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Abstract: The smooth variable structure filter (SVSF) is a new-type filter based on the sliding-mode
concepts and has good stability and robustness in overcoming the modeling uncertainties and errors.
However, SVSF is insufficient to suppress Gaussian noise. A novel smooth variable structure smoother
(SVSS) based on SVSF is presented here, which mainly focuses on this drawback and improves the
SVSF estimation accuracy of the system. The estimation of the linear Gaussian system state based on
SVSS is divided into two steps: Firstly, the SVSF state estimate and covariance are computed during
the forward pass in time. Then, the smoothed state estimate is computed during the backward pass
by using the innovation of the measured values and covariance estimate matrix. According to the
simulation results with respect to the maneuvering target tracking, SVSS has a better performance
compared with another smoother based on SVSF and the Kalman smoother in different tracking
scenarios. Therefore, the SVSS proposed in this paper could be widely applied in the field of state
estimation in dynamic system.

Keywords: robust estimation; smooth variable structure filter; Kalman smoother; target tracking;
uncertain system

1. Introduction

The state and parameter estimation of dynamic systems plays a key role in various application
fields. In practice, not only the real-time state estimation of the system is required, but also an estimation
result with higher precision through the smoother by using additional measurements made after the
time of the estimated state vector is necessary [1–4]. For example, in a radar system, a smoother is
used to obtain higher precision track trajectory for the battlefield situation estimation, and to make
more accurate estimates for the aircraft performance. Smoothers are generally divided into fixed-point,
fixed-interval, and fixed-lag smoothers [5–7], depending on attributes of the application, which type of
smoothers can be decided to use.

In a dynamic system, the real-time sampled data contains various interferences and noises, and it
is difficult to obtain the true state of the system. In 1960, in the case of linear Gaussian noise, a recursive
solution was obtained using the Kalman filter (KF) [8]. This method was deemed to be the best under a
linear, unbiased, and minimum mean square error condition. However, the KF estimates are imprecise
and unstable when the system is nonlinear. To address these problems, scholars have proposed
some different methods. For example, there is the extended Kalman filter (EKF) [9], the unscented
Kalman filter (UKF) [10], and the cubature Kalman filter (CKF) [11,12]. Considering a very small
region of nonlinear system as a linear system, EKF was proposed, which is equivalent to the first-order
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Taylor approximation. Compared with EKF, UKF equals to the second-order Taylor approximation
without the Jacobian matrix calculating. In contrast, CKF is based on a third-degree spherical-radial
cubature rule that provides a set of cubature points scaling linearly with the state-vector dimension
to approximate the state expectation and covariance of a nonlinear system. CKF is equivalent to the
fourth-order Taylor approximation and is more stable. In the case of nonlinear and non-Gaussian
functions, research about the particle filter is very active, but the huge amount of calculation limits its
scope of application [13,14].

One of the main problems of the KF-based filters is that in the case of modeling and parameter
uncertainties, the performance of estimation is degraded. For example, state noises and measurement
noises have heavy-tailed and/or skewed non-Gaussian distributions when measurements have much
clutter [15–17]. To deal with this unknown noises, some robust methods have been presented [18,19],
when the system with a heavy-tailed or a skewed measurement noises, robust Kalman filters have been
proposed by employing the Student’s t or skew-t distribution to model measurement noises [15,20]. The
filter based on a detect-and-reject idea when the measurements are partially disturbed by outliers [21].
For improving robustness and performance of EKF, optimization algorithms [22], adaptive step size
control method [23] and online expectation-maximization approach [24] are applied, other theory
include optimal [25], minimax estimators [26], etc. Above filters have poor performance in the system
with an uncertain model, because mismatching exists between the theoretical signal model of those
filters and the variational state model of the system, the theoretical model is entirely consistent variable
state model, and is effective in estimation. When the system is a hybrid system that contains finite
models, the multi-model methods are proposed to estimate the system state and it are different from
single model strategies. The popular multi-model methods include the interactive multi-model method
and the variable structure interactive multi-model method [27–31]. So far, the state estimation of
dynamic systems is a difficult problem when the modeling and parameter are uncertain, which is
worth further study.

The smooth variable structure filter (SVSF) was proposed based on variable structure theory in 2007,
and it has advantages in dealing with the problem of uncertain modeling and noise interference [32].
Similar to the KF method, the SVSF is also a predictor-corrector strategy, its gain is based on the
discontinuous correction gain, and limits the state estimation around the true state trajectory with
a small deviation. Thereby it improves the stability and the robustness of the estimation [32]. The
SVSF has been known as a sub-optimal filter [10,12], and different methods have been proposed
continually to enrich the theory [33–36], such as a higher-order version and a revised version [37] of
the SVSF, where Gadsden derived the state covariance of the SVSF, and introduced opportunity for its
application [38]. Reference [10,12] calculated the optimal smoothing layer with state covariance to
determine whether to use SVSF filtering or other filtering methods (e.g., EKF, UKF, CKF), and obtained
better filtering results. According to previous research, the SVSF has achieved significant development
and is applied in various fields, such as vehicle navigation [39,40], battery management [41,42], fault
detection and diagnosis [43–45], and artificial intelligence [45–47]. However, the ability of SVSF to
eliminate noises cannot meet the requirement of estimation in many application conditions such as
target tracking, which can be improved by a smoother. There are not many works that previously
studied the smoothing problem of the SVSF. The earliest related article [48,49] presented a two-pass
smoother based on the SVSF (labeled as SVSTPS), which uses the SVSF gain. As mentioned above, the
SVSF gain is considered suboptimal under linear cases [10,12]. Therefore, the performance of SVSF
smoothing can be further improved.

This paper is inspired by the Kalman smoother [5,6] and infers the proposed SVSS algorithm in
the linear case. Unlike using the SVSF gain, the proposed SVSS method is capable of getting a better
state estimation by using the innovation sequence and projection theory [8]. Our former work focus on
maneuvering target tracking [50–53], the SVSS is also applied in maneuvering target tracking. The rest
of the paper is structured as follows. Section 2 reviews the SVSF. Section 3 expounds on the smooth
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theories and the SVSS algorithm. Section 4 exhibits the simulation and analysis. Section 5 concludes
the main findings in this paper.

2. The SVSF Strategies

Sliding-mode control and estimation is a traditional technique [54] and is widely welcomed as
the easy implementation and robustness to uncertainty modeling and errors. Based on Sliding-mode
concepts, Habibi first proposed the variable structure filter(VSF) in 2003 [54], which is a new
predictor-corrector estimator type, that is applied to linear systems. The SVSF, as an improved
form of VSF, can be used for linear or non-linear systems [32].

The trajectory of the state variable over time is shown in Figure 1. In the SVSF concept, the system
state trajectory is generated by uncertain modeling. The estimated state trajectory is approximated
towards the true trajectory until it reaches the existence subspace. When the estimated state remains in
the existence subspace, it is forced to switch back and forth in the true state trajectory. If modeling
errors and noises are bounded, then estimates will remain within this limit. The SVSF strategy shows
its stability and robustness to modelling uncertainties and errors.
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Figure 1. SVSF estimation concept [32].

