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Abstract: This paper develops an improved model predictive controller based on the online obtaining
of softness factor and fusion velocity for automatic train operation to enhance the tracking control
performance. Specifically, the softness factor of the improved model predictive control algorithm is
not a constant, conversely, an improved online adaptive adjusting method for softness factor based
on fuzzy satisfaction of system output value and velocity distance trajectory characteristic is adopted,
and an improved whale optimization algorithm has been proposed to solve the adjustable parameters;
meanwhile, the system output value for automatic train operation is not sampled by a normal speed
sensor, on the contrary, an improved online velocity sampled method for the system output value
based on a fusion velocity model and an intelligent digital torque sensor is applied. In addition,
the two improved strategies proposed take the real-time storage and calculation capacities of the
core chip of the controller into account. Therefore, the proposed improved strategies (I) have good
performance in tracking precision, (II) are simple and easily conducted, and (III) can ensure the
accomplishing of computational tasks in real-time. Finally, to verify the effectiveness of the improved
model predictive controller, the Matlab/simulink simulation and hardware-in-the-loop simulation
(HILS) are adopted for automatic train operation tracking control, and the tracking control simulation
results indicate that the improved model predictive controller has better tracking control effectiveness
compared with the existing traditional improved model predictive controller.

Keywords: model predictive controller; automatic train operation; softness factor; fusion velocity;
online obtaining; hardware-in-the-loop simulation

1. Introduction

The urban rail transit system with automatic train operation system has the advantages of safety,
stability, economy, and comfort, and it has become one of the most popular and efficient means
of the urban public transportation [1]. The tracking control functional module makes the velocity
trajectory track at the optimal target speed obtained by the upper-layer optimal loop, and according
to the appropriate and efficient tracking control algorithm, it is an indispensable crucial system and
necessary to ensure optimal safety, comfort, energy-efficiency, punctuality, and parking accuracy
for train operation process, which requires the corresponding algorithm to possess good control
performance [2]. Therefore, aiming at improving the multi-objective performance index of the train
operation process, an automatic train operation system has been developed rapidly and is widely
applied in urban rail trains operation [3–5]. Meanwhile, various improved intelligent optimization
control algorithms have been proposed and applied for the automatic train operation system [6–8].
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In recent years, many improved algorithms have been applied in the automatic train
operation tracking control field, such as robust adaptive automatic control, model predictive
control, online learning, iterative learning control, matter-element model, etc. [9–13]. An online
approximation-based robust adaptive automatic train control method is proposed for the automatic
train operation (ATO) system [9]. A fuzzy model predictive control approach is proposed to provide
locomotive operation instructions for mainline railways continuously, and extensive simulations show
that the proposed approach can provide sufficient solution optimality in reasonable computational time
and energy consumption in train operations is reduced [10]. A novel online learning control strategy is
proposed to solve the train automatic stop control (TASC) problem [11]. An iterative learning control
based on automatic train operation is proposed to deal with the trajectory tracking control problem
under certain velocity constrains [12]. Matter-element theory is applied to the established models to
optimize speed trajectory for achieving multi-objective optimization, and the relative performance
indices weighting is determined in different stages so that the more satisfied decision speeds could be
calculated with the goodness evaluation method [13]. The above research can improve the tracking
control performance of the traditional control algorithms.

Among numerous algorithms, Model Predictive Control (MPC) is one of the most effective
control algorithms, which is characterized by good robustness, fast tracking speed, accurate tracking
target speed, etc. [14]. A linear time-varying MPC is used to obtain the power split between the
combustion engine and electrical machines and the system operating points at each sample time [15].
A coordinated energy dispatch based on Distributed model predictive control (DMPC) is proposed, and
the corresponding simulation results show the effectiveness of the proposed method [16]. A co-design
of the self-triggered mechanism and distributed model predictive control (DMPC) is proposed to
achieve the cooperative objectives while efficiently exploiting communication network [17]. A model
predictive control-based droop current regulator to interface PV in smart dc distribution systems is
proposed [18]. From the various model predictive control algorithms, the dynamic matrix control
model predictive control (DMC MPC) is an effective algorithm among them due to its characteristics
of strong robustness, fast tracking speed, high precision for tracking control, avoiding the parameter
identification for the transfer function model, and solving the problem of delay process effectively.
A new method that linearizes the RC equivalent circuit model and predicts available battery power
according to original Dynamic Matrix Control algorithm is proposed [19]. An application of dynamic
matrix control (DMC) to a drum-type boiler–turbine system is proposed [20]. Of particular note is the
use of the improved DMC MPC for automatic train operation tracking control scenario [21].

