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Abstract: Four state-of-the-art metaheuristic algorithms including the genetic algorithm (GA), 
particle swarm optimization (PSO), differential evolutionary (DE), and ant colony optimization 
(ACO) are applied to an adaptive neuro-fuzzy inference system (ANFIS) for spatial prediction of 
landslide susceptibility in Qazvin Province (Iran). To this end, the landslide inventory map, 
composed of 199 identified landslides, is divided into training and testing landslides with a 70:30 
ratio. To create the spatial database, thirteen landslide conditioning factors are considered within 
the geographic information system (GIS). Notably, the spatial interaction between the landslides 
and mentioned conditioning factors is analyzed by means of frequency ratio (FR) theory. After the 
optimization process, it was shown that the DE-based model reaches the best response more quickly 
than other ensembles. The landslide susceptibility maps were developed, and the accuracy of the 
models was evaluated by a ranking system, based on the calculated area under the receiving 
operating characteristic curve (AUROC), mean absolute error, and mean square error (MSE) 
accuracy indices. According to the results, the GA-ANFIS with a total ranking score (TRS) = 24 
presented the most accurate prediction, followed by PSO-ANFIS (TRS = 17), DE-ANFIS (TRS = 13), 
and ACO-ANFIS (TRS = 6). Due to the excellent results of this research, the developed landslide 
susceptibility maps can be applied for future planning and decision making of the related area. 

Keywords: landslide susceptibility; GIS; remote sensing; ANFIS; metaheuristic optimization 
 

1. Introduction 

Slope failures are ubiquitous major disasters causing many financial and physical damages 
worldwide every year. Varnes and Radbruch-Hall [1] presented a definition of a landslide as any 
downward mass movement caused by gravity on slopes (e.g., artificial deposits, soil, and natural 
cliffs). Global reports state that developing countries have witnessed the majority (more than 90%) of 
the landslide events that have occurred around the world. Additionally, landslides are responsible 
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for more than 17% of the reported fatalities [2]. Due to the large number of landslides that have 
occurred in recent decades, Iran is recognized as a landslide-prone area. It is noteworthy that the 
largest debris flow in the world, the Seimareh landslide, occurred in western Iran [3]. In another 
event, slope cutting and removal of the toe buttress triggered the Manjil landslide in 2013. It occurred 
on the Qazvin–Rasht freeway and led to blockage of the freeway [4].  

As is known, landslide susceptibility mapping is an essential prerequisite for landslide risk 
management [5,6]. A proper landslide risk assessment entails determining the effective landslide 
parameters for discovering the spatial relationship between them and occurred landslides. Up to 
now, plenty of theories have been utilized for this purpose in many specific areas. Some of them are 
based on statistical rules, which aim to determine the importance of each independent landslide 
factor through assigning weights. Novel intelligent models are also proposed for approximating the 
susceptibility of an area through learning the mathematical relationship between a landslide and its 
related factors [7,8]. 

Many scholars have employed statistical-based methods for landslide susceptibility assessment 
[9-11]. Fayez, et al. [12] successfully implemented the FR model for landslide susceptibility 
assessment in India. In a comparative study, Chen, et al. [13] used frequency ratio (FR), weights-of-
evidence (WoE), and statistical index (SI) methods for producing the landslide susceptibility map of 
Qianyang County (China). Considering 13 landslide-related factors, they achieved the proposed 
maps with 78.53%, 79.35%, and 79.40% prediction accuracies, respectively for WoE, SI, and FR 
models. Analytical hierarchy process (AHP) is another popular method employed in landslide 
susceptibility mapping [14,15]. Yan, et al. [16] used the integration of AHP with normalized FR with 
the cloud model for landslide susceptibility assessment. Moreover, Yang, et al. [17] investigated the 
landslide susceptibility modelling in Sichuan Province (China) using a spatial logistic regression 
(SLR) approach. They also developed a GeoDetector-based method for the proper selection of the 
landslide-conditioning parameters. Their findings showed that the estimation precision of the 
proposed model was about 11.9% higher than typical logistic regression (LR). Liu and Duan [18] 
conducted a comparison among the WoE, SI, and Index of Entropy (IoE) for quantitative assessment 
of landslide susceptibility in Shangnan County (China). According to the results, the WoE (with 
around 76 and 75% accuracy rate for the training and testing data, respectively) outperformed two 
other models. A new integrated statistical method, called B-GeoSVC, was proposed by Yang, et al. 
[19] as a reliable evaluative approach for both regional and local scales. 

Moreover, various intelligent predictive models like the artificial neural network (ANN), 
adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) have been 
promisingly employed for forecasting the landslide susceptibility risk [20–22]. Aditian, et al. [23] 
showed the superiority of the ANN (success rate = 0.734) for landslide susceptibility evaluation in 
Indonesia, in comparison with FR (success rate = 0.688), and LR (success rate = 0.687). Polykretis, et 
al. [24] examined the capability of different models of ANFIS. Based on the calculated prediction 
accuracies (i.e., between 0.7 to 0.90), all implemented models are reliable enough to be used for the 
mentioned purpose. Likewise, Chen, et al. [25] evaluated the capability of three state-of-the-art 
predictive models of ANFIS combined with FR (ANFIS-FR), generalized additive model (GAM), and 
SVM in landslide susceptibility assessment in Hanyuan County (China). This study showed that SVM 
presents the most accurate prediction (accuracy = 87.5%), followed by ANFIS-Fr (accuracy = 85.1%) 
and GAM (accuracy = 84.6%). Pham, et al. [26] proposed a hybrid predictive model named rotation 
forest-based radial basis function neural network for landslide susceptibility zonation of the 
Himalayan area, India. They found that the proposed model could be a good alternative for this aim, 
due to the better performance than LR, multi-layer perceptron neural network, the hybrid of rotation 
forest and decision trees (RFDT), and naïve Bayes (NB).  

