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Abstract: A method is presented for detecting changes in the axial peak tibial acceleration while
adapting to self-discovered lower-impact running. Ten runners with high peak tibial acceleration
were equipped with a wearable auditory biofeedback system. They ran on an athletic track without
and with real-time auditory biofeedback at the instructed speed of 3.2 m·s−1. Because inter-subject
variation may underline the importance of individualized retraining, a change-point analysis was
used for each subject. The tuned change-point application detected major and subtle changes in the
time series. No changes were found in the no-biofeedback condition. In the biofeedback condition,
a first change in the axial peak tibial acceleration occurred on average after 309 running gait cycles
(3′40”). The major change was a mean reduction of 2.45 g which occurred after 699 running gait
cycles (8′04”) in this group. The time needed to achieve the major reduction varied considerably
between subjects. Because of the individualized approach to gait retraining and its relatively quick
response due to a strong sensorimotor coupling, we want to highlight the potential of a stand-alone
biofeedback system that provides real-time, continuous, and auditory feedback in response to the
axial peak tibial acceleration for lower-impact running.
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1. Introduction

The peak tibial acceleration of the axial component can be defined as the maximum positive value
of the signal during stance. The axial peak tibial acceleration is considered a surrogate measure for
impact loading and can be registered by an accelerometer [1–3]. Peak tibial acceleration has been
used as input to biofeedback systems [4,5]. These biofeedback systems can provide acoustic signals
scaled to the magnitude registered by a shin-mounted accelerometer. The peak tibial acceleration
could be lowered during running on a treadmill with real-time auditory and/or visual biofeedback
compared with running without the biofeedback [4,6–8]. Lowering the axial peak tibial acceleration
in runners experiencing high-impact loading has been done with the goal of reducing the risk of
running-related injuries [9–11]. These findings highlight the potential of an individualized approach
of gait retraining using augmented feedback on peak tibial acceleration in real time. A drawback of the
studies on running retraining using biofeedback, next to the treadmill setup, is that a limited amount
of steps were analyzed for each recording period (e.g., 20 in [4]) (Table 1). As a result, our knowledge
of the time course of changes in the targeted biomechanical signal is not yet understood. Therefore,
a wearable biofeedback system that continuously collects tibial acceleration was recently developed and
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utilized [5,12]. This system was developed to continuously record tibial acceleration at a high sampling
rate and to immediately detect the magnitude and the time of the peaks of the axial component [12].
Under supervised use, a reduction of almost 30% in axial peak tibial acceleration was found when
comparing the end of a 20-min biofeedback run with the no-biofeedback condition [5]. Given that the
inter-subject response to a reduction in axial peak tibial acceleration can vary [7], one might expect an
individual evolution in magnitude and presumably also in the timing of the change next to the evolution
of the whole group. Although the technical aspect of augmented feedback systems is developing
rapidly (Table 1), little attention has been paid to when or how people interact with biofeedback on a
running gait parameter [13,14], while this is imperative for understanding motor adaptations induced
by the feedback parameter. For example, a first session of gait retraining may comprise a half-hour of
running, whereas a major change in the desired performance may already be achieved after several
minutes. Therefore, timing values are valuable for the design of gait retraining programs.

Table 1. Milestones illustrating the technological advancements and feedback modalities on augmented
feedback with respect to tibial acceleration. The eye and ear icons indicate visual and auditory
feedback, respectively.

