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Abstract: Intelligent methods have long been researched in fault diagnosis. Traditionally, feature
extraction and fault classification are separated, and this process is not completely intelligent.
In addition, most traditional intelligent methods use an individual model, which cannot extract the
discriminate features when the machines work in a complex condition. To overcome the shortcomings
of traditional intelligent fault diagnosis methods, in this paper, an intelligent bearing fault diagnosis
method based on ensemble sparse auto-encoders was proposed. Three different sparse auto-encoders
were used as the main architecture. To improve the robustness and stability, a novel weight strategy
based on distance metric and standard deviation metric was employed to assign the weights of
three sparse auto-encodes. Softmax classifier is used to classify the fault types of integrated features.
The effectiveness of the proposed method is validated with extensive experiments, and comparisons
with the related methods and researches on the widely-used motor bearing dataset verify the
superiority of the proposed method. The results show that the testing accuracy and the standard
deviation are 99.71% and 0.05%.
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1. Introduction

With the upgrading of industrial capacity, the connection between machine equipment is
increasingly inseparable. Once unexpected faults happen in a machine, it may indirectly effect
the reliability of other connected machineries [1]. These failures will cause heavy economic loss, and
even more seriously, they could be life-threatening [2]. Therefore, the automatic, accurate, and timely
recognition of the health conditions of machine equipment is highly necessary [3,4].

In the past few years, intelligent fault diagnosis methods have attracted great attentions and
widely adopted in the condition monitoring systems [5,6]. Generally, intelligent fault diagnosis
methods can be divided three main steps: (1) signals acquisition; (2) feature extraction and selection;
(3) fault classification [7,8]. After a literature review, it can be found that a tremendous amount of
researches have focused on how to extract discriminative features from collected signals based on
abundant signal processing technologies [9,10], such as time-domain [11,12], frequency-domain [13],
time-frequency-domain statistics analytical methods [14], or other waveform transform methods [15,16].
To classify the extracted features, a few artificial intelligence methods (ANN, SVM, etc.) are applied.
For instance, Fu et al. [17] proposed a novel hybrid approach coupling variational mode decomposition
and SVM to identify rolling bearing fault types. Ali et al. [15] used empirical mode decomposition
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to extract 10 time-domain statistical features and an artificial neural network is used to identify the
health conditions of rolling bearing. He et al. [18] proposed an ensemble error minimized learning
machine method to recognize rolling bearing faults, empirical mode decomposition technology is
adopted to extract the ensemble time-domain features. However, although these traditional intelligent
methods did work and achieved an accurate diagnosis result, they still have two deficiencies: (1) the
features are usually manually extracted depending on prior knowledge and diagnostic expertise,
which accorded to a specific fault type and probably unsuitable for other faults [19,20]; (2) In real
industries, the collected signals are usually exposed to environmental noises, which cause the signals
to be complex and non-stationary, and signal processing technologies need to be employed to filter
the collected signals to obtain the effective features [3,21]. Consequently, there is an urgent need to
develop new intelligent fault diagnosis methods to accomplish fault diagnosis tasks automatically.

As an emerging research field, deep learning has a powerful ability to extract the representative
features from the collected signals, which makes it has the potential to overcome the shortcomings
of the traditional intelligent diagnosis methods [22,23]. The advantage of deep learning is that can
automatically learn discriminative features and classified faults, which removes the requirements of
manual feature extraction and prior knowledge from the diagnosis model. After more than ten years
of development, deep learning has been gradually applied to the field of fault diagnosis. For example,
Liu et al. [24] presented a fault diagnosis method for rolling bearings based on convolution neural
network (CNN) in which the step k is used to discretize the vibration signal and the discrete sequence
as the input data of CNN. Jia et al. [25] used the normalized sparse AEs to constitute local connection
network, and the model can learn to avoid similar, repeated features and overcome the problem of
feature change. Shao et al. [26] proposed an improved convolution deep belief network method based
on compressed sensing technology, this method used compressed data as the input of the model and
obtained less time consumption of the fault diagnosis. A novel cross-domain fault diagnosis method
was proposed by Li et al. [27] whereby multiple deep generative neural networks were employed to
generate corresponding-domain fake samples, and faults in different domains could be discriminated
well. Long et al. [28] used a competitive swarm optimizer and a local search algorithm to optimize the
weights of echo state networks for decreasing the affect caused by random selection of input weights
and reservoir weights. Although the above researches are successfully applied in fault diagnosis, there
still exist shortcomings in that these intelligent diagnosis methods based on deep learning mainly focus
on the research of the individual learning model. Due to complexity of the collected vibration data
and even there are exiting the imbalance between different data [29], the generalization can seldom
perform well consistently when used individual deep learning model. This problem derives from
the limitation of individual deep learning models for the fault diagnosis of complicate mechanical
equipment [30]. Ensemble learning is another method of machine learning that can effectively deal
with this problem, ensemble learning uses several models and an integration strategy to maximize the
strengths of individual models and achieve better results than an individual model [31,32]. Among
them, the integration strategy plays an important role in the ensemble learning, and directly affect the
accuracy of the diagnosis results. Therefore, it is meaningful to study ensemble learning models.