Furthermore, many studies have focused on the development of hybrid metaheuristic 
algorithms incorporated with typical models in order to achieve more powerful predictive tools 
[27−29]. Nguyen, et al. [30] used particle swarm optimization (PSO) and artificial bee colony (ABC) 
metaheuristic techniques to optimize the performance of the ANN for landslide susceptibility 
mapping at northern Iran. The calculated area under the curve (AUC) values revealed that the 
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prediction accuracy of the MLP increased from nearly 77% to around 86% and 80%, respectively by 
applying the PSO and ABC algorithms. Likewise, Chen, et al. [31] coupled three optimization 
techniques of PSO, genetic algorithm (GA), and differential evolution (DE) with the ANFIS for spatial 
hazard assessment of landslide in Hanyuan County (China). The AUC of all three ensembles obtained 
higher than 0.75. In addition, the ANFIS-DE (AUC = 0.844) emerged as the most promising ensemble 
technique, followed by ANFIS-GA (AUC = 0.821), and ANFIS-PSO (AUC = 0.780). Tien Bui, et al. [32] 
combined imperialist competitive algorithm (ICA) and relevance vector machine (RVM) for landslide 
susceptibility modelling of Lang Son City (Vietnam). At the same time, they considered the SVM and 
LR as benchmark models. They showed that the suggested RVM-ICA outperformed SVM and LR 
with respective AUCs of 0.92, 0.91, and 0.87, respectively.  

As mentioned above, various studies have successfully used the ANFIS for landslide 
susceptibility assessment [33,34]. However, hybrid ensembles of this model have been broadly used 
for similar applications like flood [35] and forest fire susceptibility [36] assessment. To the best 
knowledge of the authors, optimizing this model with metaheuristic algorithms for landslide 
susceptibility mapping has been rarely explored [37]. Hence, the essential novelty of this research lies 
in synthesizing four wise evolutionary algorithms, namely GA, PSO, DE, and ant colony optimization 
(ACO) with ANFIS to remedy its computational shortcomings like local minimum [38] and 
dimension dangers [31] in spatial modelling of the landslide. Besides, the study area (i.e., Qazvin 
County, Iran) is a relatively landslide-prone area that has not been sufficiently investigated in prior 
studies. In this regard, followed by providing the required spatial database, the FR index is calculated 
to measure the importance of each sub-class of the considered conditioning factors. Then, the 
landslide susceptibility maps are generated by each model, and the results are validated by the area 
under the receiving operating characteristic curve (AUROC), mean square error (MSE), and mean 
absolute error (MAE) accuracy criteria. The proposed models, however, may be applicable to other 
areas with similar environmental conditions. 

2. Materials and Methods 

2.1. Study Area 

The study area is Qazvin County, located in Qazvin Province, one of the 31 provinces of Iran, 
in the north-western part of the country. Figure 1 illustrates the exact location of Qazvin County. It 
covers roughly 4992 km2 and lies within the longitude 48° 58' to 50° 51' E and latitude 36° 08' to 36° 
48' N. In the northern watersheds of Qazvin, the Shahrood river flows, which is the result of joining 
Taleghan and Alamut rivers [39]. Due to the presence of the Alborz mountains, this area is known to 
have a mountainous climate [40], and approximately half of the area is covered by mountainous 
pastures. The altitude ranges from 239 to 4093 m above the sea level, and it is higher than 1200 m in 
the major part of the area [4]. The average temperature of the hot and cold seasons is reported as 
approximately 28 °C and 1 °C, respectively. Also, the annual precipitation in most parts of the county 
is higher than 500.5 mm [40]. The slope ranges from 0° to 45°, where more than 70% of the area 
contains gentle slopes (i.e., slope lower than 15°). According to the Geology Survey of Iran (GSI), 
Qazvin County lies on a bed with 25 geology units. Among them, two groups of Dacitic andesitic 
volcanic tuff and sandy limestone, Marl, calcareous sandstone, and minor conglomerate are the most 
common rocks, covering 19.45% and 16.20% of the county, respectively. Also, the soil map shows that 
approximately 60% of the study area is categorized as Rock Outcrops/Entisols soil.  

The spatial distribution of the identified landslide, as well as the non-landslide points, is 
illustrated in Figure 1 over the hill shade map of the study area. According to this figure, the majority 
of slope failures have occurred in the right half of the Qazvin County, mostly along the territorial 
roads and detected faults. 
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Figure 1. Location of the study area, and spatial distribution of landslides and non-landslide points. 

2.2. Data Preparation and Spatial Relation Between the Landslide and Related Factors 

When it comes to implementing intelligent models, using a valid dataset is very important [41]. 
The dataset used in this study consists of thirteen landslide condition factors, including elevation, 
slope aspect, climate, plan curvature, soil type, lithology, distance to the river, distance to the road, 
distance to the fault, land cover, slope degree, stream power index (SPI), and topographic wetness 
index (TWI) as the input variables, and landslide occurrence (0 = no landslide and 1 = landslide) as 
the target variable. All layers are produced and processed in the geographic information system (GIS) 
with a pixel size of 10 × 10 m [42−44]. Figure 2 illustrates a map of the mentioned landslide-related 
factors. 

