
sensors

Article

Bagging Ensemble of Multilayer Perceptrons for
Missing Electricity Consumption Data Imputation

Seungwon Jung 1, Jihoon Moon 1 , Sungwoo Park 1, Seungmin Rho 2 , Sung Wook Baik 2 and
Eenjun Hwang 1,*

1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
jsw161@korea.ac.kr (S.J.); johnny89@korea.ac.kr (J.M.); psw5574@korea.ac.kr (S.P.)

2 Department of Software, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
smrho@sejong.edu (S.R.); sbaik@sejong.ac.kr (S.W.B.)

* Correspondence: ehwang04@korea.ac.kr; Tel.: +82-2-3290-3256

Received: 24 December 2019; Accepted: 22 March 2020; Published: 23 March 2020
����������
�������

Abstract: For efficient and effective energy management, accurate energy consumption forecasting
is required in energy management systems (EMSs). Recently, several artificial intelligence-based
techniques have been proposed for accurate electric load forecasting; moreover, perfect energy
consumption data are critical for the prediction. However, owing to diverse reasons, such as device
malfunctions and signal transmission errors, missing data are frequently observed in the actual
data. Previously, many imputation methods have been proposed to compensate for missing values;
however, these methods have achieved limited success in imputing electric energy consumption data
because the period of data missing is long and the dependency on historical data is high. In this study,
we propose a novel missing-value imputation scheme for electricity consumption data. The proposed
scheme uses a bagging ensemble of multilayer perceptrons (MLPs), called softmax ensemble network,
wherein the ensemble weight of each MLP is determined by a softmax function. This ensemble
network learns electric energy consumption data with explanatory variables and imputes missing
values in this data. To evaluate the performance of our scheme, we performed diverse experiments on
real electric energy consumption data and confirmed that the proposed scheme can deliver superior
performance compared to other imputation methods.

Keywords: missing-value imputation; electric energy consumption data; smart meter; deep learning;
multilayer perceptron; ensemble learning

1. Introduction

A typical energy management system (EMS) is equipped with smart meters (SMs) that measure
the amount of electric energy consumed [1,2]. These meters collect such information from diverse
targets such as houses, buildings, and cities, and the EMS performs appropriate operations based on the
information. For instance, future electric energy consumption can be predicted based on the collected
data. Thus, collecting precise SM data is essential because the forecasting accuracy significantly
depends on the quality of collected data [3,4]; further, accurate energy consumption forecasting enables
the EMS to perform energy management efficiently and effectively [5].

However, guaranteeing accuracy in the energy consumption data is not trivial because there are
several factors that result in missing data [6,7]. For example, malfunctions of the device and signal
transmission errors are typical sources of missing data [8]. This missing value problem decreases the
prediction accuracy and results in inferior performance for the forecasting methods that are based on
consecutive values, such as the autoregressive integrated moving average [9,10]. A popular approach

Sensors 2020, 20, 1772; doi:10.3390/s20061772 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9524-5729
https://orcid.org/0000-0003-1936-6785
https://orcid.org/0000-0002-0418-4092
http://dx.doi.org/10.3390/s20061772
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/6/1772?type=check_update&version=3

Sensors 2020, 20, 1772 2 of 16

to resolving this problem is to replace the missing values with plausible values, which is known as
missing-value imputation.

Several missing-value imputation methods have been proposed for resolving the missing electric
energy consumption data. One intuitive method involves the use of interpolation with temporally
adjacent data. Interpolation is a method of generating new data points located between known data
points. A linear interpolation (LI) is a typical example of interpolation that exploits a straight line.
If missing data points are identified, LI creates a line connecting two known data points just outside the
missing data interval; then, the missing data points are replaced with data points derived from the line.
LI is relatively easy to use when compared to other imputation methods. However, it demonstrates the
limitation of inaccurate prediction when the length of the missing data interval is long. Further, the
method of using historical data is also well known. If a missing data point is identified, this method
searches for potential data points in the historical data and imputes the missing data point. A historical
average (HA) model is an example of such a method that replaces the missing data point with an
average of a few historical data points having similar properties such as time and location. Similarly,
there are methods based on the nearest neighbor (NN). These methods determine similar patterns in
historical data by considering the NN data points near the missing data point and replacing the missing
data point with the data point determined by the identified pattern. Such methods based on historical
data can deliver superior performance when the entire data set has a consistent pattern. However, the
imputation result considerably depends on the previous data; consequently, these methods may fail if
an abrupt change occurs in the data pattern.

Recently, certain studies were conducted to overcome the aforementioned problems. Peppanen et
al. [7] proposed an optimally weighted average (OWA) method that combines both the LI and the HA.
If the length of the missing data interval is larger than the predefined threshold, the imputation result is
primarily effected by the HA, and if not, it is effected by the LI. This method avoided the drawbacks of
both the LI and the HA; therefore, it delivered better accuracy than those of the two individual methods.
Kim et al. [8] introduced a learning-based adaptive imputation (LAI) method based on feature vectors
of the data points surrounding the missing data point. By utilizing intentionally generated missing
data, the LAI method learns the optimal length of the feature vector and the range of the historical
data that must be considered during the imputation. Then, it calculates the distance between feature
vectors, selects k most similar past situations according to the distances and estimates the missing data
point. Wang et al. [11] proposed a method of adopting a weighted summation of results from both
linear regression (LR) and NN methods. The weight for yielding the outcome depends on the errors
of the two models, which makes the imputation result almost similar to the output from the model
with a lower error. Moghaddass and Wang [12] resolved the missing value problem in the smart grid
system by modeling the data using probabilistic distributions. They represented the data and error
occurrence using Poisson and Bernoulli distributions, respectively, and selected the estimated average
to impute missing values. Grigoras et al. [13] proposed two methods for handling missing data of load
profiles; one using k-nearest neighbor and the other using clustering with a fuzzy model. They found
values with patterns similar to those around missing values by using those methods and replaced the
missing values with the values voted most by the selected patterns. Huang et al. [14] suggested an
energy consumption data-imputation model using the relationships between energy consumption
data and various factors, such as voltage, resistance, and time. Their model consisted of small models
representing the correlation between energy consumption and each of the factors. According to the
conditions, suitable models were selected among the small models and utilized to impute the missing
data point. Turrado et al. [15] presented a self-organized maps neural network-based method using
several factors, such as each phase current, voltage from phase to phase, and voltage from phase to
neutral. They constructed a data matrix using those factors and extracted director vectors using the
self-organized maps neural network. Then, they calculated distances between director vectors and
imputed missing values by the director vector with the lowest distance.