It is necessary to conduct further study on the basis of previous research findings, and key
parameters adjusting and improving the sampling accuracy should be taken seriously. A method for
calculating the traction characteristics of a traction motor is proposed [22]. A new method to identify
the train key design variables against the running performance indicators based on the sensitivity
analysis is proposed, which in turn bases itself on simulation-oriented surrogate models [23]. A novel
adaptive sampling algorithm for power management in the automated monitoring of the quality of
water in an environment is devised and applied [24].

Traditional simulations based on a pure software environment cannot truly reflect the actual
automatic train operation process, and the situation representing the actual automatic train operation
experiment is difficult to implement because it is expensive, has restricted experimental conditions,
high construction difficulties, and high security protection requirements. Hardware-in-the-loop
simulation (HILS) is a new simulation technology for solving this difficult issue [25,26]. At present,
numerous relative research findings have achieved improvements in the traction control system [27,28].

An improved model predictive controller based on online obtaining of softness factor and fusion
velocity for automatic train operation is developed. The following summarizes the main contributions
of this paper.
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(I) An improved whale optimization algorithm (IWOA) based on the Tchebycheff decomposition
method, convergence factor nonlinear decline, and genetic evolution measurement is proposed to
solve the optimization of the softness factor adaptive adjusting parameters appropriately.

(II) Aiming at improving the tracking control performance for automatic train operation, an improved
model predictive controller based on online obtaining of the softness factor and fusion velocity is
developed for automatic train operation tracking control effectively.

(III) To further verify the effectiveness of the developed model predictive control controller, the
scenario about rail transit line No.12 in Dalian, China is chosen for simulation test. The results
of the Matlab simulation and hardware-in-the-loop simulation (HILS) show that the tracking
controller proposed in this paper has good tracking control performance.

The paper is organized as follows. Section 2 introduces the model predictive controller for
automatic train operation tracking control. Section 3 illustrates the improved DMC model predictive
controller based on online obtaining of softness factor and fusion velocity developed in this paper.
Section 4 provides the Matlab/simulation results and hardware-in-the-loop simulation (HILS) results
to illustrate the proposed method. Section 5 concludes this article.

2. Model Predictive Controller for Automatic Train Operation Tracking Control

2.1. Evaluation Index for Automatic Train Operation Tracking Control

The integral of time multiplied by the absolute value of error (ITAE) is the frequently used
evaluation index for tracking control performance [29]. The specific formula for the evaluation index
ITAE is as follows,

ITAE =
∫

t |e (t)|dt (1)

where t represents the sample time of control process, and |e (t)| represents the absolute value of error
between target speed and actual tracking control speed.

As automatic train operation has its own unique characteristics and requirements,
the multi-objective performance index is more appropriative, and it used universally. The computation
model of multi-objective performance index Pk is as follows,

Pk =
4
∑

i=1
ωi ×

fi−min( fi)
max( fi)−min( fi)

× fi

( f1, f2, f3, f4) = (∆s, ∆t, KJerk, E)
Mv dv

ds = F (u, v)− R (v, s)− B (u, v)
dt
ds = 1

v
v (s) ≤ vlim (s)
R (v, s) = r(v) + Rl (s)
∆s = |sz − D| < ∆smax

∆t = |T̄ − Tr| < ∆tmax

KJerk =
∫
|∆a| ds

/
D

E =
∫
(Ma− R) ds

(2)

where ωi represents the index importance weight factor (
k
∑

i=1
ω′ i = 1), which reflects the relative

importance of the i th optimization index; t represents the actual running time of the train; s represents
the actual position of the train; a represents the actual acceleration of the train; |∆a| represents the actual
impingement rate of the train; M is the mass of the train; Ft (u, v) and Br (u, v) are the traction force
and braking force of the current velocity, respectively; R (v, s) is the resistance of the train determined
by the current speed and line position; sz is the terminal position; Tr is the actual running time; D is the
actual running distance; v (s) represents the instantaneous velocity in the position s; T̄ represents the