Providing a valid landslide inventory map is an essential step in the susceptibility analysis of 
this natural hazard [45]. In the study area, a total of 199 landslides were marked using previous 
records from the national geoscience database of Iran (NGDIR), as well as satellite imagery (IRS: LISS-
III) and interpreting the aerial photos (in 1 : 25000 scale) covering the past 20 years (i.e., 1995 – 2015) 
[46]. It should be noted that the identified landslides are mostly translational and rotational slope 
failures are rarely observed. Some field photographs of landslides that occurred in Qazvin Province 
can be found in a research by Arjmandzadeh, et al. [47]. Out of the marked landslides, 139 events 
(i.e., 70% of the whole dataset) are randomly selected and used for the training phase, and the 
remaining 60 events (i.e., 30% of the whole dataset) are allocated to the validation phase. Besides, 199 
non-landslide points are randomly produced over the areas devoid of landslides and divided into 
the training and testing parts with the same proportions. 
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Figure 2. Landslide conditioning factor, percentage of the area for each sub-class, and the calculated 
FR for: (a) elevation, (b) slope aspect, (c) climate, (d) plan curvature, (e) soil type, (f) lithology, (g) 
distance to river, (h) distance to road, (i) distance to fault, (j) land cover, (k) slope degree, (l) SPI, and 
(m) TWI. 
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The FR theory is also considered to measure the spatial correlation between the landslides and 
conditioning factors. Each sub-class of the landslide conditioning layers receives an FR value.  In this 
sense, the higher the values of FR, the more significant of the proposed sub-class [48]. This index is 
expressed as follows: 𝑭𝑹  𝑵𝒍𝒂𝒏𝒅𝒔𝒍𝒊𝒅𝒆𝑵𝒅𝒐𝒎𝒂𝒊𝒏 , (1)

where Nlandslide and Ndomain respectively denote the percentage of the landslide events located in the 
proposed sub-class and the percentage of the domain covered by it. Figure 3 shows the results of the 
FR analysis. 
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Figure 3. The obtained FRs for landslide conditioning factors: (a) elevation, (b) slope aspect, (c) 
climate, (d) plan curvature, (e) soil type, (f) distance to river, (g) distance to road, (h) distance to fault, 
(i) land cover, (j) slope degree, (k) SPI, and (l) TWI. 
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North (337.5−360°). The FR analysis shows that North (0−22.5°), North-East, North-West, West, and 
North (337.5−360°) have this value larger than 1. Plan curvature was classified into three categories 
of Concave (< -0.001), Flat (-0.001 – 0.001), and Convex (> 0.001) [50], which the first group is more 
important due to the calculated FR = 1.04. The slope of the study area ranges from 0 to 45°, where the 
majority of them are gentle slopes (i.e., lower than 15°). The slope layer was classified into six groups 
with 5° intervals [51,52]. The obtained FR for three groups of (5−10°), (10−15°), and (15−20°) are 1.22, 
1.41, and 1.21, respectively, which shows more correlation of these groups in comparison with (0−5°), 
(20−25°), and >25°. 

Five different climates are found for the proposed area labeled as semi-dry (intense), semi-
humid, humid, semi-dry (low), and semi-dry (moderate). Around 9% of the area is under the second 
climate with FR = 2.21. Seven categories form the soil type map of Qazvin including Inceptisols, Rock 
Outcrops/Entisols, Mollisols, Aridisols, Alfisols, Water Body, and Rock Outcrops/Inceptisols. Among 
these, the first category emerges as the most significant one for landslide occurrence. Based on the 
lithology map, provide from Geology Survey of Iran (GSI), twenty-five different rocks form the 
geology of the area. The description of these units and the calculated FR are presented in Table 1. 
Note that, the lithology units shown by TRJs and gb have shown the highest sensitivity to the FR 
analysis with respective values of 5.80 and 5.54.  

The effect of the linear phenomena including the distance from the river, road, and fault is taken 
into consideration by calculating the Euclidean distance [20] from them. Consequently, three GIS 
layers of distance to the river, distance to the road, and distance to the fault are generated and 
classified into five categories with 100 m intervals [53,54]. Accordingly, the most significant of them 
are (0−100) m (FR = 1.17), (100−200) m (FR = 3.09), and (300−400) m (1.23), respectively. Based on the 
land use map, five utilizations of land are found for the study area including “Agriculture”, Pasture, 
Mountainous Pasture, Forest (mainly oak), and Agriculture (Dry farming). Among these, the largest 
FR = 1.44 is obtained for the second label. 

Finally, for applying the geo-morphometric impacts, two secondary factors of SPI and TWI are 
calculated based on Equations (2) and (3) [55,56]. This is noteworthy that these factors represent the 
erosion power of streams and the amount of accumulated water in a place, respectively. 𝑺𝑷𝑰 =  α ×  tanβ, (2)𝑻𝑾𝑰 =  𝒍𝒏 (α/tanβ), (3)

in which α and β are the specific catchment and gradient, respectively. 

Table 1. The description of the lithology units. 