Studies Hardware for Biofeedback Feedback
Modality

Running
Environment Trials for Analysis

Crowell et al.
(2010)

1 × accelerometer
1 × computer

1 ×monitor screen
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The transition to a running technique involving less axial peak tibial acceleration is a process
of motor learning, which may occur in stages [15]. Inspection of separable stages allows the design
of experiments with higher specificity for certain aspects of that process [15]. Desired elements of
a movement can be learned at different rates [15,16], meaning that motor skill improvement can
vary between subjects. As such, the profile (location and duration) of evolution in axial peak tibial
acceleration may also vary between runners initiating gait retraining. The gait retraining studies
providing unimodal (i.e., auditory or visual) biofeedback on the axial peak tibial acceleration have
focused on the early adaptation phase of running with less peak tibial acceleration. The change(s)
and the variability in peak tibial acceleration inherent to this locomotor task have been neglected
within a session [4–6,8]. A reason to neglect the time course of the axial peak tibial acceleration may
be that relevant changes in such a signal are usually not easily discernible by sight. The technique
of change-point analysis may be of use to detect event(s) at which the underlying dynamics of a
signal changes over time [17–23]. Several types of control statistics have been used for change-point
discovery. For example, control charting provides upper and lower bounds of an individual chart with
the assumption that no change has occurred [24]. Change-point analysis may be more powerful to
detect relatively small or sustained shifts from the average because it better characterizes the time at
which a change began to occur, controls the overall error rate, and is easily applicable for time series
segmentation [25].
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We employed a change-point application with tuned parameters to evaluate the time course of
the axial peak tibial acceleration in the early adaptation phase of biofeedback-driven gait retraining.
As subjects were expected to respond differently to the biofeedback-driven approach of gait retraining,
a typical analysis of group data might have masked individual changes. Therefore, a single-subject
analysis was employed to identify when runners shifted their axial peak tibial acceleration in the early
adaptation phase of gait retraining.

2. Materials and Methods

2.1. Subjects

Following an initial screening session, ten runners (five males and five females, body height: 1.70 ±
0.07 m, body mass: 67.7 ± 7.4 kg, age: 33 ± 9 years) with high axial peak tibial acceleration impacting
the lower leg (at least 8 g at 3.2 m·s−1, mean ± SD: 11.1 ± 1.8 g) participated in our study. This sample
size is in line with previous studies using biofeedback to stimulate running with less impact loading (i.e.,
lower-impact running) [4,8]. Requirements for participation were to run ≥ 15 km/week in non-minimalist
footwear and to be injury free for ≥ 6 months preceding the experiment [26]. Thus, the subjects reported
running 29± 12 km per week at 2.88± 0.31 m·s−1 (mean± SD). The cohort consisted of nine rearfoot strikers
and one forefoot striker (Appendix A), categorized using plantar pressure measurements characterized
by high temporal and spatial resolution [27]. All subjects signed an informed consent approved by the
ethical committee upon participation (Bimetra number 2015/0864).

2.2. Intervention

The subject was equipped with a stand-alone backpack system, connected to two lightweight
sensors. The backpack system was developed for real-time auditory feedback with respect to peak tibial
acceleration in overground running environments. The main components are indicated in Figure 1.
The sensor was powered using a battery that allowed long uninterrupted runs, in order to use the least
amount of power possible. The sensor of interest was a low-power MEMS three-axis accelerometer
(Sparkfun, Boulder, CO, USA). The accelerometer characteristics were as follows: mass: 20 milligrams,
resolution: 70 mg, with digital output (SPI-compatible). The breakout board (dimensions: 21 ×
13 mm) was fitted in a shrink socket [12]. The total mass was less than 3 grams, making it lighter
than commercially available sensors in a plastic housing that have been used for the registration of
tibial acceleration during running [2–4]. A very lightweight accelerometer is beneficial because it is
less susceptible to unwanted secondary oscillations due to inertia. The accelerometer of interest had
dynamically user-selectable full scales of ±6 g/±12 g/±24 g and was capable of measuring accelerations
with output data rates from 0.5 Hz to 1 kHz [28]. Provot and colleagues [2] recommended a sampling
rate of at least 400 Hz for tests involving the measurement of tibial acceleration during running activities.
A sampling rate of 1000 Hz was selected because lower rates might have caused the actual value of
the peak to be missed. The tibial acceleration was continuously measured. The axial component was
chosen for analysis because tibial acceleration has typically been analyzed unidirectionally [3,6–9,29,30]
and because it has been associated with a history of tibial stress fracture in distance runners [30]. If the
signal range exceeds the capture range of the sensor, the measured signal is clipped at the extremities [1].
The highest value of axial peak tibial acceleration registered in a previous study with the system while
running on a sports floor was 12.4 g at the same running speed compared to the present experiment.
Therefore, we expected the accelerometer to have a sufficient range (±24 g) to prevent clipping while
running overground at 3.2 m·s−1. Post hoc inspection of the values of axial peak tibial acceleration
revealed that the selected measurement range was more than enough for the goal of our study.
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Figure 1. (upper panel) Picture from the instrumented backpack. (lower panel) The accelerometer (left)
with and (middle) without the shrink sleeve and (right) a 5-cent piece.

