especially for searching spectrally similar pixels from neighbor pixels are determined as default. As 
a result, the moving window size is set as three times that of GF-1 WFV pixel that is 48 × 48 m (about 
12 × 12 GF-2 pixels). Uncertainty parameter in STARFM for assessing spectral differences between 
temporal GF-1 WFV images and between corresponding pixels from GF-2 image and GF-1 WFV 
image is defined as 50 (0.5% of the maximum of stretched reflectance) for both GF-2 and GF-1 WFV 
data, while its default value in ESTAFM is set as 0.2% of the maximum of stretched reflectance (about 
20). The number of land cover types is also important for filtering spectrally similar pixels that are 
employed to calculate weighting contributions to predicted pixel reflectance. Although this 
parameter firstly defined in STARFM is utilized in the same way as ESTARFM, our preliminary 
experiment shows that fusion quality has not been improved but reduced when different levels of 
adjustments for their default land cover types are made for STARFM and ESTARFM. In this 
experiment, the number of land cover types respectively are set as 40 classes for STARFM and four 
classes for ESTARFM.  

The predicted GF-2 reflectance images at the modeled date (23 July 2017) from employed fusion 
models including SPSTFM, the proposed method with the training sample size as 2000 × 2000 pixels, 
STARFM and ESTARFM are finally shown in Figure 5 with the composite of green, red, and NIR 
channels. All assessment indices including AAD, PSNR, CC, RMSE, SAM, SSIM indices for each band 
and ERGAS index for overall bands are listed in Table 2, where the training sample size used in 
SPSTFM is 500 × 500 pixels and 15 different training sample sizes used in the proposed method are 
ranging from 600 × 600 to 2000 × 2000 pixels. To find out agreements between predicted GF-2 
reflectance and actual GF-2 reflectance, scatter plots are regarded as an additional analysis tool for 
validating fusion quality on green band, red band, and NIR band (Figure 6). Band-based agreement 
between GF-2 reflectance and corresponding GF-1 WFV reflectance acquired on 29/30 April and 8 
November 2017 are also shown with scatter plots in Figure 7. 
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Figure 5. Actual and predicted GF-2 reflectance images (composite of green, red, and NIR bands) at 
23 July 2017, respectively, from (a) actual reflectance image, (b) SPSTFM, (c) the proposed method 
with the training sample size as 2000 × 2000 pixels, (d) STARFM, and (e) ESTARFM algorithms. Image 
areas covered by green and yellow ovals indicate farmland and water body that are both zoomed in 
below the corresponding full image. 

 
Figure 6. Channel-based scatter plots between actual reflectance (X-axis) and predicted reflectance (Y-
axis) from employed fusion algorithms. (a–d), (e–h), and (i–l) are, respectively, green, red, and NIR 
reflectance predicted by SPSTFM, the proposed method, STARFM and ESTARFM. The numbers 0 
and 1 in the top and bottom of the density slice legend indicate a sparse and a dense plot distribution. 

 
Figure 7. Scatter plots of GF-2 reflectance and GF-1 WFV reflectance acquired on 29 April and 8 
November 2017. (a–c) and (d–f) separately show reflectance agreements in green, red, and NIR bands 
for GF-2 (500 × 500 pixels) and GF-1 WFV (500 × 500 pixels) image-pair observed at 29 April and 8 
November 2017, respectively. 
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Table 2. Assessment indices Average Absolute Deviation (AAD), Root-Mean-Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), Correlation Coefficient 
(CC), Spectral Angle Mapper (SAM), Structure Similarity (SSIM) and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) of fusion quality from 

different fusion algorithms. 