In the case of linear dynamic systems under a zero-mean and Gaussian noise, the state equation
and observation equation of a dynamic system are given by Equation (1), respectively:{

xk+1 = Fxk + wk
zk+1 = Hxk+1 + vk+1

(1)

The iterative process of SVSF is as follows:
The predicted state estimation and measurement estimation are calculated as:

x̂k+1|k = Fx̂k|k (2)

ẑk+1|k = Hx̂k+1|k (3)

The measurement innovation is expressed by:

ek+1|k = zk+1 − ẑk+1|k (4)
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Based on Reference [32], the SVSF gain KSVSF
k+1 is given by:

KSVSF
k+1 = H+(|ek+1|k|+ γ|ek|k)•sat

(
ψ
−1

ek+1|k

)
(5)

where KSVSF
k+1 is a gain function, H+ is the generalized inverse matrix of H,γ (0 ≤ γ < 1e) is the SVSF

“memory” or convergence rate, |e| is the absolute value of e, and • represents the multiplication of the
corresponding elements of the two matrices (Hadamard product). Besides,

sat
(
ψ
−1

ek+1|k

)
=


1, ψ

−1
ek+1|k ≥ 1

ψ
−1

ek+1|k, −1 < ψ
−1

ek+1|k < 1

−1, ψ
−1

ek+1|k ≤ −1

(6)

and

ψ
−1

=


1
ψ1

0 0

0
. . . 0

0 0 1
ψm

 (7)

where ψi (i = 1, · · · , m) represents the element of a vector ψ that means smoothing boundary value,
and m is the measurement dimension. The state estimate is updated by:

x̂k+1|k+1 = x̂k+1|k + KSVSF
k+1 (8)

The posterior measurement estimation and its innovation are described as:

ẑk+1|k+1 = Hx̂k+1|k+1 (9)

ek+1|k+1 = zk+1 − ẑk+1|k+1 (10)

The SVSF estimation process converges to the existence subspaces as shown in Figures 1 and 2.
The width of the existence subspace β is an uncertain dynamic and time-varying function. In general,
the width of β is not completely known, but an upper bound (i.e., ψ) can be chosen based on
prior knowledge.

In the existence subspace, the SVSF gain will force the estimated state to switch back and forth
along the true state trajectory. The high-frequency switching caused by the gain of the SVSF is called
chattering [32], the chattering makes the estimation result inaccurate, and it can be minimized with a
given value of smoothing boundary layer ψ. As shown in Figure 2a, when the smoothing boundary
layer is larger than the existence subspace boundary layer, the estimated state trajectory is smoothed.
When the smoothing boundary layer is smaller than the existence subspace boundary layer, the
chattering remains due to the model uncertainty is underestimation, as shown in Figure 2b. Therefore,
the SVSF algorithm is an effective estimation strategy for a system that has no an explicit model.

SVSF is generally used to process systems with the same dimension of state estimation and
measurement. If the dimension of state estimation is larger than the dimension of measurement,
the “artificial” measurement needs to be added [4]. For example, when estimate the speed in target
tracking, it is necessary to increase the “artificial” measurements of speed.
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Figure 2. Smoothing boundary layer concept [10,32] (a) Smoothed estimated trajectory (ψ ≥ β); (b)
Presence of chattering effect (ψ ≤ β).

3. Smoothing Theories and the Proposed Algorithms

Smoothing is a practical strategy using additional measurements made after the time of the
estimated state vector to obtain better estimates than those attainable by filtering only. Unfortunately,
it is often overlooked. Since the KF algorithm was proposed in 1960 [8], the optimal smoothing method
has been derived from the same model using the Kalman theory [55]. Smoothers are the algorithmic or
analog implementations of smoothing methods. The relation among smoother, predictor and filter is
illustrated in Figure 3, fixed-interval smoothers, fixed-lag smoothers, and fixed-point smoothers are
the most typical smoothers, since they have been developed to solve different types of application
problems. The fixed-interval smoother is suitable for the trajectory optimization problems.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 21 

 

Figure 2. Smoothing boundary layer concept [10,32] (a) Smoothed estimated trajectory ( )ψ β≥ ; (b) 

Presence of chattering effect ( )ψ β≤ . 

3. Smoothing Theories and the Proposed Algorithms 

Smoothing is a practical strategy using additional measurements made after the time of the 
estimated state vector to obtain better estimates than those attainable by filtering only. Unfortunately, 
it is often overlooked. Since the KF algorithm was proposed in 1960 [8], the optimal smoothing 
method has been derived from the same model using the Kalman theory [55]. Smoothers are the 
algorithmic or analog implementations of smoothing methods. The relation among smoother, 
predictor and filter is illustrated in Figure 3, fixed-interval smoothers, fixed-lag smoothers, and fixed-
point smoothers are the most typical smoothers, since they have been developed to solve different 
types of application problems. The fixed-interval smoother is suitable for the trajectory optimization 
problems.  

fixedt

x̂

lagtΔ

 

Figure 3. Estimate/measurement timing constraints [55]. 

SVSF is a novel model-based robust state estimation method and has efficient performance in 
reducing the disturbances and uncertainties. However, SVSF is less efficient in noise elimination 
compared to the Kalman filter [10]. Therefore, if its performance in noise canceling can be improved, 
SVSF would be developed further and be widely utilized in the state estimation field. Previous 
research indicates that the influence of noises can be eliminated effectively by a filter followed by an 
additional smoothing process. Therefore, this paper studies the fixed-interval smoother based on 
SVSF. 

3.1. The Kalman Smoother  

The popular Rauch–Tung–Striebel (RTS) Two-pass Smoother is one of the fixed-interval Kalman 
smoothers [55], which is labeled as KS. KS is widely used for its fast iteration and high precision 
performance, and its iterative process is described below. When the current measurements are 
obtained, system state and covariance calculated by the Kalman filter in real-time, then, they are used 
in the smoothing process to obtain a more accurate estimate [55].  

1
ˆ ˆ

k k k k
x Fx

+ ⏐ ⏐
=  (11) 

11
T

kk k k k
P FP F Q ++ ⏐ ⏐

= +
 (12) 

Figure 3. Estimate/measurement timing constraints [55].

SVSF is a novel model-based robust state estimation method and has efficient performance in
reducing the disturbances and uncertainties. However, SVSF is less efficient in noise elimination
compared to the Kalman filter [10]. Therefore, if its performance in noise canceling can be improved,
SVSF would be developed further and be widely utilized in the state estimation field. Previous research
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indicates that the influence of noises can be eliminated effectively by a filter followed by an additional
smoothing process. Therefore, this paper studies the fixed-interval smoother based on SVSF.

3.1. The Kalman Smoother

The popular Rauch–Tung–Striebel (RTS) Two-pass Smoother is one of the fixed-interval Kalman
smoothers [55], which is labeled as KS. KS is widely used for its fast iteration and high precision
performance, and its iterative process is described below. When the current measurements are obtained,
system state and covariance calculated by the Kalman filter in real-time, then, they are used in the
smoothing process to obtain a more accurate estimate [55].

x̂k+1|k = Fx̂k|k (11)

Pk+1|k = FPk|kFT + Qk+1 (12)

ẑk+1|k = Hx̂k+1|k (13)

Sk+1 = HPk+1|kHT + Rk+1 (14)

Kk+1 = Pk+1|kHT
k+1S−1

k+1 (15) x̂k+1|k+1 = x̂k+1|k + Kk+1[Zk+1 − ẑk+1|k]

Pk+1|k+1 = (I −Kk+1H)Pk+1|k(I −Kk+1H)T + Kk+1Rk+1KT
k+1

(16)

The smoothing process is operated backward from the last estimation x̂N|N to the first one [55],
and the corresponding iterations are given by: x̂k|N = x̂k|k + Ak(x̂k+1|N − x̂k+1|k)

Ak = Pk|kFTP−1
k+1|k

(17)

Equations (11)–(17) summarize the Rauch–Tung–Striebel (RTS) Two-pass Smoother (the KS
algorithm), which is an iterative process.