Name Symbol Description Geological age Age era FR 

A Qft1 
Vally terrace deposits and high level 

piedmont fan 
Quaternary Cenozoic 0.1342 

B Mm,s,l 
Calcareous sandstone, Marl, sandy 
limestone, and minor conglomerate 

Miocene Cenozoic 1.8086 

C Ek 
Well bedded green tuff and 

tuffaceous shale ( KARAJ FM ) 
Eocene Cenozoic 1.8527 

D Ebv Basaltic volcanic rocks Middle. Eocene Cenozoic 1.4191 

E Ek.a 
Calcareous shale with subordinate 

tuff (Asara Shale) 
Middle. Eocene Cenozoic 0.0000 

F Pr 
Dark grey medium - bedded to 

massive limestone (RUTEH 
LIMESTONE) 

Permian Paleozoic 0.9016 

G TRJs 
Dark grey shale and sandstone 

(SHEMSHAK FM.) 
Triassic-Jurassic Mesozoic 5.8083 

H Eksh 
Greenish-black shale and partly 

tuffaceous with intercalations of tuff 
(Lower Shale Member ) 

Middle. Eocene Cenozoic 0.0000 
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I Qft2 
Low level piedment fan and vally 

terrace deposits 
Quaternary Cenozoic 0.9509 

G Edavt Dacitic andesitic volcanic tuff 
Middle-Late. 

Eocene 
Cenozoic 0.1144 

K Pgkc 
Light-red coarse grained, and 
polygenic conglomerate with 

sandstone intercalations 

Paleocene-
Eocene 

Cenozoic 1.0196 

L Ogr-di Granite to diorite Oligocene Cenozoic 0.0000 
M Eav Andesitic volcanics Middle. Eocene Cenozoic 0.8304 
N Kbv Basaltic volcanic Early. Cretaceous Mesozoic 0.0000 

O Ktzl 
Thick bedded to massive, and white 

to pinkish orbitolina bearing 
limestone (TIZKUH FM) 

Early. Cretaceous Mesozoic 0.0000 

P TRe 

Thick bedded grey o'olitic limestone, 
thin - platy, yellow to pinkish shaly 

limestone with worm tracks and 
well to thick - bedded dolomite and 
dolomitic limestone (ELIKAH FM.) 

Early-Middle. 
Triassic 

Mesozoic 0.0111 

Q gb Gabbro Eocene Cenozoic 5.5427 
R Edav Dacitic to Andesitic volcanic Eocene Cenozoic 0.4563 

S Cb 
Limestone, alternation of dolomite, 
and verigated shale (BARUT FM) 

Cambrian Paleozoic 0.0000 

T Jl 
Light grey, and thin - bedded to 

massive limestone (LAR FM) 
Jurassic-

Cretaceous 
Mesozoic 3.5884 

U Edt Rhyolitic to rhyodacitic tuff Eocene Cenozoic 2.6755 
V Qabv Andesite  to basaltic volcanics Quaternary Cenozoic 0.2398 
W Odi Diorite Oligocene Cenozoic 0.7280 
X Ekgy Gypsum Late. Eocene Cenozoic 0.0000 
Y Ebt Basaltic tuff Eocene Cenozoic 0.0000 

2.3. Methodology 

Figure 4 shows an overall view of the steps were taken to achieve the goal of the study. Briefly, 
after providing a proper spatial database, the existing GIS rasters were converted into ASCII format. 
The proposed GA, PSO, DE, and ACO metaheuristic algorithms were designed and coupled with 
ANFIS in the programming language of MATLAB 2014. Each model performed to estimate the 
landslide susceptibility index. Then, the landslide susceptibility map of each model is produced in 
the GIS environment, using the produced values. Finally, three accuracy criteria including the 
AUROC, MSE, and MAE are defined to evaluate the efficiency of the implemented techniques. A 
score-based ranking system is also developed to compare the efficacy of the models. Equations (4) 
and (5) express the formulation of the MSE and MAE error criteria: 𝑴𝑺𝑬 =  𝟏𝑵∑ (𝒀𝒊𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 − 𝒀𝒊𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 )𝟐𝑵𝒊 𝟏 , (4)

𝑴𝑨𝑬 =  𝟏𝑵∑ (𝒀𝒊𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 − 𝒀𝒊𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 )𝑵𝒊 𝟏 , (5)

in which N shows the number of involved instances, and Yi observed and Yi predicted stand for the desired 
and estimated values of landslide susceptibility index, respectively. 
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Figure 4. The methodology of the applied procedure for landslide susceptibility assessment. 

In the following section, a description of the ANFIS, GA, PSO, DE, and ACO models is presented.  

2.3.1. Adaptive Neuro-Fuzzy Inference System 

The name adaptive neuro-fuzzy inference system (ANFIS) [57] denotes a combination of ANN 
and fuzzy-based system to capture the benefits of both of them. In other words, the ANN is employed 
to optimize the implemented fuzzy theory for more flexibility of approximation [58]. Utilizing if-then 
rules [59] enables ANFIS to present a reliable prediction from various complex problems. It 
synthesizes two learning methods of back-propagation gradient descent and least-squares for 
discerning the mathematical relationship between sets of input-output data. The performance of the 
ANFIS can be expressed in five steps: In the first layer, the membership function (MF) values of the 
input variables are calculated. Next, the rule firing strength is calculated and normalized in the 
second and third layers, respectively. The outputs of the consequent part are produced in Layer 4, 
and eventually, the ANFIS releases the final output from fifth layer. 