In this paper, a novel ensemble learning method based on multiple stacks sparse AEs is proposed
for bearing intelligent fault diagnosis. The proposed method is mainly included three steps: Firstly,
three stack sparse AEs with different weights are used to extract the representative features from the
raw vibration signals. Secondly, a feature integrated strategy based on distance and standard deviation
metrics is designed to fine tune the extracted features, which improves the robustness and stability
of the diagnosis result. Finally, the softmax classifier is used to classify the fault types based on the
integrated features. Experimental results show that the proposed method can get rid of the dependence
of manual design algorithm to extract features, and overcome the limitations of an individual deep
learning model, which is superior compared with other similar intelligent diagnosis methods. In brief,
the contributions of this paper are summarized as follows:
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(1) A novel ensemble deep learning method-based multiple stacks sparse AE is proposed for bearing
intelligent fault diagnosis. This method is a segmented adaptive feature extraction procedure and
can automatically classify the health status of the rolling machinery. Since the proposed method
can process three segments of signals at the same time, it is more suitable for processing massive
data in the fields of condition monitoring and fault diagnosis.

(2) A feature integrated strategy is designed to assign the weight of each feature. The strategy is
composed of distance weight and variance weight, which can decrease the distance of intra-class
and increase the distance of inter-class, improving the robustness and stability of fault diagnosis.

(3) A common motor bearing dataset is used to verify the proposed method. In the course of
research, the selection of several key parameters and effects of segments and training samples on
the diagnosis performance were studied. In addition, this method is compared with different
methods and relative similar studies, the results show the superiority of the proposed method.

The remainder parts are organized as follows. In Section 2, the theory of the stack sparse AEs
and softmax classifier are briefly introduced. In Section 3, the proposed method is described in detail.
Section 4 demonstrates the experiment results on a popular rolling bearing. Conclusions are given in
Section 5.

2. Stack Sparse Auto-Encoders and Softmax Classifier

2.1. Stack Sparse Auto-Encoders

In this section, we will briefly introduce the standard stack auto-encoder (SAE). As an unsupervised
learning model, SAE has wide application in pattern recognition fields [33]. It consists of several
auto-encoders, each of which is a symmetrical three-layer neural network, including encoder network
and decoder. The network parameters can be initialized by minimizing the reconstruction error
between the input data and the output data [34,35]. Further, the expected SAE can be obtained through
layer by layer training, the structure of auto-encoder (AE), and the training process of SAE, as shown
in Figure 1.

Figure 1. AE structure and the training process of SAE.
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Suppose a n-dimensional unlabeled training sample is x = {x1 , x2, . . . , xn} ∈ <
1×n, the training

process of AE is a representation that transform the input sample x into a hidden layer vector a1, the
vector a1 can be denoted as a1 =

{
a1 , a2, . . . , as

} ∈ <
1×s, the calculation procedures is as follows:

a1 = f
(
w(1)

1 x + b(1)1

)
(1)

where w(1)
1 is the weight matrix, b(1)1 and f (·) are the offset vector and the activation function, respectively.