The tibial skin was prestretched bilaterally at ~8 cm superior to each medial malleolus to minimize
skin oscillation [9,12]. An illustration of such prestretch through the use of zinc oxide tape (Strappal,
Smith and Nephew, UK) is shown in Figure 2. Each accelerometer was placed on the tight skin of the
prestretched area. The axial axis of an accelerometer was visually aligned with the longitudinal axis
of each shin while the subject was standing [12,29]. The distal aspect of both lower legs was locally
wrapped in a non-elastic adhesive bandage (Strappal) [12]. The manner of attachment with visual
alignment and taping of the sensor to the skin has been applied in research on tibial acceleration in
running [9,12]. The simple mounting technique has resulted in repeatable mean values of the tibial
shock between running sessions [12], even without highly accurate standardization. The total mass
of the stripped backpack with the electronic components strapped to the inside shell was equal to
1.6 kg. The same backpack has been used in previous studies intertwining locomotion and music
(e.g., [13,29,30]). Subjects wore their habitual running footwear to reflect the usual running habits and
to increase the ecological validity of the study. A passive noise-canceling headphone was worn.

The running session was performed on an athletic track at an indoor training facility (Figure 3)
(Video S1, Supplementary Materials). The session consisted of a no-biofeedback condition
and a biofeedback condition, representing the control and experimental conditions, respectively.
Accelerometer data were acquired with real-time detection of the magnitude and the timing of axial
peak tibial acceleration [5]. The no-biofeedback condition was a warm-up run of 4.5 min at the instructed
speed of 3.2 ± 0.2 m·s−1. In the case of bilateral elevation of axial peak tibial acceleration, the leg with
the highest value was addressed in the retraining [8]. Thereafter, auditory biofeedback on axial peak
tibial acceleration was continuously provided in real time. Biofeedback helps to develop the connection
between the extrinsic feedback and the internal sensory cues associated with the desired motor
performance during the first phase of motor retraining (i.e., the early adaptation phase) [10]. A patch
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was designed in Max MSP software (v7, Cycling’74, San Francisco, CA, USA) to provide the auditory
biofeedback [13]. The concurrent auditory feedback consisted of a music track that was continuously
synchronized to the step frequency of a runner. A music database consisting of 77 tracks with a clear
beat in a tempo range of endurance running was preselected. D-Jogger technology was employed to
continuously align the beats per minute of the music to the steps per minute of the runner [31]. When
step frequency changed by > 4% in steps per minute for 8 s, another song from which the beats per
minute better matched the steps per minute automatically started playing. The biofeedback consisted
of pink noise that was superimposed onto the music. Importantly, the noise’s intensity was perceivable
and depended on the magnitude of axial peak tibial acceleration [5,13]. The past five values of axial
peak tibial acceleration were averaged through a 5-point moving average [9]. Thus, the wearable
system detected the peak tibial acceleration and compared the selected gait parameter over a window
of several strides with respect to a relative threshold value. The noise was added whenever that value
exceeded a predetermined threshold of approximately 50% of the baseline value in the no-biofeedback
condition. The chosen target was similar to previous gait retraining studies [6–9]. Six levels of noise
loudness were empirically created for good discretization [13]: % noise, % baseline axial peak tibial
acceleration: 100%, >113%; 80%, 96%–113%; 60%, 80%–95%; 40%, 65%–79%; 20%, 48%–64; 0%, <48%.
The noise loudness was calculated as a percentage of the root mean square of the amplitude level of
the music. Only synchronized music was provided when the momentary axial peak tibial acceleration
of the runner was below the threshold target. The baseline value of axial peak tibial acceleration was
the mean axial peak tibial acceleration of 90 s in the no-biofeedback condition.Sensors 2020, 20, x FOR PEER REVIEW 5 of 17 
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with a clear beat in a tempo range of endurance running was preselected. D-Jogger technology was 
employed to continuously align the beats per minute of the music to the steps per minute of the 
runner [31]. When step frequency changed by > 4% in steps per minute for 8 s, another song from 
which the beats per minute better matched the steps per minute automatically started playing. The 
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value of axial peak tibial acceleration was the mean axial peak tibial acceleration of 90 s in the no-
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Figure 2. Attachment method of the sensor to the lower leg. (left) Pretension is applied to the skin near
the site of attachment. (right) The accelerometer is firmly fixed with tape.