2.3.2. Genetic Algorithm 

Genetic algorithm (GA) is heuristic search techniques first suggested by Holland [60]. This 
algorithm follows Darwin's natural selection principles for finding the optimal solution to a defined 
problem. Darwin's survival evolution theory states that the living organism in the future generation 
is more suitable than the former one. Generally, five major operators of GA are random number 
creator, fitness assessment unit, the genetic operator (i.e., for reproduction), crossover operator, and 
mutation operator. A mathematically-defined problem, containing some computational parameters 
that need to be optimized, is the input of the GA algorithm. Firstly, a so-called input vector 
chromosome is selected. A set of these vectors constructs the colony of GA. Based on biological 
evolution, the developed created colony grows and evolves under certain conditions. A function is 
defined for each chromosome to evaluate its fitness. Then, the more robustness of the chromosome, 
the more likelihood of survive and reproduce. The new generation (i.e., children) is produced 
through the crossover and mutation operations. In fact, a child is a result of combining the content of 
two existing chromosomes. During a mutation process, a child may receive a new gene which is not 
from the side of his parents. The same process is carried out for the new generation to achieve the 
optimal solution [61]. Note that, the algorithm continues performing until one of the goals (e.g., the 
error or maximum iterations) is met. 



Sensors 2020, 20, 1723 12 of 24 

 

2.3.3. Particle Swarm Optimization 

The main idea of particle swarm optimization (PSO) method is extracted from the social 
behavior of bird flocking or fish schooling in the real world. This stochastic method was first 
suggested by Kennedy and Eberhart [62]. The PSO initialized with a set of random solutions and 
updates the generation for achieving the optimal situation of the problem. Possible solutions, called 
particles, fly through the problem space. In this movement, they follow their optimum colleagues. 
Similar to other optimization techniques, the goodness of each particle is evaluated by a fitness 
function. Each particle saves the track of its coordinates which gives the best fitness value under the 
name pbest. Another so-called elite position gbest is defined indicating the best position obtained from 
all of the particles so far. The PSO aims to change the velocity (Ri) of each particle toward the location 
of the discovered pbest and gbest. Assuming Ni as the particle position, this process can be expressed as 
follows [63,64]: 𝑵𝒊 = 𝒘 𝑵𝒊 + 𝑪𝟏𝒓𝟏 (𝒑𝒃𝒆𝒔𝒕 −  𝑹𝒊) + 𝑪𝟐𝒓𝟐 (𝒈𝒃𝒆𝒔𝒕 −  𝑹𝒊), (6)𝑹𝒊 =  𝑹𝒊 + 𝑵𝒊, (7)

in which C1 and C2 respectively indicate the cognitive and social scaling parameters. Also, w denotes 
the inertia weight, and r1 and r2 symbolize the random numbers between 0 and 1. 

2.3.4. Differential Evolutionary Algorithm 

Differential evolutionary (DE) is a recently developed hybrid evolution algorithm, which was 
first presented by Storn and Price [65]. It has been widely employed to find the globally optimal 
solution for an issue defined in continuous space [65,66]. Similar to other optimization methods, the 
DE gets started by a random production process, for generating the initial population. Three major 
steps of mutation, crossover, and selection are considered to achieve the optimal solution. In the 
mutation step, each individual 𝑿𝒊𝑮 is employed to produce the mutant vector (i.e., donor vector) 𝑽𝒊𝑮 
[67,68]. During the crossover step, the crossover operators produce a trial vector 𝑼𝒋𝒊𝑮 . To do this, a 
number of relations of the 𝑿𝒊𝑮 should be replaced with the mutant vector 𝑽𝒊𝑮. Lastly, at the selection 
step, the goodness value of the 𝑼𝒊𝑮 with 𝑿𝒊𝑮 are compared for introducing the best choice for the 
next generation [65]. 

 

 

2.3.5. Ant Colony Optimization 

The primary version of ant colony optimization (ACO) method was known as the ant system 
which was first designed for optimizing the travelling salesman problem [69]. In fact, the main effort 
of this work is to find the shortest path to link the intended cities [70]. In the case of intelligent models, 
like ANN and ANFIS, this algorithm aims to achieve the optimal computational parameters of these 
networks. A presentable solution is made of some components which are added by ants in each 
iteration. The ants consider a probability for selecting these components. Two determinant factors in 
this process are the pheromone and the heuristic factors which respectively reflect the past experience 
of the relations and the tendency for choosing a component regarding the defined objective function 
(OF). In the ACO method, the shortest path is discovered by the artificial ants through leaving a 
chemical pheromone trail along the crossed path. They do this for guiding other relations. As a result, 
the most promising track is distinguished. Assuming 𝝉𝒊𝒋𝜶  and 𝜼𝒊𝒋𝜷  as the pheromone value and 
heuristic factors, respectively, Equation (8) formulates the mentioned probability: 𝑷𝒊𝒋𝒒 (𝒕) =  𝝉𝒊𝒋𝜶× 𝜼𝒊𝒋𝜷∑ 𝝉𝒊𝒖𝜶 × 𝜼𝒊𝒖𝜷𝒖∈𝑵𝒊𝒒 , (8)
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in which Ni defines a neighborhood of the node i. 