3.2. The Proposed SVSS Algorithm

The covariance does not necessarily have to be calculated in SVSF, but it is significant for the
smoother [38]. The linear system is described by Equation (1). Similar to the calculation method of KF,
the predicted state covariance matrix of SVSF is shown as;

Pk+1|k = FPk|kFT + Qk (18)

where Pk|k represents the posterior state covariance at k time, and FT represents the system transition
matrix, Q is the white noise involved in the system and is calculated by:

wk ∼ N(0, Qk)

E{wk} = E
{
wk

T
}
= 0

E
{
wkwk

T
}
= Qk

E
{
wkx̃k|k

T
}
= E{wk}E

{
x̃k|k

T
}
= 0

E
{
x̃k|kwk

T
}
= E

{
x̃k|k

}
E
{
wT

k

}
= 0

(19)

The state estimate x̂k+1|k is given by

x̂k+1|k = Fxk|k (20)



Sensors 2020, 20, 1781 7 of 21

According to updated estimates x̂k+1|k and real measurement zk, the innovation can be expressed
by:

ek+1|k = zk −Hx̂k+1|k (21)

The state estimate is updated as:

x̂k+1|k+1 = x̂k+1|k + Kk+1ek+1|k (22)

Kk+1 = H+diag
(∣∣∣ek+1|k

∣∣∣+ γ
∣∣∣ek|k

∣∣∣)•sat
(
ψ
−1

ek+1|k

)
×

[
diag

(
ek+1|k

)]−1
(23)

The updated measurement innovation is calculated by:

ek+1|k+1 = zk+1 −Hx̂k+1|k+1 (24)

The posterior state covariance Pk+1|k+1 at k + 1 time can be written in:

Pk+1|k+1 = E
{
x̃k+1|k+1x̃k+1|k+1

T
}

= E
{[
(I −Kk+1H)x̃k+1|k −Kk+1vk+1

][
(I −Kk+1H)x̃k+1|k −Kk+1vk+1

]T
}

= E
{[
(I −Kk+1H)x̃k+1/k

(
x̃k+1|k

)T
(I −Kk+1H)T

− (I −Kk+1H)x̃k+1|kvT
k+1KT

k+1

−Kk+1vk+1(x̃k+1/k)
T(I −Kk+1H)T + Kk+1vk+1vT

k+1KT
k+1

]} (25)

The relationship between the measurement noises and state estimates is depicted as Equation (26)
under the linear Gaussian system:

E
{
vk+1

}
= E

{
vT

k+1

}
= 0

E
{
vk+1vT

k+1

}
= Rk+1

E
{
x̃k+1|kvT

k

}
= E

{
x̃k+1|k

}
E
{
vT

k

}
= 0

E
{
vkx̃T

k+1|k

}
= E{vk}E

{
x̃T

k+1|k

}
= 0

(26)

where Rk+1 means the measurement noise covariance matrix. In addition, vk+1 follows a Gaussian
distribution, i.e.

vk+1 ∼ N(v; 0, Rk+1) (27)

According to Formulas (25) and (26), the Equation (25) can be rewritten as:

Pk+1|k+1 = (I −Kk+1H)Pk+1|k(I −Kk+1H)T + Kk+1Rk+1KT
k+1 = (I −Kk+1H)Pk+1k (28)

The Equations (18)–(28) are the specific processes of the SVSF algorithm with the iterative update
process of the covariance matrix.

The earliest article about SVSF [48] presented a two-pass smoother (labeled as SVSTPS) based on
the Rauch–Tung–Striebel (RTS) Two-pass Smoother. The smoothing process uses Equation (17), in
other words, it is based on the SVSF gain directly. However, the estimation result is not satisfying,
so the SVSS using innovation sequences is proposed here. The innovation sequence is an orthogonal
sequence containing the same statistical information as the original random sequence, so the innovation
sequence is a white noise sequence with a zero mean. The smoothing process in the proposed smoother
(SVSS) is updated by the innovation sequence according to the projective theorem (minimum mean
square error criterion), and has better performance in eliminating Gaussian noise. The recursive
equation is related with the smoothed estimates x̂k|N and x̂k|N−1 (with k < N), as follows:

x̂k|N = x̂k|N−1 + Mk|N−1(zN −Hx̂N|N−1)

= x̂k|N−1 + (
N−1∏
i=k

Ci)BN(zN −Hx̂N|N−1)
(29)
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where Ci and BN are calculated by Ci = Pi|iFTP−1
i+1|i and BN = PN|N−1HT(HPN|N−1HT + R)−1

respectively.

Proof. When N = k + n and ek+nzn −Hx̂N|N−1, Equation (29) can be written as:

x̂k|k+n = x̂k|k+n−1 + Mk|k+n−1ek+n (30)

where the smoothing gain Mk|k+n−1 is defined in projection theory as:

Mk|k+n−1 = E((xkeT
k+n))

{
E(ek+neT

k+n)
}−1

(31)

And according to Equation (1) and Equation (21), the innovation is given by:

ek+n = H(Fx̃k+n−1|k+n−1 + wk+n) + vk+n = Hx̃k+n|k+n−1 + vk+n (32)

Furthermore, according the References [56], the true state error is calculated by:

x̃k+n−1|k+n−1 = F(k + n− 1, k)x̃k|k +
i+n−1∑
i=k+1

F(k + n− 1, i)
{
[In −KiH]wi−1 −Kivi

}
(33)

where F(k + n− 1, k + n− 1) and F(k + n− 1, i) are defined as:

F(k + n− 1, k + n− 1) = In (34)

F(k + n− 1, i) = [In −Kk+n−1H]F · · · [In −Ki+1H]F (35)

Suppose n > 0, then according to Equation (19) and Equation (26), when wk+n−1⊥xk and vk+n⊥xk,
the expectation can be calculated as:

E((xkeT
k+n)) = E

[
xkx̃T

k+n−1|k+n−1

]
FTHT (36)

The true state value is expressed as xk = x̂k|k + x̃k|k and x̂k|k⊥x̃k|k, substituting (33) into (36) yields

E((xkeT
k+n)) = Pk|kFT(k + n− 1)FTHT

= Pk|k

{
n−1∏
i=1

FT[In −Kk+iH]T
}

FTHT

= Pk|kFT
{

n−1∏
i=1

[In −Kk+iH]TFT
}

HT

(37)

From Equation (28), Equation (37) can be written in:

E((xkeT
k+n)) = Pk|kFT(

n−1∏
i=1

P−1
k+i+1|k+iPk+i+1|k+i+1FT)HT = (

k+n−1∏
i=k

(Pi|iFTP−1
i+1|i)Pk+n|k+n−1HT (38)

E(ek+neT
k+n) = (HPk+n|k+n−1HT + R)

−1
(39)

Substituting Equation (38) and Equation (39) into Equation (30) yields:

Mk|k+n−1 = E((xkeT
k+n))

{
E(ek+neT

k+n)
}−1

= (
k+n−1∏

i=k

(Pi|iFTP−1
i+1|i)Pk+n|k+n−1HT(HPk+n|k+n−1HT + R)

−1

(40)
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So Equation (30) is written as:

x̂k|k+n = x̂k|k+n−1 + (
k+n−1∏

i=k

(Pi|iFTP−1
i+1|i)Pk+n|k+n−1HT(HPk+n|k+n−1HT + R)

−1
ek+n (41)

When N = k + n and ek+n = zn −Hx̂N|N−1. Equation (41) can be written as:

x̂k|N = x̂k|N−1 + (
N−1∏
i=k

Ci)BN(zN −Hx̂N|N−1) (42)

where Ci and BN are calculated by Ci = Pi|iFTP−1
i+1|i,BN = PN|N−1HT(HPN|N−1HT + R)−1. �

The other detailed derivation is described in the Appendix A. Moreover, the validity of this
derivation process could be verified from Reference [6].