Sensors 2020, 20, 1772 3 of 16

Unlike the studies conducted previously, we considered the approach of using a machine learning
algorithm with explanatory variables. This approach can be categorized as a regression imputation [16]
approach; moreover, it is possible to achieve remarkable performance according to the selected variables
and the regression model used [17,18]. It must be noted that this approach is not suitable for a real-time
environment owing to the requirement of additional variable collection and model training. However,
we have primarily focused on achieving an accurate imputation to improve energy consumption
forecasting; therefore, this drawback is not considered in this study.

In this study, we propose the use of a multilayer perceptron (MLP). An MLP is one of the
artificial neural network models that imitates a human brain heuristically. Recent studies based on
the MLP have demonstrated that it can outperform other machine learning algorithms in various
fields, including regression models [19,20]. Thus, for better accuracy, we decided to apply an ensemble
of MLPs in the proposed method. An ensemble implies the application of more than one learning
algorithm. An ensemble is known to capture the uncertainty better than when only one algorithm
is used; consequently, it can achieve superior performance [21]. However, the performance of the
ensemble is highly dependent on the method used to combine the submodels [22]. The most common
method adopts an average result of all the submodels; however, we introduce another method of
combining the MLPs.

We propose an imputation scheme based on the softmax ensemble network (SENet) which
is a bagging ensemble of MLP subnetworks. With several explanatory variables, SENet performs
missing-value imputation by considering the outputs and weights of MLP subnetworks. This model
is trained in two stages. In the first stage, each subnetwork is independently trained by the dataset
allocated to it. In the second stage, the ensemble weight assigned to each subnetwork is adjusted, and
unnecessary subnetworks are removed based on the ensemble weight. These two stages are repeated
until the convergence criterion is satisfied or the number of iterations reaches a predefined number.
Consequently, our scheme offers better missing data-imputation accuracy than the conventional
methods. To prove the effectiveness of our scheme, we performed several experiments by using real
electric energy consumption data, and we report the results later.

The contributions of this study are as follows:

1. We introduce an imputation scheme using explanatory variables. The explainable variables such
as weather and calendar are useful in improving the imputation accuracy.

2. We introduce a novel ensemble model based on several MLPs and a softmax function. Further,
we apply random sampling with replacement to enhance the ensemble effect.

3. Based on the experiments using real electric energy consumption data, we report that the proposed
scheme can deliver better performance than those of other missing-value imputation methods.

This paper is organized as follows. In Section 2, we present the overall architecture of our model
and the training process. We present the results of the performed experiments in Section 3. Finally, we
conclude the study in Section 4.

2. Methods

The overall process of the proposed scheme is shown in Figure 1. The scheme consists of five
steps: dataset preparation, model preparation, enhancement stage, adjustment stage, and intermediate
check. We subsequently describe each step in detail.

Sensors 2020, 20, 1772 4 of 16

Figure 1. Overall process of the proposed scheme.

2.1. Dataset Preparation

The proposed scheme is based on the ensemble model with several MLPs. In the first step, data
collection and dataset construction are performed for training the ensemble model. The electric energy
consumption data are collected from a SM, which becomes the output variable of the ensemble model;
i.e., the imputation target. Figure 2 illustrates an example of the collected energy consumption data
with three missing data intervals. In the figure, the length of the third interval is relatively long
compared to the other two intervals. For such a long interval, imputations based on temporally
adjacent data tend to give poor performance.

Figure 2. Example of the energy consumption data with missing data intervals.

For input variable configuration, the explanatory data, such as weather and calendar data,
are collected from diverse data sources, such as energy management systems and web sites. The periods
of these collected data should be the same. For instance, if the SMs record energy consumption per
hour, the explanatory data also should be measured per hour.

In the weather data, temperature, humidity, wind speed, temperature humidity index (THI) and
wind chill index (WCI) are included. As these factors are used practically for forecasting the energy
consumption, they were selected as the input variables [23,24]. The calendar data contains information
on the measurement time, such as a timestamp, the working schedule of the management target and
holiday dates.

The calendar data requires preprocessing. First, we determined the season, month, day, hour,
minute, and day of the week through the timestamp. Here, the minute is not considered if the

Sensors 2020, 20, 1772 5 of 16

measurement period is equal to or longer than 1 h. Second, the time units, such as a month, day, and
hour, were preprocessed to reflect the periodicity [5,23] using Equations (1) and (2), where time is the
time unit we want to transform and periodtime is its period. For example, periodtime will be 12 if we
convert the month, while periodtime will range from 28 to 31 if we convert the day of the month. Third,
season and day of the week are represented by one-hot vectors. Finally, two variables are added to
indicate whether the measurement time is obtained on a working hour of the management target or on
a holiday. After the calendar data is preprocessed, 26 input variables are prepared; these variables and
the output variable are listed in Table 1.

timex = sin
((

2π
periodtime

)
× time

)
(1)

timey = cos
((

2π
periodtime

)
× time

)
(2)

To fit the range of all the variables, we applied min-max normalization to ensure that these
variables ranged from zero to one. Thus, the entire dataset is obtained as shown in Figure 3; moreover,
among all the data points, the data points for which the value of the output variable is known will be
used for training the ensemble model.

Table 1. List of the input variables and the output variable.