Sigmoid [36,37] as the activation function used to train AE given as follows:

f (z) = 1/(1 + e−z) (2)

Then, the hidden vector a1 will be decoded and reconstructed as the vector x̂ by the Equation (3),
the vector x̂ can be denoted as x̂ = {x̂1 , x̂2, . . . , x̂n} ∈ <

1×n. Equation (3) gives as follows:

x̂ = f (w(2)
1 a1 + b(2)1 ) (3)

where the w(2)
1 and b(2)1 are the parameters of hidden layer to output layer. This works as the

Equation (1).
The aims of training process is to obtain the approximation optimal value of parameter w and b

through minimized the reconstruction errors.
For a sample set {xm

}
M
m=1 with M samples, its reconstruction cost function can be expressed

as follow:

J1(w, b) =
1
M

m∑
m=1

L(xm, x̂m) (4)

where L(xm, x̂m) is the reconstruction error square, which is given as Equation (5)

L(xm, x̂m) =
∥∥∥xm
− x̂m

∥∥∥2
(5)

2.2. Sparse Auto-Encoder

In the training process of AE, training samples usually contain a lot of redundant information,
which means that the training samples only contain a small amount of useful information, and the
hidden neurons are not all activated to represent the information of input data, especially when
the dimension of input data is less than the number of hidden neurons. Therefore, for each AE, a
sparse constraint is adopted to limit the number of activated neurons in the hidden layer [37,38].
Kullback–Leibler (KL) divergence, as a constraint condition usually used in AE training, can be
expressed as follows:

KL(ρ||ρ̂ j) = ρ log
ρ

ρ̂ j
+ (1− ρ) log

1− ρ
1− ρ̂ j

(6)

where ρ and ρ̂ j are the sparse factor and average activated number of jth hidden neurons, respectively,
and KL(ρ||ρ̂ j) denotes the discrepancy ρ and ρ̂ j.

To sum up the above conclusions, it can minimize the cost function of each AE to get optimal
pre-training parameters w and b. So, the cost function can be rewritten as follows:

J(W, b) =
1
M

M∑
m=1

L(xm, x̂m) + β ·
s∑

j=1

KL(ρ||ρ̂ j) (7)

where β is the dilution penalty factor.
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2.3. Softmax Classifier

Softmax classifier is a linear classifier that commonly used in multi-classification tasks, whose
output is the probability value of each class [39]. Given a training sample set {xm

}
M
m=1 and xm

∈ <
1×n,

its corresponding sample label set is
{
ym}M

m=1 with ym
∈ {1, 2, . . . , K}. For each given sample xm, softmax

classifier will compute the values p(ym = k
∣∣∣xm) , which is the probability of each class. Therefore,

for each different input sample, the output is always a K dimension vector of probability, and the
position of the maximum probability determines the class of the sample, which can be expressed by
the following hypothetical functions

hθ(xm) =


p(ym = 1

∣∣∣xm;θ)
p(ym = 2

∣∣∣xm;θ)
...

p(ym = K
∣∣∣xm;θ)

 =
1

K∑
k=1

eθ
T
k xm


eθ

T
1 xm

eθ
T
2 xm

...
eθ

T
Kxm

 (8)

where θ = [θ1,θ2, . . . ,θK]
T is the parameter of Softmax classifier, hθ is the normalized probability.

The optimization of model parameters can be achieved by minimizing the cost function J(θ).

J(θ) = −
1
M


M∑

m=1

K∑
k=1

I
{
ym = k

}
log

eθ
T
k xm

K∑
k=1

eθ
T
k xm

 (9)

where I{·} is an indicator function, when the condition is true, the function return 1 otherwise return 0.

3. Proposed Fault Diagnosis Method

In this section, the proposed bearing fault diagnosis method is presented. First, three different
sparse auto-encoders are constructed and used to extract the features from the raw vibration signal in
Section 3.1. The weight strategy is described in Section 3.2. In Section 3.3, the feature integration is
introduced. Softmax classifier is used to classify the health condition of the integrated features, and the
detailed process is shown in Figure 2.

Figure 2. Illustration of the proposed.
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3.1. Ensemble Auto-Encoders Construction

In order to construct three different sparse auto-encoder models, we divide the original vibration
signal into three segments, and each segment uses a SAE to extract features. Assuming the input
dimension of SAE is Nin, when training individual SAE, we randomly select Nt training samples from
the data set, which are obtained by overlapping sampling method. Each training sample consists of
three Nin segments, which means that there are three segment samples that can be used to training in
each Nt. The details of training process are shown in the Figure 3.

Figure 3. Illustration of the SAE training process.