Equations (18)–(29) summarize the SVSS algorithm proposed in this paper. The pseudo-code is
patched as follows.

The SVSS Algorithm

Input {x0, P0,ψ, F, Q, R, H} and the sequence measurement {z1, z2, . . . , zN}
Step 1 fiter
x̂k+1|k = Fxk|k
Pk+1|k = FPk|kFT + Qk
ek+1|k = zk −Hx̂k+1|k

Kk+1 = H+diag
(∣∣∣ek+1|k

∣∣∣+ γ
∣∣∣ek|k

∣∣∣)•sat
(
ψ
−1

ek+1|k

)
×

[
diag

(
ek+1|k

)]−1

x̂k+1|k+1 = x̂k+1|k + Kk+1ek+1|k

Pk+1|k+1 = (I −Kk+1H)Pk|k+1(I −Kk+1H)T + Kk+1Rk+1KT
k+1

ek+1|k+1 = zk+1 −Hx̂k+1|k+1
Step 2 smoothing
Ci = Pi|iFTP−1

i+1|i

BN = PN|N−1HT(HPN|N−1HT + R)−1

x̂k|N = x̂k|N−1 + (
N−1∏
i=k

Ci)BN(zN −Hx̂N−1)

Output {x̂k|N}

4. Simulation

4.1. A Classic Target Tracking Scenario

A classic simulation scenario is always used in References [10,30,57]. This is a tracking problem
with a generic air traffic control (ATC) scenario: The target position is provided by a radar system. The
system noise obeys a Gaussian distribution with 200 m standard deviation. Figure 4 shows that an
aircraft spent 125 s to move from the initial position of [−25000m,−10000m] at t = 0s, and flew with
a speed of 120 m/s along the x-axis direction and remained 0m/s along the y-axis direction. Then it
turned at a rate of 3

◦

/s for 30s. Next, the target flew in a straight line for 125s, and maneuvered at a
rate of 1

◦

/s for 90s. Finally the target flew straight for 120s till the end.
In the ATC scenario, the behavior of the civilian aircraft could be modeled by a uniform motion

(UM) [10,30,57], i.e.,

xk+1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk +


1
2 T2 0
0 T
1
2 T2 0
0 T

wk (43)
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where T refers to the sampling rate and wk denotes the system noise. The state vector xk of the systems
is defined by:

xk = [ηk,
.
ηk, ξk,

.
ξk]

T
(44)

where ηk and ξk represent the position of the aircraft along the x-axis and y-axis directions,
.
ηk and

.
ξk represent its speed, respectively. In the target tracking processing system, generally, radar only
provides position measurements without target speed measurements. Therefore, the measurement
model can be expressed as:

zk =

[
1 0 0 0
0 0 1 0

]
xk + vk (45)

In the simulation, the state of the filter parameter is initialized as x0 = [−25000, 80,−10000,−10].
Moreover, measurement covariance R, state covariance P0|0 and process noise covariance Q are set as
follows:

R = 2002
[

1 0
0 1

]
(46)

P0|0diag([10000, 1000, 10000, 1000]) (47)

Q = L ∗


T3

3
T2

2 0 0
T2

2 T 0 0
0 0 T3

3
T2

2
0 0 T2

2 T

 (48)

where L represents the power spectral densities and is defined as 0.16 [10,30,57]. Besides, the SVSF
“memory” ( i.e. convergence rate) was set to γ = 0.1, which is tuned based on some knowledge of the
system uncertainties such as the noise to decrease the estimation errors [58]. Those methods are coded
with MATLAB and the simulations are run on a laptop computer with Intel Core i5-3230M CPU at
2.40 GHz. Five hundred trials of Monte Carlo are performed in each simulation, and the estimation
results are expressed in the figures of merit-root mean square error (RMSE), accumulative RMSE and
the average value.

1 Compared with KF

In this simulation, Kalman filter (KF), Kalman smoother (KS), Robust Student’s t-Based Kalman
Filter (RSTKF) [20], SVSF and the proposed SVSF are tested. The SVSF and SVSS of smooth boundary
layer widths is set to ψ = [800, 800] m, the In the RSTKF, the prior parameters are set as: w = v =

5, τ = 5, N = 10[20].
Figure 4 shows the target tracking position trajectory of one experiment, so the closer the tracking

trajectory is to the real trajectory, the more accurate the tracking method is. The trajectory of SVSS is
closer to true trajectory than SVSF, so SVSS reduces the chattering phenomena. The state estimation
results of KF, KS, SVSF and the proposed SVSS are shown in Figure 5 and Table 1. Compared with
RSTKF, SVSF and SVSS, when the system modeling is in accordance with target motions, the KF and
KS exhibit better performance. But when the target motion model changes, a dramatic increase occurs
in the tracking errors of KF and KS, while the estimations of RSTKF, SVSF and SVSS still maintain
high accuracy. In Figure 5, the aircraft flies in a straight line after 155 s, the RMSE of SVSF does not
decrease because the SVSF algorithm could not directly estimate the speed information. Therefore,
there are no modifications in the relevant speed information. How to effectively use the “artificial”
velocity measurements to modify the speed information will be described in the following. As shown
in Figure 5 and Table 1, the simulation results demonstrate that for both KF and SVSF, the tracking
errors obtained from their smoothers are smaller than that from the filters. In addition, Table 1 shows
the position accumulative RMSE of SVSS is the lowest among KF, KS, RSTKF and SVSF. SVSS improves
tracking accuracy by about 22% compared with SVSF and RSTKF, while KS only improves about 7%
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compared with KF. The reason for phenomenon is that the ability of SVSF to deal with noise is weaker
than KF, so SVSS is easier to eliminate noises in its state estimates value compared to KS. KS and SVSS
in smoothing process consume similar time, SVSF spends a little more time compared to KF, The RSKF
cost most time. To sum up, SVSS has better robustness and higher tracking accuracy than the others.Sensors 2020, 20, x FOR PEER REVIEW 11 of 21 
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Table 1. The position accumulative RMSE on the x-axis and y-axis (m).