Class Variable Name Type [Range] Variable Name Type [Range]

Input
Variable

Month_x Continuous [−1, 1] Working_hour Integer [0, 1]
Month_y Continuous [−1, 1] Monday Integer [0, 1]

Day_x Continuous [−1, 1] Tuesday Integer [0, 1]
Day_y Continuous [−1, 1] Wednesday Integer [0, 1]
Hour_x Continuous [−1, 1] Thursday Integer [0, 1]
Hour_y Continuous [−1, 1] Friday Integer [0, 1]

Minute_x Continuous [−1, 1] Saturday Integer [0, 1]
Minute_y Continuous [−1, 1] Sunday Integer [0, 1]

Spring Integer [0, 1] Temperature Continuous
Summer Integer [0, 1] Humidity Continuous

Fall Integer [0, 1] Wind Continuous
Winter Integer [0, 1] THI Continuous
Holiday Integer [0, 1] WCI Continuous

Output
Variable

Energy
Consumption Continuous

Figure 3. Example of the portion of the entire dataset.

Sensors 2020, 20, 1772 6 of 16

2.2. Model Preparation

For the construction of the ensemble model, we determined the number of subnetworks that
comprise the ensemble model, denoted by N. The probability of obtaining a better model at the end of
the training increases as the number of subnetworks in the model increases. However, the training
time becomes significantly longer corresponding to the increase in N. Empirically, we showed that the
proposed model can achieve reasonable results when N is set equal to or more than 20.

After N is set, random sampling with replacement is conducted. The sampling generates N
different datasets; moreover, each subnetwork possesses its own dataset. Thus, the subnetwork is
trained by its dataset and yields a variety of prediction results that strengthen the ensemble effect. This
method is commonly called either bootstrap aggregating or bagging. A famous example of bagging is
random forest (RF) [25]. RF is a tree-based ensemble model that uses bagging to grow various trees. Its
outstanding generalization performance and accurate prediction performance have been reported in
several works [26,27], which motivated us to adopt bagging for our model.

Figure 4 shows the structure of the ensemble model. N subnetworks are created after the sampling,
and each subnetwork SNi, i = 1, 2, 3, . . . , N, additionally has an ensemble weight ai. ai is used to
calculate the result of the ensemble model, yout, which is a weighted average of the output of each
subnetwork yi. However, for ensuring that yout is the weighted average, the ensemble weights must
satisfy the following two conditions: (1) all ensemble weights must be contained in the interval from
zero to one (ai ∈ [0, 1]); (2) the sum of the ensemble weights must be one (

∑
ai = 1). While designing the

deep learning model, it is difficult to identify a method to train the model while satisfying these two
conditions. However, a softmax function used primarily in classification tasks always satisfies these
conditions. Hence, we decided to apply a softmax function and adopt a new variable wi to determine
ai. The softmax function is defined as Equation (3). Owing to the property of a softmax function,
the ensemble weights always satisfy these two conditions. Therefore, in the model training, ai is not
directly adjusted; however, wi is adjusted instead of ai. The change of wi affects ai such that we can
determine the proper value of ai. In the remaining sections of this paper, we express that we directly
adjust ai for convenience.

ai = f (wi) =
ewi∑N

k=1(e
wk)

(3)

Figure 4. Structure of SENet.

In this model, there are two parts that should be optimized: (1) the subnetworks and (2) the
ensemble weights. Initially, all the parameters, including parameters of the subnetworks and the
ensemble weights, are assigned to arbitrary values. The former is optimized in the enhancement stage,
while the latter is optimized in the adjustment stage.

Sensors 2020, 20, 1772 7 of 16

2.3. Enhancement Stage

In this stage, each subnetwork is trained independently. The loss of SNi in the enhancement stage,
lossenh,i, is defined according to Equation (4).

lossenh, i = E
[
(t− yi)

2
]

(4)

Here, t is the real electric energy consumption data and yi is the estimated energy consumption
by SNi. Without interfering with each other, all subnetworks learn their own datasets to minimize
the loss function. Meanwhile, the ensemble weights are fixed and unable to affect the training in this
stage. If all subnetworks are trained Epochenh times, this stage is completed, and the next stage, i.e., the
adjustment stage, commences.

2.4. Adjustment Stage

In this stage, the ensemble weights are adjusted, and unnecessary subnetworks are removed
based on these weights. Unlike the enhancement stage, only the ensemble weights are changeable
during this training, while all the parameters of the subnetworks are fixed. That implies that yi cannot
be changed in this stage. Simply speaking, this process can be considered as though we train a shallow
artificial neural network whose input variables are the outcomes from subnetworks and parameters
are the ensemble weights. The loss of adjustment stage, lossadj, is calculated according to Equation (5).

lossadj = E
[
(t− yout)

2
]
= E

[(
t−

∑N

i=1
aiyi

)2
]

(5)

The dataset used for the training is the original dataset before the random sampling with
replacement. The reason for this is overfitting. While training each subnetwork, there is no requirement
to be concerned about overfitting because the ensemble model can avoid overfitting by controlling the
ensemble weights. However, if we use only a randomly sampled dataset for adjusting the ensemble
weights, it degrades the accuracy owing to a higher possibility of the occurrence of overfitting.
Therefore, all available data points are utilized.

After the training in this stage is performed Epochadj times, we examine whether the ensemble
weight of each subnetwork is less than the predefined threshold αth or not. If the weight is less, this
subnetwork will be removed from the ensemble model. This step is performed as the subnetworks
having low ensemble weights rarely contribute to accurate predication, when compared to those
having larger ensemble weights. Thus, it is preferable to remove them to reduce the training time than
to retain them.

For example, let us assume that a1 = 0.01, a2 = 0.05, a3 = 0.15, and a4 = 0.79. When we set αth = 0.02,
only SN1 will be deleted. If αth = 0.1, both SN1 and SN2 will be removed. αth affects the number of
subnetworks remaining after the training. Thus, if we require a light ensemble model, we can set αth to
be high. However, significant accuracy degradation might be observed when αth is too large.

The next step for the remaining subnetworks depends on the intermediate check. That is, if the
intermediate check indicates continuous training, the enhancement stage restarts for the remaining
subnetworks; otherwise, the training process stops and the ensemble of the remaining subnetworks is
exploited as an imputation model.