Sensors 2020, 20, 1719 4 of 31

prospective running time; vlim (s) represents the upper limit velocity in the position s; ∆smax represents
the allowable maximum parking error; ∆tmax represents the allowable maximum time error; ∆s and ∆t
represent the actual parking error and time error, respectively; u represents the train control quantity;
KJerk represents the comfort performance index; and E represents the energy consumption during the
train operation process [2,30].

In addition, security index should be taken into account as well. Traveling over the velocity limit
is the main risk and non-negligible factors can cause an unsafe environment. The computation formula
of security index Ksa f e is as follows,

min Ksa f e

Ksa f e =
sn
∑

is=1
YS (is)

/
sn

YS (is) =

{
0 v (is) > vlim (is)
1 v (is) ≤ vlim (is)

(3)

where is represents the index of sampling point, YS (is) represents the security evaluation value of the
is-th sampling point, and sn represents the number of sampling points [1].

2.2. Conventional Dynamic Matrix Control Model Predictive Control

DMC MPC uses three methods, including the DMC predictive model, rolling optimization, and
feedback correction, to control the controlled object [31].

2.2.1. DMC Predictive Model

The DMC predictive model is one of significant models for DMC MPC. The unit step response
model reflecting the dynamic performance is adopted as the DMC predictive model for controlled
object, and the predictive value of system output is obtained by the step response characteristic for
controlled object.

If the model length is N, then the N sampled values of the controlled object unit step response
can be used to describe the dynamic response characteristics of the system. The specific calculation
formula for the predictive value of system output is as follows,

Yp (k) = Y0 (k) + A∆U (k) (4)

where Yp (k) =
[
yp (k + 1|k) , yp (k + 2|k) , ..., yp (k + N|k)

]T represents the predictive value of
system output, Y0 (k) = [y0 (k + 1|k) , y0 (k + 2|k) , ..., y0 (k + N|k)]T represents the predictive value
of predictive model, ∆U (k) = [∆u (k) , ∆u (k + 1) , ..., ∆u (k + N − 1)]T represents the incremental
sequence for control, and A represents the dynamic matrix. The specific dynamic matrix A and the
specific calculation formula for the element of Yp are as follows,

A =


a1 0 0 · · · 0
a2 a1 0 · · · 0

...
...

. . .
...

aN aN−1 · · · a1

 (5)

yp (k + i|k) = y0 (k + i|k) +
i

∑
j=1

ai−j+1∆u (k + j− 1) (6)

where i represents the element index of Yp, i ∈ {1, 2, ..., N}; k represents the initial point of DMC
predictive model [31,32].
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2.2.2. Rolling Optimization

With the aim of avoiding the violent fluctuations in the control process effectively, it is necessary
to make the final output value y f reach to the reference target value yr along the predetermined smooth
path by the DMC MPC system, so as to enhance the system robustness. Thus, a popular reference path
used in DMC MPC is as follows,

y f (k + i) = αiy (k) +
(

1− αi
)

yr (7)

where y f (k + i) represents the final output value expected, αi represents the ith softness factor (0 < αi

< 1), y (k) represents the actual output value of the system, and yr represents the reference target value
of the system.

The quadratic rolling optimization object of the system is necessary for rolling optimization. If the
predictive length is M and control length is L, in general, L ≤ M ≤ N. The specific quadratic rolling
optimization object of system is as follows,

J =
∥∥∥Yp (k)−Yf (k)

∥∥∥2

Q
+ ‖∆UL (k)‖2

R

=
M
∑

i=1
qi

[
yp (k + i|k)− y f (k + i)

]
+

L
∑

i=1
ri∆u (k + i− 1)

(8)

where Yf (k) =
[
y f (k + 1) , y f (k + 2) , ..., y f (k + M)

]T
represents the control sequence of the system,

R = diag[r1, r2, ..., rL]
T represents the weight coefficient matrix of constraint for error revise,

Q = diag[q1, q2, ..., qM]T represents the weight coefficient matrix of constraint for error increment
revise, and diag represents the diagonal matrix.