Different Methods KF KS RSTKF SVSF SVSS

Position of accumulative
RMSE on x-axis (m)

413 387 145 146 113

Position of accumulative
RMSE om y-axis (m)

413 387 144 148 117

Single step run time (µs) 44 68 1192 48 72
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2 Results under different smooth boundary layer widths

Figure 6 and Table 2 show results of the position accumulative RMSE under different smooth
boundary layer widths. We can see that SVSS has a better performance than SVSF, because the ability of
SVSF to eliminate noise is almost the same under different smooth boundary layer widths. In addition,
the smooth boundary layer width ψ is an important parameter in SVSF. If it is not set properly, both
the filter accuracy and stability would be deteriorated. The accumulative RMSE of SVSF estimation is
high when the smooth boundary layer width is too large or too small. As shown in Figure 6, when
the smoothing boundary layer ψ is selected as 1000m, the proposed method has a better performance
under the system measurement noises with standard deviation of 200m. These parameters are selected
based on the distribution of the system and measurement noises. Generally, the smoothing boundary
layer width ψ is set to be 5 times the maximum measurement noise width. And the SVSF “memory” or
convergence rate γ(0 ≤ γ < 1) is related to the rate of decay α, such that α = (1/τ)ln(γ),where the τ is
the sampling time [32]. As shown in Figure 6, when the width of smooth boundary layer is large, the
accumulated RMSE of SVSS position on x-axis and y-axis is different, the reason is the same as above,
there is no modifications in the relevant speed.
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3 Results under different lag fixed intervals

Simulations under different lag fixed intervals are also considered. The width of the smooth
boundary layer is ψ = [800, 800] m, and the other experimental parameters are the same as
mentioned above.

Figure 7 shows the estimation results using SVSS under three different lags and SVSF, and the
performance of two lags and three lags is better than that of one lag. Compared with two lags, when
the target moves with a constant velocity, the three lags improves the tracking accuracy slightly, but
when the target makes a turning movement, the accuracy of three lags is lower than that of two
lags. As a matter of fact, when the system model is consistent with the actual model, the proposed
SVSS, which is derived under linear Gaussian noise, this can increase the estimation accuracy as does
increasing the smoothing lag steps. However, if the models are inconsistent, the performance of the
SVSS will probably decrease and is unstable as lag steps of smoothing increase, because innovation
information in the SVSS contains more modeling error innovation. With the increase of the lag
of SVSS, the computational complexity becomes higher. The computational complexity of n lags
is O

(
n(n− 1)/2 ∗ (3 + m)i3 + 2nji2 + 2nij2 + nmj3

)
, and the detailed derivation is described in the

Appendix B, the simulation time cost of different lags is also shown in Table A2 of the Appendix B.
Therefore, under different requirements, users can choose the appropriate lag steps according to the
needs of the system.Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 
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4.2. A Complex Maneuvering Environment Scenario

As for this scenario, the maneuver of the target is more complicated, motion modes including
uniform motion, turning motion, uniform acceleration motion and angular acceleration motion. The
initial position value of the aircraft is also set to be [−25000m,−10000m]. Target flies with a high speed
of 300m/s along the x-axis direction and 250m/s along the y-axis direction for 20s.Then the aircraft
maneuvers at a rate of −3

◦

/s for 55s. Next, the target turns at an initial angular velocity of 1◦/s with an
angular acceleration of 0.5◦/s2 for 25s. Finally the target continues to fly at an acceleration of 20m/s2

along the x-axis direction and 10m/s2 along the y-axis direction for 25s.
The process noises obeys a Gaussian distribution with 100m standard deviation. The process

noises and measurement noises (w and v) are considered as Gaussian, with a zero mean and variances
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Q and R, respectively. The initial state covariance P0|0, measurement noise covariance R, and process
noise covariance Q are defined, respectively, as follows:

R = 1002
[

1 0
0 1

]
(49)

P0|0 = diag([400, 100, 400, 100]) (50)

where Q is given by the Equation (48) and L is defined as 15. For the SVSF and their smoother
estimation processes use the UM model, and smoothing boundary layer widths were defined as,
ψ = [500, 600, 500, 600]T; the SVSF “memory” or convergence rate was set to γ = 0.1. In order to
meet the actual demand, the estimation of speed is increased. As per earlier discussions, the system
also needs to add an “artificial” velocity measurement; it is necessary to transform the measurement
matrix of (45) into a square matrix (i.e., identity), and the “artificial” velocity measurement can be
calculated by position measurements. For example, where yk represents measurement, which contains
the artificial velocity measurements:

yk = [z1,k, (z1,k − z1,k−1)/T, z2,k, (z2,k − z2,k−1)/T]T (51)

The accuracy of Equation (51) depends on the sampling rate T. A total of 500 Monte Carlo runs
were performed.

The results of different estimation methods are shown in the following figures and Table 3, so
we can see that the KS algorithm has the best performance when the model is matched (0 s to 20 s)
with the actual motions, and the position RMSE and speed RMSE of KS are significantly smaller
than the other two SVSF smoothers. Once the models do not match, such as the high speed target
change from uniform motion to turn, angular acceleration, or acceleration, KS is unstable and RMSE
increases, but the SVSTPS and SVSS are still able to overcome the uncertainties and have high accuracy
and robustness. Table 3 shows that the position (velocity) accumulative RMSE of SVSTPS and SVSS
increased by about 21% (15%) and 31% (33%) than SVSF, respectively. This is because SVSTPS uses
SVSF gain, and the proposed SVSS uses innovation, and innovation is more conducive to smoother
processing due to it containing as much noises as the original measurements. Thus more noise errors
can be eliminated by SVSS. However, there is a special case where the SVSS performs not as well as
SVSTPS when modeling errors affect it more than Gaussian noise. For example, at around 95 s in
Figures 8 and 9, the target is flying at a high speed with the angular velocity of 12◦/s and angular
acceleration of 0.5◦/s2, so accuracy of SVSS is lower than that of SVSTPS. Therefore, SVSS exhibits the
best performance with the above filters.

Table 3. The state estimation accumulative RMSE on x-axis and y-axis (m) for different algorithms.

State Estimation KF KS SVSF SVSTPS SVSS

x-position accumulative
RMSE(m)

461 335 95 75 65

x-velocity accumulative
RMSE(m/s)

160 141 86 73 57

y-position accumulative
RMSE(m)

297 218 92 75 65

y-velocity accumulative
RMSE(m/s)

113 102 78 69 52
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5. Conclusions

An SVSS algorithm is presented to improve the accuracy of the SVSF state estimation in the
dynamic system with model uncertainty. Based on projection theory and SVSF, the smoothing
recurrence formula of SVSS is deduced using innovation. The comparisons among SVSS, KS and
SVSTPS are analyzed in the scene of aircraft trajectory tracking. According to the simulation results,
the proposed SVSS performs well than SVSF under different bounded smoothing layers. In addition,
compared with the popular KS algorithm, the SVSS is able to overcome inaccuracies and yield a
stable solution in the presence of modeling uncertainties. Theory and simulations also prove that, the
proposed SVSS has higher accuracy and better robustness compared with SVSTPS.
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Appendix A.

