Article

Sensing Performance Investigations on Two-Photon Fluorescent Probes for Detecting β -Amyloid in Alzheimer's Disease

Yujin Zhang ¹, Ni Luan ¹, Kan Li ¹, Jiancai Leng ¹ and Wei Hu ^{2,*}

¹ School of Electronic and Information Engineering (Department of Physics), Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; zhangyujin@qlu.edu.cn(Y.Z.), luanni_qlu@163.com(N.L.), likan@qlu.edu.cn(K.L.), jiancaileng@qlu.edu.cn(J.L.)

² School of Chemistry and Pharmaceutical Engineering, Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

* Correspondence: weihu@qlu.edu.cn

Figure 1. Molecular structures of P4, P5 and P6.

Figure 2. Binding sites of (a) P4, (b) P5, (c) P6 in β -amyloid.

Cito	P4		P	5	P6		
Site	site1	site2	site1	site2	site1	site2	
Binding energy	-9.27	-6.44	-10.07	-6.77	-11.1	-8.12	
Inhibition constant	160.77	18930	41.45	10890	7.33	1120	
Intermolecular Energy	-10.16	-7.34	-11.26	-7.96	-11.99	-9.01	
Internal Energy	-0.4	-0.41	-0.49	-0.43	-0.32	-0.59	
Torsional Energy	0.89	0.89	1.19	1.19	0.89	0.89	
Unbound Energy	-0.4	-0.41	-0.49	-0.43	-0.32	-0.59	

Table S1. Energy parameters (in kcal/mol) and inhibition constant (in nM) for P4, P5 and P6 in various binding sites in β -amyloid.

Table S2. OPA wavelength $\lambda_{OPA}(nm)$, oscillator strength $\delta_{OPA}(a.u.)$ and the corresponding transition nature for P1, P2, P3, P4, P5 and P6 in different microenvironments at long wavelength region. H(L) donates HOMO(LUMO).

	P1			P2	P2(Exp. 557)			P3(Exp. 559)		
Site	gas	site1	site2	gas	site1	site2	gas	site1	site2	
λ_{OPA}	560	549	541	524	538	533	573	568	606	
$\delta_{\scriptscriptstyle OPA}$	0.55	0.90	0.96	0.73	0.79	0.82	0.81	0.85	0.66	
Transition	H-L	H-L	H-L	H-L	H-L	H-L	H-L	H-L	H-L	
Nature	98%	98%	98%	98%	98%	98%	98%	98%	98%	
	P	P4(Exp. 489)		P5(Exp. 519)			P6			
Site	gas	site1	site2	gas	site1	site2	gas	site1	site2	
λ_{OPA}	441	455	439	498	498	509	508	503	501	
$\delta_{\scriptscriptstyle OPA}$	0.71	0.89	1.05	0.81	0.90	1.06	0.48	0.97	0.80	
Transition	H-L	H-L	H-L	H-L	H-L	H-L	H-L	H-L	H-L	
Nature	98%	98%	98%	98%	98%	98%	98%	98%	98%	

Table S3. OPE wavelength $\lambda_{OPE}(nm)$, oscillator strength $\delta_{OPE}(a.u.)$ and the corresponding transition nature for P1, P2, P3, P4, P5 and P6 in different microenvironments at long wavelength region. H(L) donates HOMO(LUMO).

	P1(Exp. 678)			P2	P2(Exp. 660)			P3(Exp. 710)		
Site	gas	site1	site2	gas	site1	site2	gas	site1	site2	
λορα	859	600	591	892	593	589	924	614	656	
$\delta_{\scriptscriptstyle OPA}$	0	0.69	0.73	0	0.58	0.60	0	0.71	0.53	
Transition	L-H	L-H	L-H	L-H	L-H	L-H	L-H	L-H	L-H	
Nature	98%	98%	98%	98%	98%	98%	98%	98%	98%	
	P	P4(Exp. 577)		P5(Exp. 665)			P6(Exp. 615)			
Site	gas	site1	site2	gas	site1	site2	gas	site1	site2	
λορα	725	493	471	769	574	552	801	598	589	
$\delta_{\! OPA}$	0	0.67	0.83	0	0.54	0.77	0	0.41	0.39	
Transition	L-H	L-H	L-H	L-H	L-H	L-H	L-H	L-H	L-H	

Site	λ tpa	σ TPA	Sxx	S_{yy}	S_{zz}	S_{xy}	S_{xz}	S_{yz}
P1-gas	1119	411	757.9	2.8	0.8	15.8	10.6	2.3
P1-site1	1206	1099	1335.2	1.1	1.1	43.6	7.5	0.2
P1-site2	1183	1088	1303.1	0.3	1.1	33.9	15.0	0.6
P2-gas	1048	166	449.1	3.9	1.1	30.0	0.0	0.0
P2-site1	1129	338	690.9	5.6	1.6	40.4	1.5	0.8
P2-site2	1140	366	726.0	4.0	1.4	36.0	4.2	0.3
P3-gas	1080	344	664.4	10.2	0.9	34.7	0.0	0.0
P3-site1	1224	894	1222.0	3.3	1.5	23.4	9.6	0.6
P3-site2	1281	934	1308.8	2.8	1.4	33.6	0.2	0.1
Site	λ_{TPA}	σ TPA	S_{xx}	S_{yy}	S_{zz}	S_{xy}	S_{xz}	S_{yz}
P4-gas	1039	238	2.2	8.6	533.2	4.1	12.3	20.3
P4-site1	962	136	1.7	4.4	372.5	0.8	5.1	15.0
P4-site2	933	155	1.9	1.7	387.6	0.9	0.5	7.2
P5-gas	1200	668	1.7	7.4	1035.2	2.7	17.9	13.6
P5-site1	1048	441	2.3	2.7	735.1	0.5	4.3	3.3
P5-site2	1085	356	2.0	2.7	684.1	0.5	2.1	0.4
P6-gas	1195	647	1.9	1.6	1015.9	7.7	10.7	3.6
P6-site1	1052	538	1.2	0.2	813.9	0.9	3.6	37.2
P6-site2	1061	409	0.8	4.8	715.3	2.8	17.1	45.9

Table S4. The maximum TPA wavelength $\lambda_{TPA}(nm)$, TPA cross section $\sigma_{TPA}(GM, 1GM=10^{-50} \text{ cm}^4 \times \text{s/photon})$, and the corresponding two-photon transition matrix element $S_{\alpha\beta}$ for P1, P2, P3, P4, P5 and P6 in different microenvironments.