When the training of individual SAE is completed, removing softmax classifier, and reproduce the
parameters of the feature extraction part to other two SAEs. Then, keeping the weight w(1)

1 unchanged,

and add a small variety to the weight w(1)
2 of other two SAEs. This not only can extract representative

features from raw data and increase the diversity between features, but it is also beneficial when the
input samples are similar. Therefore, the proposed model is very concise, greatly reducing training
time and increasing the practicality. In addition, in order to improve the robustness of the model,
Gaussian white noise is added to the training samples.

3.2. Weighting Strategy

A common ensemble strategy is voting method, which has been wildly applied in different
ensemble learning models [40,41]. The voting method includes majority voting and weighting
voting [31,32]. The majority voting is used to directly calculate the average value of features, and
the advantages of this method are convenience and intelligibility. When machines work in a stable
environment or without noise interference, majority voting can get good results for the mechanical
fault diagnosis. Different with the majority voting, weighting voting assigns different weight for each
feature. Obviously, the majority voting is a special case of the weighting voting. When the working
environment of the machine changes or the signal contains a lot of noise, the weighting voting has
better performance than the majority voting. There are other ensemble methods for integration features,
such as the learning method which outputs features to form a new data set, and learning with a new
model [42,43].

In this paper, in order to improve the robustness and stability of the proposed method, we select
the weight voting method to design an integration strategy. As show in Figure 4, assuming that the
output features of the three SAEs are

{
a1

n, a2
n, a3

n

}
, their distances to the expectation an are d1, d2, d3,

respectively. When the distance is larger, it means that the feature deviates from the category, and the
lower accuracy will be obtained for fault diagnosis. Therefore, we select the distance metric of the
three features to the expectation to measure the weight, such as, the larger the distance, the smaller
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the weight, and vice versa. Suppose the weights of the three SAEs based on distance metric are
α′ = [α′1,α′2,α′3]

T, mathematically, it can be written as:

α′ =
1

Ns∑
i=1

∥∥∥ai
n − an

∥∥∥
2



Ns∑
i=2

∥∥∥ai
n − an

∥∥∥
2

Ns∑
i=1,i,2

∥∥∥ai
n − an

∥∥∥
2

Ns∑
i=1,i,3

∥∥∥ai
n − an

∥∥∥
2


(10)

where Ns denotes the number of input segments; n is the nth hidden layer; ‖·‖2 is the Euclidean distance;

denominator
Ns∑
i=1

∥∥∥ai
n − an

∥∥∥
2 is to normalize the weight distribution.

Figure 4. Illustration of the weight selection.

It should be noticed that, although the distance metric can constrain the feature deviation from
the average feature on the same faulty category, when the feature itself has a large deviation, the
distance metric may not have a good function. Based on this, we introduce the second weight measure
condition: standard deviation metric. Standard deviation can reflect the degree of data fluctuation, the
larger the standard deviation gets, the greater the data fluctuation is. So, the standard deviation can
reflect the stability of features. Suppose that the weights of the three SAEs based on standard deviation
metric are α′′ = [α′′ 1,α′′ 2,α′′ 3]

T, they are defined by:

α′′ =
1

Ns∑
i=1

ρi



Ns∑
i=2

ρi

Ns∑
i=1,i,2

ρi

Ns∑
i=1,i,3

ρi


(11)

where ρ denotes the standard deviation of each feature; Denominator
Ns∑
i=1

ρi is to normalize the

weight distribution.
Now we have two feature-related weight vectors, distance metric weight and standard deviation

metric weight. To implement an excellent integration strategy, we assume the target weight
α = [α1,α2,α3]

T, it is defined as follow:

α = λα′ + γα′′ (12)
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where λ and γ are two hyper-parameters by user-specifying, which the limits of the values are between
0 and 1 and their sum is 1. In the proposed method, the two hyper-parameters will be studied in detail
for the effect of diagnosis performance.

3.3. Feature Integration

After the above analysis, the weight vector α = [α1,α2,α3]
T can be determined for each sample xm.

Meanwhile, three feature vectors [ f1, f2, f3] are extracted from the input sample xm by the three SAEs.
The final object features f m are aggregated using the weight strategy, which is written as follows:

f m = α1 f1 + α2 f2 + α3 f3 (13)

This weighted strategy is beneficial that can decrease the influence of the random features caused
by ambient noise and interference. Also, the weighted way enhances the discriminative features that
these features are complementary and improves the stability due to having the weight constraint term.
The detailed process of the proposed method given as Figure 5.