A self-discovery strategy was elicited. Each runner was instructed to find a way to run with less
axial peak tibial acceleration by increasing the musical quality (i.e., lowering the noise loudness level),
although no instructions were given on how to achieve this [4,9]. Subjects subsequently ran for 20 min
in total, separated by a short technical break after 10 min to check the software. The instructions were
repeated during the break. The running speed was monitored by a chronometer to provide verbal
feedback on a lap-by-lap basis. Acceleration data of one subject were not recorded during the second
half of his warm-up.
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Figure 3. A subject running indoors on an athletic track (287 m/lap) at the instructed speed of ~3.2 m·s−1.
Real-time auditory biofeedback in response to the axial peak tibial acceleration was provided by a
wearable interactive system to the runner with high axial peak tibial acceleration. The sensor processing
involved real-time peak detection. The music processing comprised tempo synchronization of the
music combined with peak-based noise added to the music playing.

2.3. Data Processing

All detected axial peak tibial accelerations (n = 18,529) were preprocessed using custom MATLAB
scripts [12]. The data of the no-biofeedback condition (1.5 min, baseline) were concatenated with the data
of the biofeedback condition (2 time periods of 10 min for the change-point analysis). The first 90 s were
composed of the no-biofeedback condition. The values have been deposited in a public repository [32].
Because all subsequent values were part of the time series, we could determine the timing and the
duration of a change. Change-Point Analyzer (v2.3, Taylor Enterprises, Libertyville, IL, USA) was
employed for each subject to detect individual changes in the axial peak tibial acceleration over time.
The analysis tool has been previously used in health sciences to determine if and when statistically
significant changes in 1D time series occurred [33,34]. The procedure proposed by Taylor [24,35] for
performing the change-point analysis uses a combination of cumulative sum charts and serial bootstrap
sampling. Both the application of cumulative sum charts [33,34] and the application of bootstrapping [35]
have been suggested for the problem of detecting a single change [25]. The procedure combines these
two approaches, whereby Change-Point Analyzer allows multiple changes to be detected iteratively
in a time series. In essence, this technique searches across the time frames looking for changes in the
values that are so large that they cannot reasonably be explained by chance alone [36]. We refer to
Appendix B for a more detailed description of the change-point analysis that is based on a statistical
mean-shift model. The changes are accompanied by associated confidence levels and confidence
intervals for the times of the changes. The following configuration was applied in the Change-Point
Analyzer: the confidence level for the time interval of changes: 95%; the number of bootstraps: 1000;
randomization without replacement; mean square error-based time estimates; groups of 33 rows.
As such, no assumptions were violated. Importantly, the confidence level for candidate changes and for
the inclusion of changes was set at 95% and 99%, respectively. The no-biofeedback functioned as the
control condition, so we assumed this time period to be steady-state. The default confidence levels
were set at 50% and 90%, which would have led to a false identification of change points in the time
period of no-biofeedback. Thus, these levels were upscaled to increase the likelihood of detecting valid
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change points that represented a valuable mean shift in the time series of interest. We examined the
individual changes in the axial peak tibial acceleration, being an increase or a decrease, accompanied by
its confidence interval and location, the lowest zone of axial peak tibial acceleration and its duration,
and the (change in) standard deviation of the grouped signal. The signal variability reported throughout
this paper is always a long-term variability on the grouped signal of 33 consecutive axial peak tibial
accelerations. The estimated standard deviation of the grouped signal is based on the whole running
session by concatenating both running conditions and by considering the change in the signal. The
timing of occurrence and the magnitude of the detected first and major change points were averaged
for our cohort of runners with high axial peak tibial acceleration. The occurrence of change is expressed
in terms of running gait cycles (strides) or in units of time.