Methods 
Training 
Sample Size 

AAD × 102 PSNR CC ERGAS 
Green Red NIR Green Red NIR Green Red NIR  

SPSTFM 500×500 1.67 1.58 4.72 23.9890 23.9886 20.6887 0.8348 0.8206 0.6978 30.2124 

Proposed fusion model 

600×600 1.54 1.57 4.69 23.7903 24.2777 20.9278 0.8391 0.8358 0.7146 28.9806 

700×700 1.49 1.55 4.64 23.6544 24.4698 21.3056 0.8445 0.8380 0.7227 27.5489 

800×800 1.44 1.52 4.58 23.3901 24.6415 21.5419 0.8489 0.8447 0.7266 28.1647 

900×900 1.44 1.50 4.53 23.2203 24.9902 21.6763 0.8533 0.8493 0.7304 26.5306 

1000×1000 1.40 1.49 3.49 23.1411 25.1369 21.8535 0.8550 0.8525 0.7341 26.1852 

1100×1100 1.37 1.47 3.45 24.0155 25.4554 22.0025 0.8582 0.8566 0.7369 25.9577 
1200×1200 1.36 1.46 3.37 24.1223 25.5109 22.3117 0.8597 0.8584 0.7397 24.5226 

1300×1300 1.33 1.43 3.30 24.3005 25.6688 22.7006 0.8623 0.8631 0.7434 25.0774 

1400×1400 1.28 1.44 3.25 24.4379 25.6979 22.8990 0.8644 0.8679 0.7482 23.4095 

1500×1500 1.25 1.41 3.11 24.7706 25.7452 23.1453 0.8679 0.8694 0.7527 23.1710 

1600×1600 1.24 1.39 2.81 24.8269 25.7885 23.3366 0.8688 0.8728 0.7573 23.0139 

1700×1700 1.22 1.37 2.72 24.9901 25.8503 23.4210 0.8702 0.8755 0.7610 23.8441 

1800×1800 1.19 138 2.70 25.1796 25.9116 23.6962 0.8731 0.8771 0.7644 23.2267 

1900×1900 1.18 1.36 2.67 25.3661 25.9820 23.8331 0.8756 0.8797 0.7697 22.9553 
2000×2000 1.18 1.34 2.66 25.4157 25.9833 23.8400 0.8754 0.8800 0.7711 22.9874 

STARFM — 1.75 1.56 4.38 23.5678 24.1568 20.6543 0.8533 0.8496 0.7301 26.0771 
ESTARFM — 1.69 1.47 3.53 23.4508 24.3378 21.6888 0.8384 0.8517 0.7009 25.9248 
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Methods 
Training 
Sample size 

RMSE ×102 SAM SSIM × 102 Elapsed Time (s) 
Green Red NIR Green Red NIR Green Red NIR  

SPSTFM 500×500 2.41 3.36 6.47 1.7829 1.7880 1.8993 87.08 73.61 61.18 60.95 

Proposed fusion model 

600×600 2.29 3.21 6.29 1.7863 1.7563 1.8563 87.94 83.94 67.94 67.59  
700×700 2.22 3.17 6.31 1.7855 1.7655 1.8109 88.17 84.57 71.17 88.26  
800×800 2.31 2.94 5.86 1.7745 1.7445 1.8245 87.34 85.46 72.46 91.75  
900×900 2.15 2.85 5.45 1.7833 1.7492 1.8133 88.26 86.34 73.34 96.30  
1000×1000 2.10 2.77 5.38 1.7790 1.7543 1.8046 88.42 87.09 75.07 110.17 
1100×1100 2.23 2.63 5.29 1.7811 1.7415 1.7811 89.33 87.98 74.82 122.63 
1200×1200 2.19 2.49 5.31 1.7794 1.6893 1.7914 89.92 88.44 74.69 135.76 
1300×1300 2.15 2.51 5.15 1.7807 1.6780 1.8087 89.77 88.17 74.57 166.44 
1400×1400 2.16 2.36 4.91 1.7765 1.6884 1.7947 89.89 89.29 75.92 179.28 
1500×1500 2.01 2.27 4.84 1.7636 1.6731 1.7882 90.18 89.42 76.34 201.16 
1600×1600 2.01 2.25 4.86 1.7679 1.7379 1.8009 90.14 89.64 76.64 227.81 
1700×1700 2.02 2.31 4.90 1.7685 1.7475 1.7852 90.07 88.83 75.89 250.66 
1800×1800 2.01 2.27 4.84 1.7521 1.7551 1.7801 90.10 89.25 76.41 279.05 
1900×1900 2.03 2.24 4.91 1.7469 1.7460 1.7767 90.16 89.71 76.16 311.68 
2000×2000 2.02 2.22 4.88 1.7514 1.7471 1.7823 90.18 90.06 76.81 323.44 