2.5. Intermediate Check

After the subnetwork removal, the intermediate check is performed. If the ensemble model satisfies
the condition, the model training will be concluded, and missing-value imputation is performed using
the trained ensemble model; otherwise, the enhancement stage restarts. Until the number of iterations
of the two training stages reaches NMAX, an intermediate check is conducted every time the adjustment
stage is completed. The goal of the intermediate check is to confirm whether the ensemble model

Sensors 2020, 20, 1772 8 of 16

requires no further training. As the model training is more time consuming in comparison with other
machine learning algorithms, the intermediate check is required to shorten the total time consumption
of the model training.

Here, we explain the condition that is checked in this stage. As machine learning models do not
require more training when they converge, we assume that the ensemble weights are not changed if
the models converge. The calculation flow for checking is described in Figure 5. Here, we denote all
ensemble weights at the kth iteration of the training stages as ewk = [ai,k, a2,k, . . . , aN,k]. As described in
Section 2.2, the ensemble weights satisfy the two conditions owing to the properties of the softmax
function, which also follows the properties of a probability distribution. Thus, we treat ewk similarly to
a probability distribution. By the given assumption, when the ensemble model converges, there is no
difference between ewk and ewk−1. To measure the difference, we use a Kullback–Leibler divergence
(KLD), which is a measure of the difference between two probability distributions. KLD will be low
when the given probability distributions are similar, and KLD becomes zero if the two probability
distributions are exactly the same. Conversely, KLD will be large when the probability distributions
vary significantly. Therefore, we should determine k when the KLD value between ewk−1 and ewk,
denoted by klk, is zero. Equation (6) shows the equation of klk, where Dkl(x||y) indicates KLD between
two probability distributions x and y.

klk = Dkl(ewk−1||ewk) =
∑N

i=1
ai,k−1 × log

(
ai,k−1

ai,k

)
(6)

Figure 5. Flow required for the calculation of emak.

However, it is impractical to observe a case wherein klk becomes zero. In practice, klk generally
converges on a specific value, not zero. Consequently, we should identify this value and regard it as
the threshold to determine the convergence. However, this value is uncontrollable because it can be
affected by several factors, such as the number of subnetworks, random initialization, and training
datasets. To mitigate this problem, we considered the difference between klk and klk−1. If this difference
equals zero, it implies that there is no difference between klk and klk−1; moreover, it also implies that
klk converges.

However, it is challenging to use the difference between klk and klk−1 as the criterion because
empirically this difference becomes zero after a few iterations. The reason why this is problematic is
that it leads to the shortage of training time for each subnetwork; this results in inaccurate imputation.
Hence, we adopted the exponential moving average of the difference to ensure sufficient training time

Sensors 2020, 20, 1772 9 of 16

for the subnetworks. The exponential moving average at the kth iteration, emak, is calculated according
to Equation (7).

emak = α(klk − klk−1) + (1− α)emak−1 (k = 2, 3, . . . , N) (7)

Here, α ∈ [0, 1] is a coefficient for how the latest value affects the exponential moving average. If
emak becomes zero, the training iteration will be completed. When α is large, the iterations will be
completed early. Conversely, the required iteration times may be closer to NMAX; in this case, it is
possible to obtain a better accuracy than the former case. However, emak may become zero after a few
iterations if N is small. This results from the large variations in the ensemble weights at early iterations.
In this case, α should be larger or the minimum number of iterations should be set to prohibit an early
conclusion. In the experiments, we set α to 0.025.

3. Results

3.1. Experimental Setup

We used the actual electric energy consumption data of a private university in Seoul, South Korea
in our experiment. The data were collected every hour from 9 January 2015 to 28 February 2018 and
were measured by dividing the campus into three building clusters depending on the usage and
location of the buildings. The first cluster consisted of 32 academic buildings. The second cluster
contained 16 residential buildings, and the third cluster consisted of five research buildings. The first
cluster used 2656.26 kWh per hour on the average, and the minimum and maximum electric loads
were 413.28 and 6835.20 kWh, respectively. In the case of the second cluster, the average, minimum,
and maximum of energy load per hour were 1174.47, 467.64, and 2184.12 kWh, respectively. Lastly, the
third cluster used 2656.26 kWh per hour on average, and the minimum. and maximum electric loads
were 678.86 and 3502.20 kWh, respectively.

Moreover, we collected the weather and calendar data. The weather data, such as temperature,
humidity, and wind speed, were provided by the Korea Meteorological Administration (KMA).
Moreover, THI and WCI were calculated from the collected data. Using the calendar data, we determined
the schedule of the university and the list of holidays on the web. As a result, 27,528 data points in
each cluster were used in the experiments.

All experiments were implemented in Python using several libraries, such as Tensor-Flow [28],
scikit-learn [29] and extreme gradient boosting (XGBoost) [30]. In the experiments, we intentionally
deleted a portion of the dataset to simulate the existence of missing data points, and we used the
remaining data as the training data, while the deleted data were used as test data to measure the
accuracy. We denote the percentage of the amount of deleted data to the number of total data as β.
For the accuracy comparison, we used the mean absolute percentage error (MAPE) and root mean
square error (RMSE). MAPE and RMSE can be defined using Equations (8) and (9), respectively. Here,
At and Ft are the actual and prediction values, respectively, and n is the number of data used in a test.