3. Results

All subjects discovered a way to run with less axial peak tibial acceleration. No change point was
detected in the no-biofeedback condition. At least one change point was detected for each subject in
the biofeedback condition (Table 2), meaning that the runners swiftly reacted to the real-time auditory
biofeedback. The first change of -1.26 ± 2.59 g in axial peak tibial acceleration was found after 309 ± 212
running gait cycles (3′40” ± 2′24”) of running with biofeedback. This first change did not correspond
to the major change in eight out of ten runners. The major change in axial peak tibial acceleration was
consistently a reduction in axial peak tibial acceleration of 2.45 ± 1.99 g. The major change was found
after 699 ± 388 running gait cycles (8′04” ± 4′38”).

Table 2. Detected change points in the runners with high axial peak tibial acceleration (APTA). Each
row represents a subject. Subjects are sorted according to the number of detected change points, and
then, according to the timing of the first change in APTA. The individual location corresponds to the
detected APTA in the biofeedback condition. The + and – signs indicate an increase and a decrease,
respectively, in the APTA. a indicates the change in the APTA signal that corresponds to the major
decrease in magnitude as identified by the Change-Point Analyzer. The estimated standard deviation
of the grouped APTA is based on the whole running session.

ID APTA (g)
Baseline

Number
of Change

Points

Location of
the Change

Point

95%
Confidence

Interval

∆ Change
Inter-Segments

in APTA (g)

Zone of Lowest
APTA (g) {% vs.