3. Results 

This paper investigates the efficiency of four evolutionary ensembles of a fuzzy-based model, 
namely GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS for landslide susceptibility 
assessment. Qazvin County in Iran is selected as the study area. In this work, considering the 
common ratio of 70:30, 139 landslides were specified to the training phase, and the remaining 60 
landslide points were used to measure the accuracy of the applied models. In the next step, four 
hybrid stochastic algorithms of GA, PSO, DE, and ACO were synthesized with the ANFIS predictive 
model for fine-tuning the ANFIS MFs [71]. In detail, when it comes to optimization algorithms, they 
need some computational parameters. Regarding the used basic model, these computational 
parameters can vary (e.g., the weights and biases in the ANNs). In the case of ANFIS, the mentioned 
optimization algorithms aim to find the optimal values for the parameters of MFs. Notably, ANFIS 
is known as a capable model due to having a combination of fuzzy inference system (FIS) expert 
knowledge and neural learning ability [34]. It has been promisingly used for landslide hazard 
analysis in previous researches [58,72]. At the beginning of the ANFIS performance, it constructs a 
basic FIS. The computational units are then extracted and updated by evolutionary algorithms. 
Eventually, they are applied to develop the optimized model. 

The number of repetitions for all models determined as 1000 to give enough opportunity for 
decreasing the error. Meanwhile, the MSE between the actual and predicted landslide susceptibility 
indices were defined as the cost function. Figure 5 depicts the convergence diagram of the GA-ANFIS, 
PSO-ANFIS, DE-ANFIS, and ACO-ANFIS. As is seen, the algorithms have shown different behaviors 
for optimizing the ANFIS. The GA-ANFIS, as well as PSO-ANFIS, have started decreasing MSE after 
100th iteration. The corresponding curves are on a continuously downward path. The GA-based 
ensemble surpasses the PSO-ANFIS and reaches a lower MSE in the final (0.08333771 vs. 
0.105558762). Unlike these, the DE-ANFIS did not show any sensitivity to the number of iterations 
and remained steady till the end. The MSE for this model obtained 0.107146933 which shows a very 
close value to the cost function of the PSO-ANFIS. As for the ACO-ANFIS, it started with a relatively-
high MSE and reduced it to 0.153427807 within three steps. All in all, DE-ANFIS can be introduced 
as the fastest ensemble. 

 
Figure 5. The convergence curves of the cost functions for the used models. 

The results of the training and testing performance of the models are presented in Figure 6 in 
three parts: (i) A graphical comparison between the actual (targets) and estimated (response) 
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landslide susceptibility indices, (ii) A schematic view of the calculated error (i.e., the difference 
between the targets and system responses), and (iii) A histogram chart showing the frequency of each 
error value. To create the landslide susceptibility maps of the implemented models, the produced 
landslide susceptibility indices were extracted and inserted to ArcGIS. Additionally, Natural break 
classification method [73,74] was applied to classify the resulted maps into five susceptibility 
categories including Very-low, Low, Moderate, High, and Very-high susceptible. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 
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(g) (h) 

Figure 6. The results obtained for (a) and (b) GA-ANFIS, (c) and (d) PSO-ANFIS, (e) and (f) DE-
ANFIS, (g) and (h) ACO-ANFIS, respectively for the training and testing samples. 

Figure 7 shows the generated maps of the GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS 
predictions. 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 7. Generated landslide susceptibility maps for (a) GA-ANFIS, (b) PSO-ANFIS, (c) DE-ANFIS, 
(d) ACO-ANFIS. 
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As is seen, all four applied ensembles have rightly specified a high level of susceptibility to the 
areas with a large aggregation of the landslide points (see the marked area in Figure 7). In addition, 
they have fittingly classified the areas devoid of the landslide (mostly in the South and South-West 
of the studied area) as low and very low susceptible. 

The percentage of each susceptibility map is also calculated. Accordingly, around 28% (1418 
km2), 33% (1639 km2), 31% (1568 km2), and 46% (2315 km2) of the studied area is recognized to be 
under the high landslide occurrence risk (i.e., high and very high susceptibility classes), respectively 
from the side of GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS ensembles. Besides, the 
largest percentage of the safe areas (very low and low categories) are obtained for the GA-ANFIS 
(15.48% and 30.82% respectively). The percentage of the training and testing landslide points located 
in each susceptibility class are also calculated and presented in Table 2. According to this table, 
78.57%, 76.19%, 81.75%, and 88.10% of the training landslides, as well as 80.00%, 80.00%, 81.67%, and 
93.33% of the testing landslides are rightly located in the landslide-prone areas by GA-ANFIS, PSO-
ANFIS, DE-ANFIS, and ACO-ANFIS, respectively. Considerably, these values are obtained < 3% in 
the areas labeled as very low susceptibility. 

 

Table 2. The percentage of the training and testing landslides in each susceptibility classes. 

Susceptibility 
class 

GA-ANFIS PSO-ANFIS DE-ANFIS ACO-
ANFIS 

Train Test Train Test Train Test Train Test 
Very low 1.51 0.00 0.91 0.00 0.00 0.00 1.16 0.00 

Low 4.49 4.14 2.98 0.00 2.52 2.99 1.82 1.99 
Moderate 11.85 10.43 7.40 0.50 11.43 7.52 10.10 4.06 

High 14.03 9.97 13.67 1.31 22.37 19.79 32.92 33.36 
Very high 68.13 75.46 75.04 98.19 63.67 69.71 54.00 60.58 

For evaluating the accuracy of the generated landslide susceptibility maps, the ROC curve was 
plotted. As is known, the area under the ROC curve is a good accuracy indicator for diagnostic issues 
[75]. These value ranges from 0.5 to 1 so that the quality of the prediction is directly proportional to 
the AUROC value. The ROC curves of the implemented models are shown in Figure 8a,b and Figure 
8b, respectively, for the training and testing landslides. 