Figure 5. Flow chat of the proposed bearing fault diagnosis method.
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4. Experiment and Analysis

4.1. Dataset Description

The bearing dataset provided by Case Western Reserve University [44] is analyzed in this section.
As show in Figure 6, the test rig main consists of a 2-horsepower (hp) motor, a torque converter/encoder,
a dynamometer and a control circuit. The vibration data were collected from the drive end of a motor
under four different conditions: normal condition, inner race fault (IF), roller fault (RF), and outer race
fault (OF). Single point faults were introduced of the motor with fault diameters of 0.18 mm, 0.36 mm,
and 0.54 mm, respectively. The bearing data were all collected under four load conditions (0, 1, 2, and
3 hp) with the sampling frequency of 12 kHz.

Figure 6. Bearing platform used for experiment.

These vibration data compose the motor bearing dataset, which is used to verify the effectiveness
of the proposed method. These data contain ten bearing health conditions under four loads, where the
same health condition under different loads is defined as one class. The details of the experimental
condition are summarized in Table 1. In this experiment, the first 120,000 points of the vibration data
are selected as the preprocessed data under each condition. These preprocessed data are divided into
training set and test set.

Table 1. Bearing data information used to experiment in this proposed.

Fault Type Fault Size (mm) Load(hp) Label

Normal 0.0 0,1,2,3 1
IF 0.18 0,1,2,3 2
IF 0.36 0,1,2,3 3
IF 0.53 0,1,2,3 4
RF 0.18 0,1,2,3 5
RF 0.36 0,1,2,3 6
RF 0.53 0,1,2,3 7
OF 0.18 0,1,2,3 8
OF 0.36 0,1,2,3 9
OF 0.53 0,1,2,3 10

4.2. Compare Studies

In order to verify the superiority of the proposed method, three methods were selected to compare
with the proposed method, namely, Support Vector Machine (SVM), Back-Propagation Neural Network
(BPNN) with two hidden layers, and the individual stack sparse AE with two hidden layers. They are
widely used in fault diagnosis of rotating machinery. The input data is raw vibration data, and the
comparison of diagnosis performance of the three methods under 20 experiments is shown in Figure 7.
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Figure 7. Comparison of different method with 20 experiments.

In the Figure 7, the results show that the proposed method has the highest diagnostic accuracy
and the smallest fluctuations. Compared with the proposed method, the individual stack sparse AE
has smaller diagnosis accuracy and greater diagnosis fluctuation, which indicates that the proposed
ensemble method has better diagnosis performance than an individual stack sparse AE. Of course,
the individual stack sparse AE is better than the other two diagnosis methods. Since the BPNN is
not pre-trained like the individual stack sparse AE, it is under fitting, this proves that AE can reduce
the number of training samples. SVM has minimal diagnosis accuracy, because SVM is not suitable
for processing high-dimensional data, usually, it needs to preprocess the original vibration data and
transform them into statistical features. The specific diagnosis results are summarized in Table 2.

Table 2. Experimental results of average accuracy and standard deviation of various methods.

Method Average Accuracy Standard Deviation

SVM 43.99% 3.09%
BPNN 78.07% 5.91%
SAE 87.40% 2.44%

Our method 99.71% 0.05%

From the perspective of the average accuracy in Table 2, the proposed method shows the
best marks with the highest average accuracy (99.71%), while the SVM has the worst diagnosis
performance (43.99%), and the individual stack sparse AE only gets intermediate testing accuracy
(87.40%). In addition, from the perspective of stability, the proposed method has the optimum
performance, with the smallest standard deviation (0.05%), and the BPNN with two hidden layer has
the worst performance, with the largest standard deviation (5.91%).