The necessary condition for obtaining the minimum value of objective function J is ∂J
∂∆UL(k)

= 0
through extreme value theory under unconstrained conditions. Therefore, the control sequence
optimal solution can be obtained by rolling optimization. The specific calculation formula of the
control sequence optimal solution is as follows.

∆UL (k− 1) =
(

ATQA + R
)−1

ATQ
[
Yf (k)−Y0 (k)

]
(9)

Then, the actual control quantity u(k) can be obtained. The specific calculation formula of the
actual control quantity u(k) is as follows,

u (k) = u (k− 1) + ∆u (k− 1) (10)

In the next control period, i.e., the k + 1 th control period, the corresponding ∆u(k) and u(k + 1)
can be obtained by the above way. Thus, it can realize the rolling optimization of the actual control
quantity in the iterative control process [21,33].

2.2.3. Feedback Correction

Feedback correction is an important component of DMC MPC; it is used to reduce the influence of
system disturbance for the control system, so as to achieve the ideal control effectiveness. The specific
calculation formula of the error between actual system output value and the predicted output value in
the present control period (the k th control period) is as follows.

e (k) = y (k)− yp (k) (11)
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After feedback correction calculation, the predicted output value can be corrected to certain
extent [21,33,34]. The specific corrected calculation formula is as follows,

Yp2 (k) = Y0 (k) + A∆U (k− 1) + HC (12)

where C represents the error corrected matrix, and its length is N; H represents the corresponding
transformed matrix.

2.3. Fuzzy DMC Model Predictive Controller for Automatic Train Operation

Aiming at improving the precision of the automatic train operation tracking control for DMC
MPC, using the fuzzy model prediction based on the train operation mechanism is a good choice.
The slope and velocity error are the most important train operation information. For example, when the
train runs in steep uphill and current velocity is far less than target velocity, the conversion degree
for train operation is “PB”, that is, the maximum extent to drew train is adopted to assist the climb
by accelerating or keeping the velocity. In this time, if the maximum traction is used according
to the intrinsic DMC MPC, the addition traction incremental quantity is not necessary; otherwise,
the appropriate addition traction incremental quantity should be used to correct this error. The fuzzy
sets are divided into [’N4’,.......,’Z’,.......,’P4’] [10,35]. The specific calculation model for fuzzy model
prediction is as follows,

u f _p (k) = C f uzzy1 (ω (k) , e (k))

∆u f _p (k) = C f uzzy2

(
u f _p (k) , u (k)

)
uc (k) = u (k) + ∆u f _p (k)

(13)

where C f uzzy1 and C f uzzy2 represent the fuzzy inference functions by using two kinds of fuzzy rules,
respectively; u f _p (k) represents the calculated control quantity by using fuzzy rule about slope and
velocity error; ∆u f _p (k) represents the calculated control quantity by using fuzzy rule about control
quantity calculated by intrinsic DMC MPC and control quantity calculated by fuzzy logic and train
operation information; and uc (k) represents the final calculated control quantity for the automatic
train operation tracking control.

The fuzzy rules for fuzzy model prediction and partial membership function for control quantity
are shown in Figure 1.

Figure 1. The fuzzy rules for fuzzy model prediction and partial membership function for control
quantity. (a) Fuzzy rule for train operation information. (b) Fuzzy rule for control quantity prediction.
(c) Partial membership functions for control quantity.
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Fuzzy dynamic matrix control model predictive control (Fuzzy DMC MPC) is a control method
that considers the step response characteristics and fuzzy logic for the train operation mechanism of the
control object. The fuzzy DMC model predictive controller is widely used in automatic train operation
due to its characteristics of simple design scheme and high tracking precision. The fuzzy DMC model
prediction controller is mainly composed of four function chips (Fuzzy model prediction function
chip, DMC model prediction function chip, rolling optimization function chip, and feedback correction
function chip), and it is used to realize four function modules of Fuzzy DMC MPC (Fuzzy model
prediction, DMC model prediction, rolling optimization, and feedback correction). The schematic
diagram of the Fuzzy DMC model predictive controller for automatic train operation is shown in
Figure 2.