  

(a) (b) 

Figure 8. obtained for the (a) training data and (b) testing data. 

The obtained values of all three accuracy criteria (i.e., MSE, MAE, and AUROC) are summarized 
in Table 3. A score-based ranking system is also developed within this table for better distinguish of 
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the most capable model. Each accuracy criterion is considered for both training and testing phases to 
receive a ranking score varying between 1 to 4. In this regard, the more accuracy the index represents, 
the higher score is assigned to it. As is seen, in the training phase, the obtained MSEs and MAEs for 
GA-ANFIS (0.0833 and 0.1921), PSO-ANFIS (0.1055 and 0.2295), DE-ANFIS (0.1071 and 0.2476), and 
ACO-ANFIS (0.1534 and 0.3335) indicate a lower prediction error for the GA- and PSO-based 
ensembles. After those, the DE-based model outperformed the ACO-ANFIS. This claim can also be 
supported by respective calculated AUROCs 0.951, 0.925, 0.934, and 0.868. However, the AUROC of 
the DE-ANFIS is slightly higher than PSO-ANFIS. 

The testing results show a good generalization power of all used models. Accordingly, the 
obtained MSEs and MAEs for GA-ANFIS (0.1175 and 0.2438), PSO-ANFIS (0.1430 and 0.2724), DE-
ANFIS (0.1579 and 0.3128), and ACO-ANFIS (0.1887 and 0.3755) reveal that the first model has 
predicted the landslide hazard index more efficiently than other three models. Also, the PSO-ANFIS 
emerged as the second accurate model, followed by DE-ANFIS and ACO-ANFIS. Besides, the values 
of the AUROC represent 91.6%, 89.9%, 86.8%, and 80.0%. Prediction capability for the GA-ANFIS, 
PSO-ANFIS, DE-ANFIS, and ACO-ANFIS, respectively.  

All in all, considering a total ranking score (TRS) as the summation of the scores obtained based 
on the mentioned indices, the GA-ANFIS (TRS = 24), emerged as the most promising model for spatial 
prediction of landslide hazard in the Qazvin county. After that, the PSO-ANFIS (TRS = 17), DE-ANFIS 
(TRS = 13), and ACO-ANFIS (TRS = 6) presented an acceptable prediction accuracy. 
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Table 3. The ranking system based on the results of the spatial prediction of landslide susceptibility. 

Ensemble models 
Network Results Ranking Score 

Total Ranking Score 
(TRS) Rank Training Phase Testing Phase Training Phase Testing Phase 

MSE MAE AUROC MSE MAE AUROC MSE MAE AUROC MSE MAE AUROC 
GA-ANFIS 0.0833 0.1921 0.951 0.1175 0.2438 0.916 4 4 4 4 4 4 24 1 
PSO-ANFIS 0.1055 0.2295 0.925 0.1430 0.2724 0.899 3 3 2 3 3 3 17 2 
DE-ANFIS 0.1071 0.2476 0.934 0.1579 0.3128 0.868 2 2 3 2 2 2 13 3 

ACO-ANFIS 0.1534 0.3335 0.868 0.1887 0.3755 0.800 1 1 1 1 1 1 6 4 



Sensors 2020, 20, 1723 19 of 24 

 

4. Discussion 

Due to the devastating impacts of the landslides, susceptibility assessment of this natural hazard 
has received increasing attention during the last decades [76]. This study addresses the applicability 
evaluation of four hybrid integration techniques using the adaptive neuro-fuzzy inference system 
coupled with a genetic algorithm, particle swarm optimization, differential evolution and ant colony 
optimization for landslide susceptibility analysis in Qazvin Province (Iran). The prediction accuracy 
of the designed models was evaluated and compared using the ROC diagram and the AUROC index. 
As an advantage of the ANFIS, the basis of this predictive tool is a combination of neural learning of 
the ANNs and expert knowledge of FIS [34]. Some researchers have promisingly employed this 
model for landslide susceptibility mapping [34,77,78]. Oh and Pradhan [79] revealed that the ANFIS 
acts very effectively for regional assessment of landslide susceptibility. They tested various MFs 
embedded in this model for estimating the landslide susceptibility values in a prone district of 
Penang Island (Malaysia). The findings of the mentioned research demonstrated that the accuracy of 
the landslide susceptibility maps obtained from trapezoidal, triangular, polynomial and generalized 
bell MFs (accuracy ≈ 84%) surpass the ones produced by four different Gaussian and sigmoidal MFs. 

As stated above, the ANFIS has emerged as one of the most powerful machine learning 
approaches, but some drawbacks associated with this tool (e.g., the non-adjutancy of membership) 
drive us to use hybrid evolutionary algorithms for optimizing its performance. In this paper, four 
wise optimization techniques of GA, PSO, DE, and ACO were applied to find the optimal values of 
the parameters of the ANFIS. More clearly, these algorithms are stochastic search schemes which 
perform in a repetitive loop to minimize a defined objective function. This process results in finding 
the most appropriate solution amongst a huge number of candidates. 