MAPE =
100
n

∑n

t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (8)

RMSE =

√∑n
t=1(At − Ft)

2

n
(9)

3.2. Comparison with Other Imputation Methods

To compare the proposed scheme with other imputation methods, we considered diverse
imputation methods such as LI, HA, OWA, autoencoder-based imputation (AE), and generative
adversarial imputation nets (GAIN) [31], and performed the comparison. In the case of the HA method,
we utilized the available data from the electric energy consumption data corresponding to days of the
same week, a previous time period, a subsequent time period, and the same time in previous years,

Sensors 2020, 20, 1772 10 of 16

which corresponds to the information presented in [7]. For the OWA method, we used the same setting
as the HA method, and the hyperparameter of the OWA, α, was set as 0.2. The AE had three hidden
layers each for its encoder (48–24–12 nodes) and for the decoder (12–24–48 nodes), and both generator
and discriminator of GAIN were composed of three layers (48 nodes in each layer). Since both AE and
GAIN required a multi-dimensional variable as their input, we cropped the energy consumption data
to make them 48-dimensional inputs. Their batch sizes were set to 100, and the activation function
was a rectified linear unit (ReLU) [32]. We used the adaptive moment estimation method (ADAM) as
an optimizer [33] with a learning rate of 0.001, and trained them for 10,000 epochs. In the proposed
scheme, each MLP consisted of four hidden layers (we followed the experimental results presented in
Appendix A) and the number of nodes in each layer was 16, which was two-thirds of the number of
the input variables [34,35]. The batch size, activation function, and optimizer were the same as the
previous method. Moreover, L2 regularization was applied with α = 0.0001 to all MLPs, and dropout
was not applied owing to degrading accuracy. Epochenh, Epochadj, and NMAX were set to 50, 50, and 200,
respectively. Further, N was 20, and αth was 0.001.

In this experiment, we intentionally removed the β percentage of the dataset and imputed the
deleted values with each method. While removing the data, we added certain missing intervals, such
as a few hours or more. Using the imputed results, we calculated MAPE and RMSE; Table 2 lists these
results. In the tables, for convenience, we refer to the proposed scheme as SENet.

Table 2. Mean absolute percentage error (MAPE) and root mean square error (RMSE) comparison
according to β. The values in parenthesis indicate RMSE, and the values in bold font indicate the lowest
values for respective clusters.

β Model Cluster 1 Cluster 2 Cluster 3

10%

LI 8.780 (438.330) 6.235 (109.287) 4.496 (172.061)
HA 9.713 (393.236) 7.475 (115.267) 3.759 (116.384)

OWA 6.179 (244.755) 5.567 (91.362) 2.666 (84.613)
AE 11.929 (618.432) 8.555 (149.014) 5.621 (221.987)

GAIN 12.899 (485.478) 8.231 (135.504) 5.552 (196.853)
SENet 4.704 (163.832) 5.847 (90.354) 1.817 (52.455)

15%

LI 10.984 (433.465) 6.376 (112.723) 4.589 (175.119)
HA 10.037 (400.172) 7.465 (113.640) 4.144 (135.776)

OWA 7.246 (273.693) 5.530 (86.608) 2.907 (97.644)
AE 11.758 (549.025) 8.643 (144.683) 5.396 (208.899)

GAIN 14.519 (481.857) 8.108 (124.898) 5.448 (181.327)
SENet 5.162 (172.117) 5.784 (83.122) 2.018 (59.325)

20%

LI 12.280 (479.293) 6.743 (112.875) 4.652 (159.807)
HA 10.549 (412.181) 7.545 (112.965) 4.244 (131.663)

OWA 8.221 (280.827) 5.794 (89.607) 3.033 (98.397)
AE 11.104 (515.135) 8.363 (149.068) 5.010 (176.925)

GAIN 14.173 (455.746) 8.024 (121.281) 5.792 (191.480)
SENet 5.212 (181.821) 5.792 (86.078) 2.056 (62.146)

25%

LI 15.062 (527.053) 7.163 (121.697) 5.623 (210.698)
HA 10.895 (428.504) 7.395 (113.157) 4.366 (146.488)

OWA 8.601 (326.815) 5.773 (90.735) 3.311 (117.112)
AE 12.722 (564.855) 8.589 (153.946) 5.085 (184.643)

GAIN 14.575 (486.518) 8.032 (137.447) 5.601 (188.025)
SENet 5.370 (188.827) 5.861 (84.289) 2.092 (60.524)

30%

LI 16.242 (575.417) 6.982 (120.153) 5.820 (218.499)
HA 11.117 (423.496) 7.547 (115.421) 4.544 (145.974)

OWA 9.876 (317.934) 5.811 (92.514) 3.743 (126.125)
AE 13.131 (590.977) 8.795 (158.521) 4.822 (182.089)

GAIN 14.233 (453.511) 8.102 (130.569) 5.894 (191.993)
SENet 5.544 (188.013) 5.836 (85.928) 2.080 (62.576)

Sensors 2020, 20, 1772 11 of 16

It can be observed that most methods tend to show worse accuracy as the missing proportion (that
is, β) increases. However, the decline in the accuracy of the proposed scheme is marginally small when
compared to the other methods. This result is obtained as the proposed method is primarily based
on the explanatory variables rather than the data points surrounding the missing data point. When
the missing proportion increases, the time interval between the missing data point and the closest
available data points are more significant, which results in the inaccuracy of LI. In the case of the HA
method, the shortage of the historical data necessary for predicting the missing data points might
cause inaccuracy. The OWA method appeared to be more robust than the other two methods because it
is a combination of these two methods. Unlike these methods, the proposed method infers the missing
data based on the explanatory variables. Thus, it can avoid the error increase even though several
energy consumption data points are missing. Meanwhile, the results of AE and GAIN demonstrated
that both models were not suitable for the energy consumption data we used.

In most cases, the proposed scheme achieved the lowest MAPE and RMSE. Excluding the proposed
scheme, the OWA method exhibited better performance than the other two methods. In Clusters
1 and 3, the difference between each method in terms of both MAPE and RMSE was significantly
demonstrated. Conversely, in Cluster 2, the difference between the OWA and the proposed scheme
was marginal. The OWA showed the lowest MAPE, while the proposed scheme demonstrated the
lowest RMSE. Thus, the OWA method demonstrates improved predictions for low actual values, and
the proposed method demonstrates improved predictions for high actual values.