Proof process is based on the orthogonal projection theory:

Appendix A.1. Definition 1

Based on random measurement variables z ∈ Rm, estimate variables x̂ ∈ Rn, which represent the
linear minimum variance estimation of x ∈ Rn, is a linear function of z, the minimization index of
estimate J which is given by the following

J = E[(x− x̂)T(x− x̂)] (A1)

where E is the mean sign, and T is the transpose symbol,

Appendix A.2. Definition 2

The linear minimum variance estimation is only given by the following formula

x̂ = Ex + PxzP−1
zz (z− E(z)) (A2)

Pxz = E[(x− E(x))(z− E(z))T] (A3)

Pzz = E[(z− E(z))(z− E(z))T] (A4)

Property 1
Ex̂ = Ex (A5)

Property 2
E[(x− x̂)zT] = 0 (A6)

Property 3
Where x − x̂ and z are uncorrelated random variables, recorded as x − x̂⊥z, called x̂ which the

projection of x on z.
x̂ = proj(x

∣∣∣z) (A7)

Appendix A.3. Definition 3

Based on random variables z1, z2, · · · , zk ∈ Rm, The linear minimum variance estimate x̂ of the
random variables x ∈ Rn is defined as:
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x̂ = proj(x
∣∣∣w) , proj(x

∣∣∣z1, z2, · · · zk) (A8)

estimate x̂ is called x projective on the L(w) or L(z1, z2, · · · zk).

Appendix A.4. Definition 4

If random variables z1, z2, · · · , zk ∈ Rm has second moment, its innovation is defined as:

ek = zk − proj(zk
∣∣∣z1, z2, · · · zk−1), k = 1, 2, · · · (A9)

The predicted estimate of ẑk|k−1 is defined as:

ẑk|k−1 = proj(zk
∣∣∣z1, z2, · · · zk−1) (A10)

ek = zk − ẑk|k−1, k = 1, 2, · · · (A11)

ek = zk −Hx̂k|k−1 = H(Fx̂k|k + w) + v (A12)

proj(x
∣∣∣z1, z2, · · · zk) = proj(x

∣∣∣e1, e1, · · · ek) (A13)

Appendix A.5. Definition 5

For the estimate of random variable x̂, when the random variable z1, z2, · · · , zk ∈ Rm has the second
moment, we have the following iterative projective Formula (A14) (Projective recurrence theorem)

prog(x|z1, z1, · · · zk) = prog(x|z1, z1, · · · , zk−1 + E[(xeT
k )](E[(ekeT

k )))
−1

ek (A14)

The derivation of the SVSS algorithm is also based on the above theory

(1) One lag fixed interval

For the linear Gaussian system given by Equation (1), under the linear minimum mean square
deviation criterion, the state estimate value of SVSS is given by the following formula:

x̂k|k+1 = x̂k|k + Mk|k+1ek+1 (A15)

Mk|k+1 = Pk|kFTHT(HPk+1|kHT + R)
−1

(A16)

From (A2) to (A15), the state estimate value is obtained as:

x̂k|k+1 = x̂k|k + Pxz(k + 1)Pzz(k + 1)ek+1 (A17)

Pxz(k + 1) = E[(xkeT
k+1)] (A18)

Pxz(k + 1) = E[(xkeT
k+1)] = E(xk(H(Fx̃k|k + w) + v)T) = Pk|kFTHT (A19)

Pzz(k + 1) = E[(ek+1eT
k+1)] = HPk+1|kH + R (A20)

x̂k|k+1 = x̂k|k + Pk|kFTHT(HPk+1|kHT + R)
−1

ek+1 (A21)

(2) Two lags fixed interval

As one-lag, the state estimate value of SVSS is given by the following formula:

x̂k|k+2 = x̂k|k+1 + Mk|k+2ek+2 (A22)

x̂k|k+2 = x̂k|k+1 + Pxz(k + 2)Pzz(k + 2)ek+2 (A23)
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Pxz(k + 2) = E[(xkeT
k+2)] = E(xk(H(Fx̃k+1|k+1 + w) + v)T) = Pk|kFTP−1

k+1|kPk+1|k+1FTHT (A24)

Pzz(k + 2) = E[(ek+2eT
k+2)] = HPk+2|k+1H + R (A25)

Mk|k+2 = Pk|kFTP−1
k+1|kPk+1|k+1FTHT(HPk+2|k+1HT + R)

−1
(A26)

According to (A23)–(A26), the state estimate value of SVSS is calculated by:

x̂k|k+2 = x̂k|k+1 + Pk|kFTP−1
k+1|kPk+1|k+1FTHT(HPk+2|k+1HT + R)

−1
ek+2 (A27)

(3) N lags fixed interval

x̂k|k+n = x̂k|k+n−1 + Mk|k+n−1ek+n (A28)

x̂k|k+n = x̂k|k+n−1 + Pxz(k + N)Pzz(k + N)ek+n (A29)

ek+n = H(Fx̃k+n−1|k+n−1 + w) + v (A30)

Pxz(k + n) = E[(xkeT
k+n)] = E(xk(H(Fx̃k+n−1|k+n−1 + w) + v)T) (A31)

where Pxz(k + n) is obtained from the orthogonality of the projection theory:

Pxz(k + n) = Pk|k(
n−1∏
i=1

FTP−1
k+i+1|k+iPk+i+1|k+i+1)FTHT = Pk|kFT(

n−1∏
i=1

P−1
k+i+1|k+iPk+i+1|k+i+1FT)HT

= (
k+n−1∏

i=k
(Pi|iFTP−1

i+1|i)Pk+n|k+n−1HT

(A32)

Mk|k+n = (
k+n−1∏

i=k

(Pi|iFTP−1
i+1|i)Pk+n|k+n−1HT(HPk+n|k+n−1HT + R)

−1
(A33)

Form (A29) to (A33), the n lag state estimate value of SVSS is calculated by:

x̂k|k+n = x̂k|k+n−1 + (
k+n−1∏

i=k

(Pi|iFTP−1
i+1|i)Pk+n|k+n−1HT(HPk+n|k+n−1HT + R)

−1
ek+n (A34)

Equation (A34) can be written as:

x̂k|N = x̂k|N−1 + (
N−1∏
i=k

Ci)BN(zN −Hx̂N|N−1) (A35)

where Ci and BN are calculated by Ci = Pi|iFTP−1
i+1|i,BN = PN|N−1HT(HPN|N−1HT + R)−1.

Appendix B.

The smoothing process is expressed by Equation (42). The state and the measurement dimension
are i and j respectively, and the complexity of matrix computation is shown in Table A1.

Table A1. The complexity of matrix computation.

Complexity Complexity

PF O(i3) Ci O(2i3 + mi3)

PH O(ji2) BN O(2ji2 + 2ij2 +mj3)

P−1 O(mi3)
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Ignoring the low computational complexity, the computational complexity of one lag smoothing
is O

(
i3 + 2 ji2 + mj3

)
.

The computational complexity of n lag smoothing is O(n(n− 1)/2 ∗ (3 + m)i3 + 2nji2 + 2nij2 +
nmj3). The implementation times of SVSS under different lag fixed intervals is shown in Table A2.

Table A2. Implementation Times of SVSS under different lag fixed intervals.

Different Lags SVSF One Lags Two Lags Three Lags

Single step run time (µs) 48 72 120 180

References

1. Di Viesti, P.; Vitetta, G.M.; Sirignano, E. Double Bayesian Smoothing as Message Passing. IEEE Trans. Signal
Process. 2019, 67, 5495–5510. [CrossRef]

2. Gao, R.; Tronarp, F.; Sarkka, S. Iterated Extended Kalman Smoother-Based Variable Splitting for
L-1-Regularized State Estimation. IEEE Trans. Signal Process. 2019, 67, 5078–5092. [CrossRef]

3. Wang, Y.H.; Zhang, H.B.; Mao, X.; Li, Y. Accurate Smoothing Methods for State Estimation of
Continuous-Discrete Nonlinear Dynamic Systems. IEEE Trans. Autom. Control 2019, 64, 4284–4291.
[CrossRef]

4. Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust Student’st based nonlinear filter and smoother. IEEE Trans.
Aerosp. Electron. Syst. 2016, 52, 2586–2596. [CrossRef]

5. Rauch, H.E. Linear Estimation of Sampled Stochastic Processes with Random Parameters; Stanford Univ Ca
Stanford Electronics Labs: Stanford, CA, USA, 1962.