Baseline}

Estimated
Standard
Deviation

1 13.21 1 297 a 231–330 −3.04 8.75
{66%} 0.75

2 9.66 1 400 a 235–631 −1.24 7.44
{77%} 0.81

3 13.43 2 4 a

466
4–4

367–1555
−7.05
+0.42

6.30
{47%} 0.19

4 9.40 2 240
1329 a

240–306
1263–1362

−0.81
−0.90

7.86
{84%} 0.35

5 9.28 2 636
967 a

373–703
934–967

+1.17
−1.90

7.33
{79%} 0.37

6 8.87 3
132

825 a

1221

66–165
825–858

1188–1254

−1.24
−1.28
+0.99

5.96
{67%} 0.31

7 10.83 3
174

801 a

1329

75–273
768–801

1296–1362

−1.12
−2.14
+1.36

7.14
{66%} 0.40

8 11.83 3
487

916 a

1378

190–520
916–916

1345–1477

+2.18
−4.64
+1.86

6.65
{56%} 0.63

9 11.03 4

131
527 a

923
1484

131–131
428–626
824–956

1451–1715

−2.30
−0.85
−0.81
+0.88

6.37
{58%} 0.41

10 13.67 4

591
921 a

1350
1680

129–657
888–954

1284–1383
1680–1680

+0.86
−1.42
−1.18
+1.73

10.62
{78%} 0.48
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As expected, the location of detected change points varied considerably between runners (Figure 4).
For example, in subject 1 the real-time biofeedback resulted in a fast, substantial, and sustained reduction
in axial peak tibial acceleration throughout the intervention. Following an initial reduction, eight subjects
further shifted (further decline or slight increase) in axial peak tibial acceleration. After reaching a
temporary minimum in axial peak tibial acceleration, its magnitude slightly increased for six subjects but
remained below the baseline. The first change in axial peak tibial acceleration, which also induced the
zone of lowest axial peak tibial acceleration, was sustained by two subjects until the end of the biofeedback
condition. Most subjects further adapted in the biofeedback condition. No significant change was detected
for the standard deviation of the averaged values over 33 grouped axial peak tibial accelerations, indicating
no discernible long-term variability in axial peak tibial acceleration of a runner during the early adaptation
process of lower-impact running.
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Figure 4. Graphical representation of the results of the change-point analysis. The graph in each panel depicts the temporal evolution in axial peak tibial acceleration
of a subject (numbered 1 to 10) for the concatenated conditions of no-biofeedback (baseline) and biofeedback. A detected change point in the response to biofeedback
is represented by a slanting line with a shift in the shaded background. When one or more change points were detected, the time series of the runner’s axial peak tibial
acceleration became divided into smaller segments. The control limits (horizontal lines) assume the values come from the normal distribution. The first 90-s or 127 ±
10 (mean ± SD) running gait cycles belong to the no-biofeedback condition. X-axis: running gait cycles (strides). Y-axis: the axial peak tibial acceleration value in g.
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4. Discussion

We present a simple method to detect changes in the time course of a biomechanical signal when
runners engage in overground gait retraining. As such, we could provide strong empirical evidence when
runners changed their axial peak tibial acceleration in response to real-time auditory biofeedback on it.
An interactive feedback device was used that modulated the runner’s system dynamics in a self-discovery
manner without giving specific instruction on running gait (i.e., “land softer” [6–8]). For that aim, we used
a reinforcement learning paradigm for biofeedback control in which less axial peak tibial acceleration
maximizes the positive reward (i.e., clear sound and synchronized music) and minimizes the negative
reward (i.e., noise added to synchronized music). Without explicit cued instructions for an altered
running technique, the chosen auditory biofeedback can influence the ongoing running style due to strong
auditory–motor couplings in the human brain, thereby providing an avenue for a shift in musculoskeletal
loading that may be beneficial to reduce running-related injuries.

In the early adaptation phase of lower-impact running, runners with high axial peak tibial
acceleration reacted differently in time and in magnitude to the auditory biofeedback that stimulated
lower-impact running. The inter-subject variation in time to the changes in axial peak tibial acceleration
during the intervention highlights the relevance of the single-subject analysis. A first swift change
demonstrates the ability of humans to react relatively fast to an auditory biofeedback stimulus on a
modifiable outcome parameter of running gait. The major reduction in axial peak tibial acceleration
was generally found after about 8 min of biofeedback with no change in grouped signal variability.
In general, such a short time frame might suffice to successfully explore a biofeedback-driven style of
lower-impact running. Considerable variation in the time to the major reduction in axial peak tibial
acceleration (4 to 1329 gait cycles) was, however, noticed among the high-impact runners. Our data
seem to suggest a possible distinction between slow and fast gait adapters based on biomechanical,
physiological, and motor control determinants. The inter-subject variance in the profile of change
may be due to the individualized motor retraining approach, through auditory biofeedback on an
outcome parameter, whereby numerous (combinations of) gait adaptations might result in a reduction
of the axial peak tibial acceleration. The inter-subject variation in this group of high-impact runners is
further illustrated in Figure 5. The empirical cumulative distribution function was created using the
Kaplan–Meier estimator to approximate the distribution of the time to the detected changes.