For further proving the superiority of the proposed method, we also compared with other similar
studies used the same dataset. In [45], a method adopting 15 stack sparse AEs to extract bearing features
was proposed. The 15 stack sparse AEs use different activation function, and the extracted features are
integrated with an accuracy threshold. This proposed method classifies the health conditions of 12
motor bearings at 0 hp, and finally obtained an average test accuracy of 97.18% and a standard deviation
of 0.11%. Sun et al. [46] proposed a method based on compressed sensing theory. Their method
combined with stack sparse AEs to extract features from the compressed data which were used to
represent seven bearing health conditions under the load 2. The fault recognition rate of this method is
97.47% and the standard deviation is 0.43% in the bearing database. Lei et al. [47] proposed a bearing
diagnosis method to integrate 12 sparse filter networks. The method used a simple average weighted
combination strategy to process 12 local features that extracted from raw vibration data and white
Gaussian noise is added during training. The method achieved 99.66% diagnosis accuracy and 0.19%
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standard deviation under 10 fault types and 4 different loads. In method [48], a dynamic weighted
average method is designed to aggregate these learned features. This method used three different deep
auto-encoder to extract the features, and the accuracy of k-fold cross-validation is used as a metric
to assign the weights of the three deep auto-encoders. They obtained the accuracy of 99.69% and
standard deviation of 0.24%. Comparing with the above methods, the proposed method in this paper
achieved the highest accuracy of fault identification and the smallest standard deviation. The results of
the above comparison are displayed in Table 3.

Table 3. Performance comparison with various studies.

Method Load(hp) No. of Health Condition Testing Accuracy Standard Deviation

[45] 0 12 97.18% 0.11%
[46] 2 7 97.41% 0.43%
[47] 0,1,2,3 10 99.66% 0.19%
[48] 0,1,2,3 10 99.69% 0.24%
Proposed 0,1,2,3 10 99.71% 0.05%

4.3. Visualization of Learned Representation

In this section, to qualitatively illustrate the effectiveness of the proposed fault diagnosis method,
we visualize the features using four methods. The other three methods are sparse AEs with two
hidden layers, the proposed model without whitening method, and the weight average method,
respectively. The visual features are extracted from testing sample by the four methods, and the
experiment conducted under the condition of noise for a better visual comparison of the result.

A technique called ‘t-SNE’ is used to map the extracted features into a two-dimensional space
to achieve visualization of high-dimensional data [49]. This technique has two processes, firstly,
the principal component analysis (PCA) is used to reduce the dimension of the features to 50.
Then, a technology called ’t-SNE’ is used to represent the 50-dimensional data as two-dimensional
planar data.

Figure 8 is the feature visualization of individual sparse AEs with two hidden layers. It can be
seen from the figure that the individual sparse AE method performs aggregation poorly on different
fault types. this method cannot correctly diagnose the bearing fault, and only 82% of the test accuracy
is obtained.

Figure 8. Visualization of sparse AE for the learned features.

Figure 9 is the feature visualization of the proposed method without whitening. Comparing with
Figure 8, it can be noticed that most of the testing data are clustered in their own category and different
types of faults are scattered in different regions. In Figure 9, there are only less intersection between
the different fault classes, and the mainly error of fault diagnosis is concentrated in IF 0.18, that is
mean that the proposed method cannot completely classify IF 0.18. The distances between different
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classes are far away, which also shows that the proposed method is robust. The final test accuracy of
this method is 96.93%.

Figure 9. Visualization of without whitening for the learned features.

Figures 10 and 11 shows the feature visualization of the weight average method and our method,
respectively. Figures 10 and 11 are very similar, which verifies that the features extracted by the three
SAEs are similar, weighting strategy only a fine-tuning operation . Although the difference is not
great, the proposed method has better performance than the weight average method, with the fault
identification accuracy of 97.78% and 98.23% respectively obtained.

Figure 10. Visualization of weight average for the learned features.

Figure 11. Visualization of proposed method for the learned features.

4.4. Parameters Selection of the Proposed Method

There are several key parameters need to determine in the proposed method, such as: the input
dimension of SAE, the number of hidden layer neurons and sparse parameters ρ, etc. Next, we will



Sensors 2020, 20, 1774 13 of 20

respectively investigate the selection of these parameters. In addition, in order to reduce the influence
of the randomness, 20 trials are repeated for each experiment. The environment of all experiments are
4G RAM and python 3.6.