STARFM — 2.40 2.45 5.50 1.7812 1.7605 1.8181 87.22 87.47 75.19 10.78 
ESTARFM — 2.41 2.48 5.02 1.7749 1.7538 1.8126 85.80 86.36 70.27 348.56 

 



Sensors 2020, 20, 1789 12 of 15 

 

4. Discussion 

Acceptable predicted results from SPSTFM, the proposed method, STARFM and ESTARFM in 
Figure 5 can be obtained by fusing two-pair-observed GF-2 and GF-1 WFV images. From a visual 
point of view, results from learning-based methods (SPSTFM and the proposed method) generally 
have a better color restoration of actual GF-2 composite images than results from STARFM and 
ESTARFM. For instance, predicted farmland and water body (yellow and green ovals in Figure 5e) 
in the fused image of ESTARFM show an obvious spectral distortion in comparison with the actual 
GF-2 composite image. This problem is probably caused by the seasonal discrepancy between three 
GF-1 reflectance images acquired on 29 April, 24 July and 8 November 2017 (see Figure 3b,e,f), which 
leads to unstable multiplicative coefficients a in linear models respectively established with GF-2 and 
GF-1 WFV reflectance acquired on 29 April 2017, and GF-2 and GF-1 WFV reflectance acquired on 8 
November 2017. The explanation is well supported by the SSIM index calculated for STARFM and 
ESTARFM in Table 2 and channel-based scatter plots between Figure 6c,g,k from STARFM and 
Figure 6d,h,l from ESTARFM.  

In view of spatial information restoration, learning-based methods can provide more spatial 
texture details than STARFM especially for changing farmland (Figure 5). ESTARFM has a lower 
ERGAS index and average SAM index than corresponding ERGAS index and average SAM index 
from STARFM (Table 2). A low performance of SPSTFM in assessment indices can be addressed by 
the dictionary atoms defined in the dictionary learning and sparse coding process. A significant 
promotion of fusion quality therefore can be expected by reduce the number of dictionary atoms.  

Moreover, results from the proposed method based on sparse learning give a favorable 
performance both in avoiding spectral distortion and capturing spatial texture details. The average 
of AAD, PSNR, CC, RMSE, SAM, SSIM, and the ERGAS index derived from SPSTFM are orderly 
improved when training sample size are spatially-extended from 500 × 500 to 2000 × 2000 pixels (Table 
2). Scatter plots of green, red, and NIR bands shown in Figure 6b,f,j indicate a high agreement 
between actual GF-2 reflectance and predicted GF-2 reflectance from the proposed method, of which 
density plots have a more concentrated distribution than that in Figure 6a,e,i from SPSTFM, Figure 
6c,g,k from STARFM and Figure 6 d,h,l from ESTARFM. An effective improvement for fusion quality 
of SPSTFM, STARFM, and ESTARFM; therefore, can be expected by the proposed method with 
training sample size above 1200 × 1200 pixels, while it cannot have a significant growth after training 
sample size larger than 1500 × 1500 pixels. In general, the completeness of learned dictionary from 
spatially-extended training samples will not be lower than that from original training samples 
without spatially extension, which can be attributed to learning mechanism of sparse coding for 
dictionary training. Considering the fact that spatially-extended image areas have similar land cover 
types and inner-class heterogeneity with the original training sample image, the completeness of 
proposed dictionary training strategy would be significantly promoted. While similar land cover 
types are absent in those spatially-extended image areas, updated atoms in trained dictionaries 
calculated from extended training image areas probably have low correlation and also slightly 
promote the completeness of sparse dictionary.  