3.3. Comparison with Other Machine Learning Algorithms

For the verification of the ensemble model, SENet, we compared it with other machine learning
algorithms that are used frequently in regression models. As the objective of this experiment is
the performance of SENet, the input variables of each algorithm were the same. For comparison,
we considered many popular machine learning algorithms, which include LR, RF, adaptive boosting
(AD), gradient boosting machine (GBM), XGBoost, support vector regression (SVR), single MLP
(MLP-S), convolutional neural network (CNN), recurrent neural network (RNN), and ensemble model
adopting the average of subnetworks (MLP-AVG). Further, we considered our SENet with CNNs and
RNNs. To measure each accuracy, we conducted a five-fold cross-validation and calculated the mean
of the errors.

The hyperparameters of the algorithms were set by a grid search except for the deep learning-based
algorithms. As the training of deep learning is significantly time consuming, we did not consider the
grid search. Instead, we set the hyperparameters of the MLPs identically. The details of MLP and
SENet are already described in the previous subsection. Thus, we have omitted an explanation of
their settings. In the case of CNN and RNN, we merged and utilized input variables of six available
consequent time steps because they demanded a sequence of input variables as their input. The CNN
consisted of four convolutional layers (32 filters in each convolutional layer) and two fully-connected
layers (32–16 nodes), and the RNN had two long short term memory (LSTM) layers (25 dimensions) and
two fully-connected layers (25–12 nodes). For the RNN, we adjusted the learning rate to 0.01 for fast
training. These structures were also used in the SENet with CNN and RNN. Other hyperparameters of
the RNN and CNN were the same as those of the MLPs or SENet.

Table 3 lists the experimental results. SENet showed superior prediction performance in most
cases. The MAPE of RF, commonly used in electric load forecasting [36,37], was similar to the MAPE
of SENet. However, in terms of RMSE, SENet achieved significantly lower errors than RF. MLP-AVG
showed a comparable prediction performance. However, it required much longer training times and
larger memory than the SENet because it used all subnetworks, while it showed marginally larger
errors. Hence, the SENet is superior to MLP-AVG. Meanwhile, the CNN and RNN did not show better
performances than MLP-S. The SENet with CNN or RNN performed better than CNN or RNN, but
did not catch up with our SENet with MLPs. Thus, we used MLP instead of CNN or RNN to construct
our SENet.

Sensors 2020, 20, 1772 12 of 16

Table 3. MAPE and RMSE comparison for various models. The values in parenthesis indicate RMSEs,
and the values in bold font indicate the lowest values for respective clusters.

Model Cluster 1 Cluster 2 Cluster 3

LR 21.681 (626.956) 12.925 (184.881) 7.252 (192.009)
AD 25.016 (561.639) 12.509 (163.882) 6.833 (169.560)
SVR 11.786 (354.800) 9.108 (132.927) 3.883 (111.193)
GBM 7.797 (249.126) 7.716 (112.051) 3.045 (83.570)

XGBoost 9.406 (318.314) 9.070 (131.006) 3.580 (100.494)
RF 5.456 (205.678) 6.601 (97.068) 2.616 (75.053)

MLP-S 6.233 (206.313) 7.583 (110.229) 2.978 (79.445)
CNN 10.469 (379.371) 13.728 (206.747) 4.910 (124.361)
RNN 8.697 (308.594) 10.452 (155.490) 3.701 (106.469)

MLP-AVG 5.407 (182.942) 6.535 (94.092) 2.692 (73.202)
SENet with CNN 10.047 (319.160) 11.745 (175.581) 4.693 (125.920)
SENet with RNN 6.447 (222.212) 8.548 (124.782) 3.001 (84.523)

SENet with MLP (proposed) 5.391 (181.988) 6.440 (93.384) 2.658 (70.858)

3.4. Impact of the Number of Subnetworks

In this experiment, we examined the proposed scheme with the same conditions described in the
previous subsection, except for the number of subnetworks. We set the numbers of subnetworks to 10,
20, 40, and 60 sequentially, and the results are listed in Table 4.

Table 4. MAPE and RMSE comparison according to the number of subnetworks. The values
in parenthesis indicate RMSEs and the values in the bold font indicate the lowest values for
respective clusters.

N Cluster 1 Cluster 2 Cluster 3

10 5.495 (186.537) 7.072 (102.090) 2.757 (73.432)
20 5.391 (181.988) 6.440 (93.384) 2.658 (70.858)
40 5.401 (180.132) 6.468 (93.601) 2.604 (69.258)
60 5.252 (176.517) 6.327 (92.732) 2.583 (68.561)

As the number of subnetworks increased, the imputation errors became lower. However, the
reduced amount of the errors was marginal, considering the dramatic increase in training time owing to
the use of several subnetworks. Nevertheless, when a significantly accurate missing-value imputation is
essential regardless of training times and memory consumption, setting a large number of subnetworks
is one of the reasonable choices.

3.5. Impact of αth

This experiment was conducted for confirming the impact of αth. The experimental setting was
the same as that described in Section 3.3; however, αth ranged from 0.001 to 0.1. The dataset used
was the energy consumption data of Cluster 3, and we measured MAPE and RMSE. Furthermore,
we counted the remaining subnetworks and calculated the remaining ratio. These results are listed in
Table 5.

Regardless of αth, MAPE and RMSE were approximately consistent without any noticeable
tendency. However, in terms of the remaining ratio, a significant difference can be observed. When αth
was set high, the subnetworks were removed frequently, which resulted in the compressed ensemble
model. However, if αth was set higher than one over N (in this experiment, it was 0.05), we observed that
the number of the remaining subnetworks was close to one and the errors were increased. This implies
that the trained model was a single MLP rather than an ensemble model. Hence, we recommend that
αth should be lower than one over N to demonstrate the ensemble effect.

Sensors 2020, 20, 1772 13 of 16

Table 5. MAPE and RMSE comparison according to the changes in αth. The values in bold font indicate
the lowest MAPEs and RMSEs for respective clusters.