6. Rauch, H. Solutions to the linear smoothing problem. IEEE Trans. Autom. Control 1963, 8, 371–372. [CrossRef]
7. Huang, Y.; Zhang, Y.; Zhao, Y.; Mihaylova, L.; Chambers, J. Robust Rauch-Tung-Striebel smoothing framework

for heavy-tailed and/or skew noises. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 415–441. [CrossRef]
8. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.

[CrossRef]
9. Munguia, R.; Urzua, S.; Grau, A. EKF-Based Parameter Identification of Multi-Rotor Unmanned Aerial

VehiclesModels. Sensors 2019, 19, 4174. [CrossRef]
10. Gadsden, S.A.; Habibi, S.; Kirubarajan, T. Kalman and Smooth Variable Structure Filters for Robust Estimation.

IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1038–1050. [CrossRef]
11. Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269.

[CrossRef]
12. Gadsden, S.A.; Al-Shabi, M.; Arasaratnam, I.; Habibi, S.R. Combined cubature Kalman and smooth variable

structure filtering: A robust nonlinear estimation strategy. Signal Process. 2014, 96, 290–299. [CrossRef]
13. Zhang, K.W.; Hao, G.; Sun, S.L. Weighted Measurement Fusion Particle Filter for Nonlinear Systems with

Correlated Noises. Sensors 2018, 18, 3242. [CrossRef] [PubMed]
14. Zhou, H.; Xia, Y.; Deng, Y. A new particle filter based on smooth variable structure filter. Int. J. Adapt. Control

Signal Process. 2020, 34, 32–41. [CrossRef]
15. Huang, Y.; Zhang, Y.; Shi, P.; Wu, Z.; Qian, J.; Chambers, J.A. Robust Kalman filters based on Gaussian scale

mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49,
2082–2096. [CrossRef]

16. Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J. A new outlier-robust Student’s t based Gaussian
approximate filter for cooperative localization. IEEE Trans. Mechatron. 2017, 22, 2380–2386. [CrossRef]

17. Huang, Y.; Zhang, Y.; Zhao, Y.; Chambers, J.A. A Novel Robust Gaussian–Student’s t Mixture Distribution
Based Kalman Filter. IEEE Trans. Signal Process. 2019, 67, 3606–3620. [CrossRef]

18. Huang, Y.; Zhang, Y.; Chambers, J.A. A Novel Kullback–Leibler Divergence Minimization-Based Adaptive
Student’s t-Filter. IEEE Trans. Signal Process. 2019, 67, 5417–5432. [CrossRef]

19. Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A novel adaptive Kalman filter with inaccurate process
and measurement noise covariance matrices. IEEE Trans. Autom. Control 2017, 63, 594–601. [CrossRef]

20. Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A Novel Robust Student’st-Based Kalman Filter. IEEE
Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [CrossRef]

http://dx.doi.org/10.1109/TSP.2019.2941064
http://dx.doi.org/10.1109/TSP.2019.2935868
http://dx.doi.org/10.1109/TAC.2019.2893876
http://dx.doi.org/10.1109/TAES.2016.150722
http://dx.doi.org/10.1109/TAC.1963.1105600
http://dx.doi.org/10.1109/TAES.2019.2914520
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.3390/s19194174
http://dx.doi.org/10.1109/TAES.2014.110768
http://dx.doi.org/10.1109/TAC.2009.2019800
http://dx.doi.org/10.1016/j.sigpro.2013.08.015
http://dx.doi.org/10.3390/s18103242
http://www.ncbi.nlm.nih.gov/pubmed/30261664
http://dx.doi.org/10.1002/acs.3067
http://dx.doi.org/10.1109/TSMC.2017.2778269
http://dx.doi.org/10.1109/TMECH.2017.2744651
http://dx.doi.org/10.1109/TSP.2019.2916755
http://dx.doi.org/10.1109/TSP.2019.2939079
http://dx.doi.org/10.1109/TAC.2017.2730480
http://dx.doi.org/10.1109/TAES.2017.2651684


Sensors 2020, 20, 1781 20 of 21

21. Wang, H.; Li, H.; Fang, J.; Wang, H. Robust Gaussian Kalman filter with outlier detection. IEEE Signal Process.
Lett. 2018, 25, 1236–1240. [CrossRef]

22. Skoglund, M.A.; Hendeby, G.; Axehill, D. Extended Kalman filter modifications based on an optimization
view point. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion),
Washington, DC, USA, 6–9 July 2015; pp. 1856–1861.

23. Bakhshande, F.; Söffker, D. Adaptive Step Size Control of Extended/Unscented Kalman Filter using Event
Handling Concept. Front. Mech. Eng. 2019, 5, 74. [CrossRef]

24. Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J.A. A new adaptive extended Kalman filter for cooperative
localization. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 353–368. [CrossRef]

25. Milanese, M.; Tempo, R. Optimal algorithms theory for robust estimation and prediction. IEEE Trans. Autom.
Control 1985, 30, 730–738. [CrossRef]

26. Zhuk, S.M. Minimax state estimation for linear discrete-time differential-algebraic equations. Automatica
2010, 46, 1785–1789. [CrossRef]

27. Farrell, W.J. Interacting multiple model filter for tactical ballistic missile tracking. IEEE Trans. Aerosp. Electron.
Syst. 2008, 44, 418–426. [CrossRef]

28. Mazor, E.; Averbuch, A.; Bar-Shalom, Y.; Dayan, J. Interacting multiple model methods in target tracking: A
survey. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 103–123. [CrossRef]

29. Li, X.-R.; Bar-Shalom, Y. Multiple-model estimation with variable structure. IEEE Trans. Autom. Control 1996,
41, 478–493.

30. Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans.
Aerosp. Electron. Syst. 2005, 41, 1255–1321.

31. Goodman, J.M.; Wilkerson, S.A.; Eggleton, C.; Gadsden, S.A. A Multiple Model Adaptive SVSF-KF Estimation
Strategy. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII,
Baltimore, MD, USA, 15–17 April 2019.

32. Habibi, S. The smooth variable structure filter. Proc. IEEE 2007, 95, 1026–1059. [CrossRef]
33. Lee, A.; Gadsden, S.A.; Wilkerson, S.A. An Adaptive Smooth Variable Structure Filter based on the Static

Multiple Model Strategy. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target
Recognition XXVIII, Baltimore, MD, USA, 15–17 April 2019.

34. Gadsden, S.A.; Habibi, S.R. A New Robust Filtering Strategy for Linear Systems. J. Dyn. Syst. Meas. Control
Trans. 2013, 135, 014503. [CrossRef]

35. Afshari, F.H.; Gadsden, S.A.; Habibi, S. A nonlinear second-order filtering strategy for state estimation of
uncertain systems. Signal Process. 2019, 155, 182–192. [CrossRef]

36. Zhou, H.; Xu, L.; Chen, W.; Guo, K.; Shen, F.; Guo, Z. A novel robust filtering strategy for systems with
Non-Gaussian noises. AEU Int. J. Electron. Commun. 2018, 97, 154–164. [CrossRef]

37. Spiller, M.; Bakhshande, F.; Söffker, D. The uncertainty learning filter: A revised smooth variable structure
filter. Signal Process. 2018, 152, 217–226. [CrossRef]

38. Gadsden, S.A.; Habibi, S.R. A new form of the smooth variable structure filter with a covariance derivation.
In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17
December 2010; pp. 7389–7394.