The group was able to temporarily reduce the axial peak tibial acceleration to a minimum zone of
68% compared with running without biofeedback. It is debatable whether an extreme target of −50% in
axial peak tibial acceleration [6–9], which was generally too hard to achieve or to maintain, is required in
the early adaptation phase of biofeedback-driven running retraining. Furthermore, not all high-impact
runners could maintain their major reduction throughout the session. Full retainment of the major
reduction in axial peak tibial acceleration may depend on the mental and physical loads required to
handle the auditory–motor coupling at the instructed running speed, the target of reduction in peak tibial
acceleration, and/or the specific task dealing with implicit motor learning. A more realistic target for
the targeted population seems to be -30% in axial peak tibial acceleration, which will also reinforce the
reward of running with music only (i.e., no noise). This is in agreement with the recent finding of runners
experiencing high axial peak tibial acceleration who were able to achieve and maintain a reduction of
about 30% of its magnitude after completing a retraining program in the laboratory [11].

Individual long-term variability in axial peak tibial acceleration did not change when a state
of lower-impact running was achieved by the applied configuration and measurement techniques.
The impending change(s) in the movement pattern induced a similar variability in the axial peak tibial
acceleration. Hence, variability in the magnitude of the axial peak tibial acceleration is inherent to both
high- and lower-impact running when engaging in biofeedback-driven gait retraining. If we assume
the axial peak tibial acceleration to be an expression of motor coordination, then its consistent variation
at the end of the biofeedback condition suggests a stable running pattern, even a new phase in the
motor learning process.
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Figure 5. The cumulative distribution function describing (a) the first change in axial peak tibial
acceleration, (b) the first reduction, (c) the major change, and (d) the zone of the lowest axial peak tibial
acceleration in the biofeedback condition. In each panel, the horizontal axis shows the number of the
gait cycles (strides) and the vertical axis shows the cumulative probability (F(stride)) between zero and
one. The dashed lines indicate the Greenwood confidence interval.

Due to a lack of a retention test following the intervention, the adaptation phenomenon cannot be
linked to a learning effect. We do not yet know whether this retraining results in a stable and lasting
reduction in the axial peak tibial acceleration in the long term. Nonetheless, early adaptation is the first
step towards feasible motor retraining outside the laboratory. Caution is required when interpreting
our results. The biofeedback run was paused after 10 min while the verbal instructions were repeated.
This intervention may have influenced the observed learning rate in the retraining session. Overall,
we believe that, based on our findings, a change-point analysis can be employed to determine when
runners start responding to real-time biofeedback that stimulates lower-impact running. Next to the
simple method of change point detection in a biomechanical signal (i.e., axial peak tibial acceleration),
our experimental work aids in understanding the human dynamic system and its adaptive control of
movement over time. The understanding of the adaptation to running overground with a wearable
auditory biofeedback system is one of the many steps in the evolution toward evidence-informed use
of wearable technology in daily life. Similar to Moens and Lorenzoni and colleagues [13,31], none of
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the subjects complained about the stripped backpack. Nevertheless, the weight of the system could be
trimmed and a higher level of comfort could be simultaneously achieved by opting for a backpack
commonly used in trail running, which may be filled with a slim processing unit that permits wireless
data transfer. Furthermore, smart textiles could enhance the standardization of the sensor’s location
and orientation. While the applied system has been proven reliable both within sessions and between
them using simple mounting principles [12], embedding a wireless accelerometer in a leg compression
sleeve may further improve the reliability of the measurement of axial peak tibial acceleration between
sessions. An improvement on the biofeedback side may be to replace an arbitrary level of change
by a detected change. The offline analysis following data collection may be a stepping stone to the
development of an online detection of change points. An online detection during the gait retraining
has not yet been explored, but may permit to steer the noise loudness levels according to the abilities of
a subject instead of being bound to preconfigured levels. Future research could develop online change
point detection to better steer and individualize the level of biofeedback.