αth MAPE (%) RMSE (kWh) Remaining Ratio (%)

0.1 2.989 80.001 5%
0.05 2.676 71.667 30%
0.01 2.656 70.721 54%

0.005 2.666 70.802 58%
0.001 2.687 71.534 69%

3.6. Immediate Check

To show the variations observed during the model training, we recorded the test errors, klk and
emak at each iteration. Figures 6 and 7 show these results, respectively. These results were obtained
from when the SENet was trained by the dataset from Cluster 1, and the experimental setting was
the same as the previous experiments. Moreover, the model training was completed after the 181st
iteration owing to the convergence test.

Figure 6. Variations of test error in SENet during training.

Figure 7. Variations of klk and emak in SENet during training.

Sensors 2020, 20, 1772 14 of 16

Figures 6 and 7 represent the test error changes and klk and emak changes at each iteration,
respectively. At early iterations, the test errors rapidly decreased. At the same time, klk varied from
approximately 0 to 0.2. However, the test errors and the emak started to converge in the middle of
the iterations, while the range of the klk variations was reduced, and the klk tended to become small
according to its trend line. After the 181st iteration, the emak became zero, and the model training was
concluded. It can be observed from Figure 6 that there were only a few benefits in terms of accuracy
errors or the number of subnetworks, even if the model training continued.

4. Conclusions

In this study, we proposed a missing-value imputation method using an ensemble scheme based
on MLPs and several explanatory variables. To this end, we collected additional data and constructed
the dataset for training the ensemble model. Then, we used random sampling with replacement and
the softmax function to improve the ensemble effects. For proving the effectiveness of the proposed
scheme, we compared our scheme with other missing-value imputation methods and machine learning
algorithms. We confirmed that the proposed scheme delivered superior performance.

In future works, we shall attempt to combine two training stages into one for realizing a simple
training process and shorter training time that can aid the implementation of the missing-value
imputation in real-time environments. Further, we plan to develop a method to reduce the number of
input variables used while maintaining a superior imputation performance.

Author Contributions: Conceptualization, S.J. and E.H.; methodology, S.J.; software, S.P.; validation, S.J., S.P., and
J.M.; formal analysis, S.R. and J.M.; investigation, S.J., S.P., and J.M.; resources, S.P. and J.M.; data curation, S.P., S.R.,
and J.M.; writing—original draft preparation, S.J.; writing—review and editing, E.H. and S.W.B.; visualization, S.J.;
supervision, E.H.; project administration, E.H. and S.W.B.; funding acquisition, E.H. and S.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Korea Electric Power Corporation (grant number: R18XA05)
and in part by Energy Cloud R&D Program (grant number: 2019M3F2A1073179) through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

We conducted experiments under the same conditions of the experiment in Section 3.2 (β = 20%) to
decide the number of hidden layers in one MLP. We varied the number of hidden layers and measured
both MAPE and RMSE of the test set. The following table shows the results. In the table, we can see
that four hidden layers gave the best overall performance.

Table A1. Experimental results according to the number of hidden layers. The values in bold font
indicate the lowest MAPE and RMSE for respective clusters.

Dataset No. of Hidden Layers RMSE MAPE

Cluster 1

2 192.266 5.709
3 181.392 5.366
4 181.821 5.212
5 182.314 5.217

Cluster 2

2 85.444 5.891
3 85.612 5.883
4 86.078 5.792
5 88.500 6.006

Cluster 3

2 64.748 2.142
3 63.911 2.105
4 62.146 2.056
5 63.342 2.079

Sensors 2020, 20, 1772 15 of 16

References

1. Ain, Q.-U.; Iqbal, S.; Khan, S.A.; Malik, A.W.; Ahmad, I.; Javaid, N. IoT Operating System Based Fuzzy
Inference System for Home Energy Management System in Smart Buildings. Sensors 2018, 18, 2802. [CrossRef]

2. Pereira, R.; Figueiredo, J.; Melicio, R.; Mendes, V.M.F.; Martins, J.; Quadrado, J.C. Consumer energy
management system with integration of smart meters. Energy Rep. 2015, 1, 22–29. [CrossRef]

3. Chen, W.; Zhou, K.; Yang, S.; Wu, C. Data quality of electricity consumption data in a smart grid environment.
Renew. Sust. Energ. Rev. 2017, 75, 98–105. [CrossRef]

4. Kim, T.; Ko, W.; Kim, J. Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV
Generation Forecasting. Appl. Sci. 2019, 9, 204. [CrossRef]

5. Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term
load forecasting. Energy Build. 2019, 194, 328–341. [CrossRef]

6. Ardakanian, O.; Koochakzadeh, N.; Singh, R.P.; Golab, L.; Keshav, S. Computing Electricity Consumption
Profiles from Household Smart Meter Data. In Proceedings of the Workshops of the EDBT/ICDT 2014 Joint
Conference (EDBT/ICDT 2014), Athens, Greece, 28 March 2014; pp. 140–147.

7. Peppanen, J.; Zhang, X.; Grijalva, S.; Reno, M.J. Handling bad or missing smart meter data through
advanced data imputation. In Proceedings of the 2016 IEEE Power & Energy Society, Innovative Smart Grid
Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016; pp. 1–5.

8. Kim, M.; Park, S.; Lee, J.; Joo, Y.; Choi, J.K. Learning-Based Adaptive Imputation Method with kNN Algorithm
for Missing Power Data. Energies 2017, 10, 1668. [CrossRef]

9. Chen, C.; Wang, Y.; Li, L.; Hu, J.; Zhang, Z. The retrieval of intra-day trend and its influence on traffic
prediction. Transp. Res. Part C Emerg. Technol. 2012, 22, 103–118. [CrossRef]

10. Haworth, J.; Cheng, T. Non-parametric regression for space–time forecasting under missing data. Comput.
Environ. Urban Syst. 2012, 36, 538–550. [CrossRef]

11. Wang, X.; Li, M.; Zhou, J.; Deng, Y.; Zhang, Q. Missing Data estimation with a bi-dimensional adaptive
weighted method for power grid data. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 042025. [CrossRef]

12. Moghaddass, R.; Wang, J. A hierarchical framework for smart grid anomaly detection using large-scale smart
meter data. IEEE Trans. Smart Grid. 2017, 9, 5820–5830. [CrossRef]

13. Grigoras, G.; Cartina, G.; Bobric, E.C.; Barbulescu, C. Missing data treatment of the load profiles in distribution
networks. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June-2 July 2009;
pp. 1–5.