Figure 2. Schematic diagram of the Fuzzy DMC model predictive controller for automatic train operation.

As can be seen from Figure 3, it is impossible to obtain the actual output value (real-time velocity)
for automatic train operation tracking control system. In addition, as can be seen from Formula (7),
the real-time softness factor is also an important factor that impacted the multi-objective performance
index for automatic train operation tracking control. Therefore, it is necessary to improve the real-time
velocity sampling accuracy and softness factor accuracy for automatic train operation tracking control
as much as possible.

3. Model Predictive Controller Based on Online Obtaining of Softness Factor and
Fusion Velocity

3.1. Fusion Velocity Computation Model and Corrected Model Based on Online Obtaining

3.1.1. Fusion Velocity Computation Model Based on Online Obtaining

According to the multi-objective performance index for automatic train operation tracking control,
the fusion velocity model based on online obtaining is necessary to take into account the energy
consumption, running time, comfort, and parking accuracy. Taking into account the sampling
effect, hardware technology (storage and computing ability), funds, space, and other factors, three
kinds of velocity sampling sources are sufficient (motor speed, motor torque and train instantaneous
displacement) and are selected and synthesized. The fusion velocity computation model based on
online obtaining is established as follows,

vis,v = nis × trntv × ηg × ηis,T × ηis,itc

vis,F = vis−1,a +
Fis − wis

/
M · ∆t

vis,s =
∆s/∆t =

sis − sis−1
/
∆t

(14)

vis,a = λis,v × vis,v + λis,F × vis,F + λis,s × vis,s (15)
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where vis,a represents the final calculated velocity by speed analyzer ultimately of the i-th sampling
point; vis,v represents the velocity calculated based on actual motor speed sampled of the i-th sampling
point; vis,F represents the velocity calculated based on actual motor torque sampled of the i-th sampling
point; vis,s represents the velocity calculated based on actual train instantaneous displacement sampled
of the i-th sampling point; nis represents the actual motor speed sampled by speed sensors of the
i-th sampling point; trntv represents the transmission ratio of the motor speed to train velocity; ηg

represents the degree of tooth engagement between the gears; ηis,T represents the speed transmission
efficiency of the i-th sampling point; ηis,itc represents the efficiency for the train to overcome idling,
taxiing, and creep sliding of the i-th sampling point; Fis represents the force calculated based on
actual motor torque sampled of the i-th sampling point; Fis = ηis,F × Tis/Rmr

; Tis represents the
actual motor torque sampled by torquemeter of the i-th sampling point; ηis,F represents the force
comprehensive transmission efficiency of the i-th sampling point; Rmr represents the radius of motor
rotor; wis(v, s) represents the actual resistance of the i-th sampling point (v, s); ∆t represents the
sampling time-interval, ∆t is 500 µs in this paper; ∆s represents the sampling displacement-interval;
sis represents the actual train instantaneous displacement sampled by displacement pickup of the i-th
sampling point; and λis = {λis,v, λis,F, λis,s} represents the synthetic weight of the velocity sampled by
different ways.

Synthetic weight is vital for real-time sampling precision in the tracking control process, the
importance of each velocity sampling sources needs to be considered, so as to give the appropriate
synthetic weight. The synthetic weight indicates the importance of the real-time velocity obtained by
different speed sampling sources. Yet, the selection of the synthetic weight by traditional methods lacks
the specific theoretical basis, so there is certain subjective limitation in actual applied. As automatic
train operation tracking control is an extremely complex issue, there is a trajectory characteristic for
automatic train operation tracking control curve dominated by velocity target curve, train parameters,
line conditions and running requirements, and the traditional methods for setting synthetic weight
based on experience empower is subjective and blind, so it is necessary to be improved. In this
paper, an synthetic weight empower using entropy method is applied for automatic train operation
tracking control. First, the whole tracking control curve is divided by a position according to trajectory
characteristic and line conditions; second, a large number of real-time data, including velocity, force,
and position information for the whole tracking control process, should be sampled to prepare for
calculation; finally, the entropy method is used to calculate the synthetic weight of each divided
subinterval of tracking control curve.