Green band (Figure 6a,b,c,d) and red band (Figure 6e,f,g,h) generally have higher fusion 
accuracy than the NIR reflectance (Figure 6i,j,k,l) for all employed fusion algorithms. In Table 2, 
assessment indices from the green band and red band have a higher AAD, RMSE, SAM and a lower 
PSNR, CC, SSIM than that from NIR band for all fusion algorithms. The reason may attribute to the 
spectral correlation of surface features between GF-2 and GF-1 WFV images at two observed dates. 
Figure 7a,b,c,d,e,f, respectively, show reflectance agreements between green, red, and NIR bands of 
GF-2 and GF-1 WFV acquired on 29/30 April and 8 November 2017. A rather low agreement on the 
NIR band of GF-2 reflectance with GF-1 WFV reflectance can be observed, while an acceptable 
agreement is provided for reflectance of both the green band and the red band. 

The executing time of fusion procedures is finally regarded as an important index to assess 
efficiency of fusion algorithms. In this respect, STARFM just costs about 10 s for blending images 
with 500 × 500 pixels, while ESTARFM costs 348.56 s (its fast version costs 228. 21 s). As to sparse 
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learning-based fusion procedures, the elapsed time ranges from 60.95 s to 323.44 s with training 
sample size from 500 × 500 to 2000 × 2000 pixels and the number of patches from 6000 to 96,000. On 
the other side, the relationship between elapsed time and training sample size of the proposed 
method intends to be a rapid increasing rather than a linear growth. Hence, a proper size for selecting 
training samples can balance the efficient and accuracy of the proposed method. 

5. Conclusions 

For the purpose of blending two-pair observed high-resolution images and low-resolution 
images, an improved sparse-learning fusion method was developed by introducing an existing 
strategy of spatially extending training samples to the dictionary learning process, and then applied 
to Gaofen satellite data (GF-2 MS and GF-1 WFV). Employed assessment indices AAD, PSNR, CC, 
RMSE, SAM, SSIM, and ERGAS were used to evaluate the models’ performance and the conclusions 
of this study were: 

(i) When observed training samples spatially increased, the improved fusion model can promote 
prediction accuracy of the SPSTFM for blending GF-2 MS and GF-1 WFV reflectance images, and; 
therefore, can be expected to be effective for multisource remotely sensed data of which the spatial 
scale difference significantly affected the fusion quality of results from the single-pair-based fusion 
algorithm. 

(ii) Compared to current popular two-pair spatiotemporal fusion models, including STARFM 
and ESTARFM, a better performance of the improved fusion model can be obtained while a time-
consuming problem; therefore, will be generated. Fortunately, this problem can be addressed by the 
improvement of sparse coding process. 

(iii) Inputting data quality and their agreement in spatiotemporal-spectral dimensions are 
important to results from spatiotemporal fusion methods, including the improved fusion model, 
which can also lead to the discrepancy between predicting accuracy and spectral channels of GF-2 
MS images. In fact, because the GF-2 MS and GF-1 WFV sensors have a high similarity in spectral 
response function, the radiometric agreement problem can be hardly considered in our fusion 
experiment. 

(iv) Shadows, especially building shadows, usually exists in high-resolution images (GF-2) 
owing to effects of imaging geometry on urban areas. For fusion models that needs two observed 
image pairs of GF-2 MS and GF-1 WFV in this paper, building shadows caused from two observed 
imaging geometric conditions probably lead to a temporal discrepancy in shadow areas. 
Unfortunately, building shadows is hard to be effectively removed with one observed high-
resolution image, which is indeed a challenge problem for the single-pair learning-based fusion 
model. On the other hand, this problem can be addressed in the framework of two-image-pair-based 
fusion methods. For instance, overlapped shadow areas in two or more observed high-resolution 
images can be kept while other types of shadows can be removed using temporal corresponding clear 
areas, by which a high radiometric agreement between or among temporal high-resolution 
reflectance data can be expected.  
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