14. Huang, Z.; Zhu, T. Real-time data and energy management in microgrids. In Proceedings of the 2016 IEEE
Real-Time Systems Symposium (RTSS), Porto, Portugal, 29 November–2 December 2016; pp. 79–88.

15. Turrado, C.; Sánchez Lasheras, F.; Calvo-Rollé, J.; Piñón-Pazos, A.J.; Melero, M.; de Cos Juez, F. A Hybrid
Algorithm for Missing Data Imputation and Its Application to Electrical Data Loggers. Sensors 2016, 16, 1467.
[CrossRef] [PubMed]

16. Rakićević, J.; Savić, G.; Bulajić, M. Selecting an Appropriate Method for Missing Data Imputation: A Case
of Countries Ranking. In Symposium proceedings-XV International symposium Symorg 2016: Reshaping the
Future through Sustainable Business Development and Entrepreneurship; University of Belgrade, Faculty of
Organizational Sciences: Beograd, Serbia, 2016.

17. Mohammadi, F.; Zheng, C. A Precise SVM Classification Model for Predictions with Missing Data.
In Proceedings of the 4th National Conference on Applied Research in Electrical, Mechanical Computer and
IT Engineering, Shiraz, Iran, 4 October 2018.

18. Crespo Turrado, C.; Sánchez Lasheras, F.; Calvo-Rollé, J.L.; Piñón-Pazos, A.J.; De Cos Juez, F.J. A New
Missing Data Imputation Algorithm Applied to Electrical Data Loggers. Sensors 2015, 15, 31069–31082.
[CrossRef] [PubMed]

19. Grant, J.; Eltoukhy, M.; Asfour, S. Short-term electrical peak demand forecasting in a large government
building using artificial neural networks. Energies 2014, 7, 1935–1953. [CrossRef]

20. Hosein, S.; Hosein, P. Load forecasting using deep neural networks. In Proceedings of the 2017 IEEE Power
& Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington DC, USA, 23–26 April
2017; pp. 1–5.

http://dx.doi.org/10.3390/s18092802
http://dx.doi.org/10.1016/j.egyr.2014.10.001
http://dx.doi.org/10.1016/j.rser.2016.10.054
http://dx.doi.org/10.3390/app9010204
http://dx.doi.org/10.1016/j.enbuild.2019.04.034
http://dx.doi.org/10.3390/en10101668
http://dx.doi.org/10.1016/j.trc.2011.12.006
http://dx.doi.org/10.1016/j.compenvurbsys.2012.08.005
http://dx.doi.org/10.1088/1757-899X/490/4/042025
http://dx.doi.org/10.1109/TSG.2017.2697440
http://dx.doi.org/10.3390/s16091467
http://www.ncbi.nlm.nih.gov/pubmed/27626419
http://dx.doi.org/10.3390/s151229842
http://www.ncbi.nlm.nih.gov/pubmed/26690437
http://dx.doi.org/10.3390/en7041935

Sensors 2020, 20, 1772 16 of 16

21. Nguyen, H.H.; Harbi, N.; Darmont, J. An efficient local region and clustering-based ensemble system
for intrusion detection. In Proceedings of the 15th Symposium on International Database Engineering &
Applications, Lisboa, Portugal, 21–23 September 2011; pp. 185–191.

22. Wilks, D.S. Smoothing forecast ensembles with fitted probability distributions. Q. J. R. Meteorolog. Soc. A J.
Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 2821–2836. [CrossRef]

23. Son, M.; Moon, J.; Jung, S.; Hwang, E. A Short-Term Load Forecasting Scheme Based on Auto-Encoder and
Random Forest. In Proceedings of the International Conference on Applied Physics, System Science and
Computers, Dubrovnik, Croatia, 26–28 September 2018; pp. 138–144.

24. Park, S.; Moon, J.; Hwang, E. 2-Stage Electric Load Forecasting Scheme for Day-Ahead CCHP Scheduling. In
Proceedings of the IEEE International Conference on Power Electronics and Drive System (PEDS), Toulouse,
France, 9–12 July 2019.

25. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
26. Kane, M.J.; Price, N.; Scotch, M.; Rabinowitz, P. Comparison of ARIMA and Random Forest time series

models for prediction of avian influenza H5N1 outbreaks. BMC Bioinform. 2014, 15, 276. [CrossRef]
27. Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs. Neurons: Comparison between random forest and ANN

for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [CrossRef]
28. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.

TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

30. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

31. Yoon, J.; Jordon, J.; Van Der Schaar, M. Gain: Missing data imputation using generative adversarial nets.
In Proceedings of the International Conference on Machine Learning, Stockholm Sweden, 10–15 July 2018;
pp. 5689–5698.

32. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

33. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
34. Karsoliya, S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture.

Int. J. Eng. Trends. Technol. 2012, 3, 714–717.
35. Heaton, J. Introduction to Neural Networks with Java; Heaton Research, Inc.: Chesterfield, MO, USA, 2008;

ISBN 1-60439-008-5.
36. Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest

and Multilayer Perceptron. Energies 2018, 11, 3283. [CrossRef]
37. Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity

load forecasting using random forest. Energies 2016, 9, 767. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1256/qj.01.215
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1186/1471-2105-15-276
http://dx.doi.org/10.1016/j.enbuild.2017.04.038
http://dx.doi.org/10.3390/en11123283
http://dx.doi.org/10.3390/en9100767
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Dataset Preparation
	Model Preparation
	Enhancement Stage
	Adjustment Stage
	Intermediate Check

	Results
	Experimental Setup
	Comparison with Other Imputation Methods
	Comparison with Other Machine Learning Algorithms
	Impact of the Number of Subnetworks
	Impact of th
	Immediate Check

	Conclusions
	
	References