First, we investigate the selection of the input dimension. We select a certain number of samples
to train the proposed method, where 40,000 samples are sampled from the bearing dataset, and the
rest samples are used for testing. For each trial of different input dimension, we always keep other
parameters unchanged. The diagnosis results are displayed in Figure 12, wherein the positive error
bars show the standard deviations and the point of time are the average time. It can be seen that when
the input dimensions are increasing from 100 to 300, the accuracies are going higher, and when the
input dimension is 300, the standard deviation is the smallest. When the input dimension is greater
than 300, the average test accuracy only decreases slightly, but the time consumption is growing
linearly. Therefore, considering the results from the experiment, we choose 300 as the input dimension.

Figure 12. Diagnosis accuracy of various input dimension.

Next we investigate the number of the first hidden layer neurons. As shown Figure 13, the fault
recognition accuracy increases gradually, and standard deviation is also reduced as the number of
neurons in the first hidden layer increases from 50 to 200. When the number of neurons is greater than
200, the accuracy is stable and corresponding standard deviations are higher. The average time is also
increasing. So, we choose 200 as the number of the first hidden layer neurons.

Figure 13. Diagnosis accuracy of neurons in the first layer.

Then, we investigate the number of the second hidden layer neurons. Generally, the number
of neurons in the second hidden layer is less than the first hidden layer. Therefore, the number of
neurons we studied was between 40 and 200, and the diagnosis results are shown in Figure 14. It can
be seen that the accuracy varies only slightly in the whole neural unit interval. When the number of
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neurons is 100, the average testing accuracy is highest and standard deviation is smallest. Although
time consumption has increased, the increasing values are far from acceptable. Therefore, we choose
100 as the number of the second hidden layer neurons.

Figure 14. Diagnosis accuracy of neurons number in the second layer.

Afterward we investigate the selection of sparse parameter ρ. The sparse parameter plays an
important role in the process of achieving high accuracy. In general, it is a small value close to zero.
According to the general experiment results, the selection of sparse parameter varying from 0.05 to 0.5
is studied. Figure 15 shows the average diagnosis accuracy whit different sparse parameters. It can be
seen from the figure that, as the value of sparse factor is 0.15, the highest average test accuracy and
smallest standard deviation are obtained. Therefore, 0.15 is chosen as the value of the sparse parameter.

Figure 15. Diagnosis accuracy of different sparse parameters.

Finally, we investigate the selection of parameters λ and γ. These two parameters are the
hyper-parameters of distance metric and standard metric. The diagnosis results are shown in Figure 16,
where the two hyper-parameters λ and γ are selected as [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] and
[1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0], respectively. It can be known that when the model is determined,
the average diagnosis accuracy slightly changes as the two parameters correspond to different values,
which means that the two hyper-parameters only have the function of fine-tuning. The highest accuracy
can be obtained when the parameter λ is between 0.4 and 0.5. Therefore, it is reasonable that λ chooses
0.4 or 0.5. Furthermore, when the parameter γ is greater than λ, the average accuracy is higher, which
indicates that the proposed method prefers to choose the standard deviation metric and the distance
metric has a smaller impact.
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Figure 16. The relationship between average accuracy and parameters λ, γ.

In summary, the detailed parameters of the proposed method are as follows, the input dimension
of sparse AE is 300, the number of two hidden layer neurons is 200, 100, respectively, and the value
of sparsely parameter ρ is 0.15, the two hyper-parameters λ γ are 0.5. A wider selection of these
parameters in the proposed method are listed in Table 4.

Table 4. Key parameters of the proposed method.

Parameters Description Value

The dimension of Sparse AE 300
The number of the hidden layers 2
The number of the first hidden neurons 200
The number of the second hidden neurons 100
Learning rate 0.007
Sparse parameter 0.15
Sparse penalty factor 2
Batch size 100
Hyper-parameters (λ, γ) 0.5

4.5. Effect of Segments and Training Samples

The proposed model involves different number of segments and training samples, i.e., a different
number of segments for training input and the percentage of training samples for training the proposed
model will both significantly impact the diagnosis accuracy and time consumption of the proposed
method. Therefore, we study the effect of different number of segments and training samples.