The results indicated that all used models perform with good accuracy for the mentioned 
purpose. Having a look at the obtained accuracy criteria, as well as the spatial interaction between 
the landslide points and the susceptibility classes, it can be concluded that the GA-ANFIS (TRS = 24) 
excelled other designed ensembles. The PSO-ANFIS (TRS = 17) appeared to be the second accurate 
model, followed by the DE-ANFIS (TRS = 13) and ACO-ANFIS (TRS = 6). However, in similar 
research by Chen, Panahi and Pourghasemi [31], the superiority of the DE-based ensemble was stated 
(i.e., in comparison with PSO- and GA-based models), the outcomes of the present study confirm that 
the GA outperforms PSO for optimizing the parameters of the proposed fuzzy system. In fact, the 
discrete optimizing method of the GA surpassed the constant method of the PSO. More specifically, 
the latter algorithm allocates memory for maintaining every promising solution of all particles. This 
is while, prior knowledge of the GA population is antiquated as the new population is involved. 
Notably, the results of our study show more robustness in comparison with the mentioned reference.  

Reaching the lowest training error (Figure 5) is, perhaps, the main reason for the excellent 
generalization power of the GA-ANFIS (91.6% accuracy). We say perhaps because despite a slightly 
smaller OF obtained for the PSO-ANFIS (0.1055) compared to DE-ANFIS (0.1071), it gave less training 
accuracy (92.5% vs. 93.4%). Moreover, not surprisingly, the appreciable distinction between the 
learning capability of the ACO-AFIS and other models (i.e., larger OF) led to weaker performance for 
estimating the landslide susceptibility values of the testing points. Altogether, there was no 
disagreement between the capability of learning a pattern and generalization power for all models 
used in this study. In other words, each model that excelled in the training phase, was superior in the 
testing phase, too.  

Setting the performance of the applied algorithms aside, the number of iterations that each 
model needed to reach the lowest OF was considered as the main factor for evaluating the 
convergence speed of that model (i.e., within 1000 repetitions and regardless the time). It was 
deduced that the DE-ANFIS does not show any sensitivity to the number of repetitions, and the first 
try is the best one. It should be noted about DE that, unlike other metaheuristic techniques, the vectors 
of the current generation in this technique are created through random sampling and combining the 
vectors belonging to the former generation. Also, the real-valued mutation and crossover factors 
cause the convergence of the search action [80]. Similar to the ACO-ANFIS which Termeh, et al. [81] 
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used for flood susceptibility modelling, it minimized the OF after a few major fluctuations. As for the 
PSO- and GA-based ensembles, both models continued decreasing the error until the end. Now, the 
main question is “which ensemble can be introduced as the most suitable model, considering both 
accuracy and time-effectiveness”? For answering this question, it should be mentioned that there is 
a nuance (0.0238 of MSE, 0.0555 of MAE, and 0.017 of AUROC) between the learning quality of the 
controversial models of this study (i.e., GA-ANFIS and DE-ANFIS). Hence, when the time comes out 
as a determinant factor, the DE-ANFIS is a more appropriate ensemble for landslide susceptibility 
assessment. In contrast, in cases that accuracy plays a more important role, utilizing the GA-ANFIS 
seems more reasonable. 

The methodology proposed in this paper had some limitations too. Using the original input 
configuration (i.e., thirteen landslide conditioning factors) resulted in the generation of high-
dimensionality networks which negatively influence the complexity and the computation time of the 
models. This issue can be solved by optimizing the input factors by metaheuristic schemes [28]. Also, 
taking the effect of other environmental parameters (e.g., local drainage networks) into account could 
be of interest for future studies. Moreover, referring to the convergence behavior of the elite models 
(i.e., the GA and PSO) in Figure 5, they are able to achieve more accurate understanding from the 
landslide pattern for further iterations. This is while this parameter was bound to 1000 in this study. 

5. Conclusions 

The importance of landslide susceptibility mapping for alleviating the damages triggered by this 
natural hazard is obvious. Due to the complexity and non-linearity of such modellings, the 
application of new intelligent tools like ANN and ANFIS has antiquated many traditional methods. 
Despite various benefits of these models, some difficulties like dimension dangers and local 
minimum still exist. Such problems have driven scholars to employ hybrid optimization algorithms 
for optimizing the performance of typical models, especially for high-dimensional problems like 
landslide susceptibility modelling. In the present study, firstly, the FR theory was used to assess the 
spatial interaction between the landslides and considered conditioning factors. Then, four wise 
metaheuristic algorithms, namely GA, PSO, DE, and ACO were employed to train the ANFIS, for 
proper landslide susceptibility analysis in Qazvin County (Iran). In fact, the main duty of the 
mentioned algorithms is to find the most appropriate computational parameters of the proposed 
fuzzy system, in order to decrease the impact of dimension dangers and local minimum. As the first 
outcome, the DE-ANFIS model emerged as the fastest ensemble for minimizing the OF. Eventually, 
the landside susceptibility maps were produced and the AUROC criterion was used to evaluate the 
accuracy of them. Referring to the obtained accuracies of 91.6%, 89.9%, 86.8%, and 80.0%, respectively 
for the GA-ANN, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS ensembles, it was concluded that the GA 
outperforms other implemented algorithms in optimizing the performance of the ANFIS. The 
produced landslide susceptibility maps can be applied for proper decision making and risk 
management of landslide in the studied area. However, the results indicate that the designed models 
are accurate enough to be an alternative for the mentioned purpose, the authors believe that more 
accuracy can be achieved by applying various ideas such as simultaneous optimization of the input 
combination and the used predictive model, which seems a good subject for future studies. 
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