39. Demim, F.; Nemra, A.; Louadj, K.; Hamerlain, M.; Bazoula, A. Cooperative SLAM for multiple UGVs
navigation using SVSF filter. Automatika 2017, 58, 119–129. [CrossRef]

40. Demim, F.; Nemra, A.; Boucheloukh, A.; Kobzili, E.; Hamerlain, M.; Bazoula, A. SLAM based on Adaptive
SVSF for Cooperative Unmanned Vehicles in Dynamic environment. IFAC Pap. 2019, 52, 73–80. [CrossRef]

41. Kim, T.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S.; Qiao, W. State of charge estimation based on a realtime
battery model and iterative smooth variable structure filter. In Proceedings of the 2014 IEEE Innovative
Smart Grid Technologies-Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 132–137.

42. Gadsden, S.A.; Al-Shabi, M.; Habibi, S. Estimation strategies for the condition monitoring of a battery system
in a hybrid electric vehicle. ISRN Signal Process. 2011, 2011, 120351. [CrossRef]

43. Gadsden, S.A.; Song, Y.; Habibi, S.R. Novel Model-Based Estimators for the Purposes of Fault Detection and
Diagnosis. IEEE Trans. Mechatron. 2013, 18, 1237–1249. [CrossRef]

44. Gadsden, S.A.; Kirubarajan, T. Development of a Variable Structure-Based Fault Detection and Diagnosis
Strategy Applied to an Electromechanical System. In Proceedings of the Signal Processing, Sensor/Information
Fusion, and Target Recognition XXVI, Anaheim, CA, USA, 10–12 April 2017.

http://dx.doi.org/10.1109/LSP.2018.2851156
http://dx.doi.org/10.3389/fmech.2019.00074
http://dx.doi.org/10.1109/TAES.2017.2756763
http://dx.doi.org/10.1109/TAC.1985.1104056
http://dx.doi.org/10.1016/j.automatica.2010.06.040
http://dx.doi.org/10.1109/TAES.2008.4560196
http://dx.doi.org/10.1109/7.640267
http://dx.doi.org/10.1109/JPROC.2007.893255
http://dx.doi.org/10.1115/1.4006628
http://dx.doi.org/10.1016/j.sigpro.2018.09.036
http://dx.doi.org/10.1016/j.aeue.2018.10.004
http://dx.doi.org/10.1016/j.sigpro.2018.05.025
http://dx.doi.org/10.1080/00051144.2017.1372123
http://dx.doi.org/10.1016/j.ifacol.2019.08.051
http://dx.doi.org/10.5402/2011/120351
http://dx.doi.org/10.1109/TMECH.2013.2253616


Sensors 2020, 20, 1781 21 of 21

45. Ahmed, R.; El Sayed, M.; Gadsden, S.A.; Tjong, J.; Habibi, S. Automotive Internal-Combustion-Engine Fault
Detection and Classification Using Artificial Neural Network Techniques. IEEE Trans. Veh. Technol. 2015, 64,
21–33. [CrossRef]

46. Ahmed, R.; El Sayed, M.; Gadsden, S.A.; Tjong, J.; Habibi, S. Artificial neural network training utilizing the
smooth variable structure filter estimation strategy. Neural Comput. Appl. 2016, 27, 537–554. [CrossRef]

47. Ismail, M.; Attari, M.; Habibi, S.; Ziada, S. Estimation theory and Neural Networks revisited: REKF and
RSVSF as optimization techniques for Deep-Learning. Neural Netw. 2018, 108, 509–526. [CrossRef]

48. Gadsden, S.A.; Lee, A.S. Advances of the smooth variable structure filter: Square-root and two-pass
formulations. J. Appl. Remote Sens. 2017, 11, 015018. [CrossRef]

49. Gadsden, S.; Al-Shabi, M.; Kirubarajan, T. Two-Pass Smoother Based on the SVSF Estimation Strategy; SPIE:
Washington, WA, USA, 2015; Volume 9474.

50. Yan, B.; Xu, N.; Wang, G.; Yang, S.; Xu, L.P. Detection of Multiple Maneuvering Extended Targets by
Three-Dimensional Hough Transform and Multiple Hypothesis Tracking. IEEE Access 2019, 7, 80717–80732.
[CrossRef]

51. Yan, B.; Xu, N.; Zhao, W.B.; Li, M.Q.; Xu, L.P. An Efficient Extended Targets Detection Framework Based on
Sampling and Spatio-Temporal Detection. Sensors 2019, 19, 2912. [CrossRef] [PubMed]

52. Yan, B.; Xu, N.; Zhao, W.-B.; Xu, L.-P. A Three-Dimensional Hough Transform-Based Track-Before-Detect
Technique for Detecting Extended Targets in Strong Clutter Backgrounds. Sensors 2019, 19, 881. [CrossRef]
[PubMed]

53. Yan, B.; Zhao, X.Y.; Xu, N.; Chen, Y.; Zhao, W.B. A Grey Wolf Optimization-Based Track-Before-Detect
Method for Maneuvering Extended Target Detection and Tracking. Sensors 2019, 19, 1577. [CrossRef]

54. Habibi, S.R.; Burton, R. The variable structure filter. J. Dyn. Syst. Meas. Control Trans. 2003, 125, 287–293.
[CrossRef]

55. Grewal, M.; Andrews, A. Kalman Filtering: Theory and Practice with MATLAB, 4th ed.; John Wiley & Sons:
Hoboken, NJ, USA, 2015.

56. Sun, S.L.; Ma, J. Optimal filtering and smoothing for discrete-time stochastic singular systems. Signal Process.
2007, 87, 189–201. [CrossRef]

57. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory
Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2004.

58. Gadsden, S.A. Smooth Variable Structure Filtering: Theory and Applications. Ph.D. Thesis, McMaster
University, Hamilton, ON, Canada, 2011.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2014.2317736
http://dx.doi.org/10.1007/s00521-015-1875-2
http://dx.doi.org/10.1016/j.neunet.2018.09.012
http://dx.doi.org/10.1117/1.JRS.11.015018
http://dx.doi.org/10.1109/ACCESS.2019.2923357
http://dx.doi.org/10.3390/s19132912
http://www.ncbi.nlm.nih.gov/pubmed/31266216
http://dx.doi.org/10.3390/s19040881
http://www.ncbi.nlm.nih.gov/pubmed/30791600
http://dx.doi.org/10.3390/s19071577
http://dx.doi.org/10.1115/1.1590682
http://dx.doi.org/10.1016/j.sigpro.2006.05.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The SVSF Strategies 
	Smoothing Theories and the Proposed Algorithms 
	The Kalman Smoother 
	The Proposed SVSS Algorithm 

	Simulation 
	A Classic Target Tracking Scenario 
	A Complex Maneuvering Environment Scenario 

	Conclusions 
	
	Definition 1 
	Definition 2 
	Definition 3 
	Definition 4 
	Definition 5 

	
	References