(1) Effect of segments: Different segments determine the structure and diagnosis performance of
the model. In this study, signals with different segments will be used as the input for the proposed
framework. In order to quantitatively evaluate the effect of the input segments on the classification
performance, different segments ranging from one to four are studies. Figure 17 shows the diagnosis
accuracy and training time choosing various segments. It is easily observed that when the segment
number goes from one to four, the superior diagnosis performance is obtained. The results indicate
that the more segments are used, the proposed model can achieve better and more stable performance,
because these extracted features from different segments are rich and complementary, it is helpful for
classification. Furthermore, a significant accuracy increase and standard deviation decrease from one
segment to two segments can be noticed. More segments can achieve better diagnosis performance,
however, in reality, it does not mean that more segments are always beneficial, from the comprehensive
consideration of the model complexity and computational cost, choosing three segments are reasonable.
Table 5 lists the diagnosis performance of different segments corresponding to Figure 17. This result
validates that the proposed method can extract more discriminative and stable features from raw
vibration signals.

(2) Effect of training samples: In general, as more samples are used to train the model, the higher
accuracy can be achieved. The diagnosis results using different percentage of training samples are
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shown in Figure 18. It can be seen that when the training samples goes larger, the average test accuracy
is higher, and the standard deviation is smaller. However, the time consumption is increasing linearly.
It means that the selection of training samples is a trade-off between the diagnosis accuracy and the
time consumption. The same is true for Figures 12–14 and Figure 17. In Figure 18, when the proportion
of training samples is 40%, the average test accuracy is 99.71% and the standard deviation is only 0.05%,
which means that our proposed method achieves very high diagnosis accuracy and has good stability.

Figure 17. Diagnosis performance with different segments from 1 to 4.

Table 5. Diagnosis accuracy and time consuming for different segments.

Segments Average Accuracy Standard Deviation Training Time (s) Testing Time (s)

1 87.40% 2.44% 19.11 0.28
2 98.62% 0.23% 23.27 0.36
3 99.71% 0.05% 27.62 0.44
4 99.88% 0.04% 49.44 0.50

Figure 18. Diagnosis accuracy of different percentage of training samples.

4.6. Robustness Against Environmental Noises

In the actual industrial production process, noise is everywhere. The raw vibration signals are
collected often contain a lot of noise, which has complex variability. For all possible noise, we can’t
get all the label samples corresponding to noises. So, in this section, we will study the effect of
noise on diagnosis performance by adding Gaussian white noise. The robustness of the proposed
method against environmental noise is verified by adding noise to the test data based on the original
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experiments. Specifically, the noise data is generated by adding Gaussian white noise with different
signal-to-noise ratio (SNR) to the test data. The signal-to-noise ratio is defined as

SNR = 10 log10(
Psignal

Pnoise
) (14)

where Psignal and Pnosie represent the power of the original signal and added noise, respectively, the
unit of SNR is dB. In this study, we evaluate the proposed method adding noisy signals with different
SNR ranging from 0 dB to 8 dB. The results are shown in Figure 19.

Figure 19. Diagnosis results with environmental noises by different methods.

It can be seen from the figure that when the SNR increases from 0 dB to 8 dB, the test accuracy
of the four methods is increasing. Among them, at each SNR, the proposed method has the highest
accuracy and the smallest deviation, the second is the method that using feature averaging method
and next is the method without adding Gaussian white noise to the training data, the individual sparse
AE with two hidden layer gets worst performance. Compared with the individual sparse AE, it is
obvious that the proposed method has better anti-noise performance. In addition, it can be noticed
that the proposed method is only slightly better (it is about 0.5%) than the feature average method; it
infers that the input data has the same distribution, also, the feature average method can be considered
as a sample mean filter, thus random noises will be filtered to some extent. Maybe, when the vibration
signals are collected by multiple sensors or the distribution of input data is different, the proposed
method may achieve better performance.

5. Concluding Remarks

In this paper, a novel bearing fault diagnosis method based on ensemble stack sparse auto-encoder
was proposed. A common bearing data set is used, and a large number of experiments are carried
out to verify the effectiveness of the proposed method. This paper studies the selection of several
key parameters and the influence of segments and training samples on the diagnosis performance.
By a comparison with other methods and related studies using the same data set, the superiority
of the proposed method is proved. Additionally, the robustness of the proposed method against
environmental noises is demonstrated under different levels of noise.

Future research will be extended to other complex models and other fault diagnosis problems
such as using a CNN model and remaining useful-life prediction for rolling bearings. In addition,
although the proposed method in this paper obtained a high accuracy of fault recognition, it did not
achieve satisfactory results in a noisy environment, and there is still much room for improvement. This
is one of the future research directions on how to improve the anti-noise performance of the model.
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