In this paper, we provide an extension of previous works related to gait retraining using real-time
biofeedback with respect to peak tibial acceleration. The main contributions of this paper compared to
previous works are the evaluation of results in a different running environment and the implementation
of change point detection for a particular biomechanical signal. On the one hand, this study provides
a motivational approach, through the use of synchronized music, to transition biofeedback-driven
running retraining from the laboratory to the field. Efforts were made to enable continuous sensing
of and feedback on peak tibial acceleration in order to go beyond the traditional laboratory setting.
The wearable system drives lower-impact running by reducing the peak tibial acceleration of overground
running versus running without a device. On the other hand, the simple-to-use application enables a
subject-specific evaluation of adaptive changes in peak tibial acceleration during the biofeedback-driven
gait retraining in time. Because of the swift reduction in axial peak tibial acceleration when initiating
gait retraining, we want to highlight the potential of a stand-alone biofeedback system and its strong
sensorimotor coupling.

Supplementary Materials: Supplemetary materials are available on the following link: http://www.mdpi.com/
1424-8220/20/6/1720/s1. Video fragment of a subject wearing the biofeedback system while running indoors on an
athletic track. It can be observed how the test leaders held supervision on a lap-by-lap basis.
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Appendix A

Determination of the foot strike pattern. Plantar pressures captured during the no-biofeedback
condition to estimate the foot strike pattern (Figure A1). A 2-m pressure plate (Footscan; RSscan
International, Olen, Belgium; sampling rate: 500 Hz; threshold value: 2.7 N·cm-2) with a newly replaced
and factory-calibrated pressure-sensitive layer permitted us to estimate the foot strike pattern based on
the instant of initial contact in the warm-up period. A rearfoot strike was defined when the first frame
of the center of pressure occurred in the rear one-third of the foot–shoe system, while a non-rearfoot
striker first touches the ground more anteriorly. The plantar pressures of three running trials were
inspected. This resulted in nine runners who performed a rearfoot strike pattern and one performing a
non-rearfoot strike. Representative plantar pressure images are shown.

http://www.mdpi.com/1424-8220/20/6/1720/s1
http://www.mdpi.com/1424-8220/20/6/1720/s1


Sensors 2020, 20, 1720 13 of 16Sensors 2020, 20, x FOR PEER REVIEW 1 of 17 
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Appendix B

The change-point analysis is based on a statistical mean-shift model. It relies on the assumption of
independence of errors around a possible changing mean. Since mean-shifted data are auto-correlated
by definition, the software contains a pattern test to distinguish between shifts around a mean and
autoregressive data [37]. A proposed workaround for correlated data is the grouping of data points.
We were able to fulfil the assumptions for all subject data by grouping and averaging over 33 data
points. This limited our temporal analysis to blocks of 33 axial peak tibial accelerations, which
corresponded to approximately 25 s. Before detecting any change points, we needed to set a boundary
for its confidence level. A change point can be detected by the use of a bootstrapping analysis on
the cumulative sum (CUSUM) of the differences between the values of axial peak tibial acceleration
and their average. A value D0 was calculated as the difference of the maximum and the minimum of
the CUSUM. The peak tibial acceleration data were then reordered in a large number N of bootstrap
samples. For these bootstrap samples, the difference of the maximum and minimum of the CUSUM
was again calculated and the number of times X that this value was smaller than the original D0
was counted. The confidence level for detecting a change in the original sample was then defined
as 100 × X/N%. This confidence level value has to be above the set boundary to detect a change
point. The rationale is that in no-change conditions, where all data points are assumed interchangeable
and which is simulated by the bootstrapping, a build-up of the CUSUM away from the zero value
is less probable. The time of the change can be calculated by minimizing, over all possible change
points, the mean square error of the data compared to a simple model made up of the two estimated
averages of the data up to and after the possible change point. Confidence intervals for the timing
of the change point were also calculated. After a change point was detected, the same analysis was
done on the two data segments that were split by the change point. This was done until change points
were no longer found, given the set confidence level boundary. After the complete set of change
points was defined, all change points and their confidence levels were re-estimated [25]. Analogously,
the change-point analysis was performed on the differences between consecutive grouped points to
evaluate the variation on the time series [25].
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