Entropy is a measure of uncertainty for information calculation. The entropy weight method is
utilizes the entropy characteristics and assigns a weight to each index in an event by calculating the
entropy value. The entropy weight method is an objective weight empower method, because it simply
depends on the discreteness of data itself. The specific steps of computational process for entropy
weight method are as follows.

A certain number of samples (as many as possible) must be collected to prepare for the calculation,
and their index values also needed to be recorded.

To eliminate the negative influences caused by the difference between units and magnitude orders,
the index values must be normalized. The calculation formulas for the normalization can be expressed
as follows,

xij
′ =

xij −min
{

xij, x2j, ..., xnj
}

max
{

xij, x2j, ..., xnj
}
−min

{
xij, x2j, ..., xnj

} (16)

xij
′ =

max
{

xij, x2j, ..., xnj
}
− xij

max
{

xij, x2j, ..., xnj
}
−min

{
xij, x2j, ..., xnj

} (17)
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where j = (1, 2, · · ·, m),i = (1, 2, · · ·, n); m represents index number; n represents the number
of samples; xij

′ represents the j-th processed index value of the i-th sample after normalization;
xij represents the j-th original index value of the i-th sample before normalization; max and min,
respectively, represent the maximum and minimum values of the array. If index value xij is a positive
number, Formula (16) is used to normalize; otherwise, Formula (17) is used to normalize.

The normalized index values are necessary to filtered out the zero value further, so as to avoid
illegal logarithmic function (ln(0)) in next subsequent calculation processes. The specific formula for
filtered out zero value is as follows,

xij
′′ = ∆z + (1− 2× ∆z)× xij

′ (18)

where xij
′′ represents the j-th processed index value of i-th sample after filtering out the zero value; ∆z

represents the tiny value reasonable; ∆z is 0.01 in this paper.
Then, the entropy values of each index values are necessary to be calculated. The specific formulas

for calculating the entropy values are as follows,

pij =
xij
′′

n
∑

i=1
xij
′′

(19)

ej = −k×
n

∑
i=1

(
pij × ln

(
pij
))

(20)

where pij represents the j-th index weight value of i-th sample in j-th index; ej represents the j-th index

entropy value; k represents the entropy coefficient, the value is the reciprocal of ln (n), k = 1/
ln (n).

Finally, the index weight value could be calculated. The specific formula for calculating the index
weight values is as follows,

dj = 1− ej (21)

λj =
dj

m
∑

j=1
dj

(22)

where dj represents the j-th entropy redundancy value of j-th index, it indicates the difference degree
of this index; ej represents the j-th index entropy value; λj represents the j-th weight value.

3.1.2. Fusion Velocity Corrected Model Based on Online Obtaining

If the factor of the velocity sampling sources sampled inaccurately is not considered, the
improvement effect for automatic train operation tracking control will inevitably be restricted.
To improve the real-time sampling velocity precision, a corrected method of real-time sampling
velocity for automatic train operation tracking control using auxiliary corrective velocity sampling
source is popularly applied in various types of urban rail vehicles. The specific evaluation and
corrected formulas are as follows,

∆vis,c =
∣∣∣vis,x − vis,re f

∣∣∣ ≤ ∆vis,p (23)

vis,c =
∆vis,p

∆vis,c
× vis,x +

∆vis,c − ∆vis,p

∆vis,c
× vis,re f (24)
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where vis,x represents a velocity sampling source x from vis,v, vis,F, vis,s using to synthetic final
calculated velocity vis,a; vis,re f represents the reference velocity (auxiliary corrective velocity sampling
source) based on actual sampling data sampled by specific auxiliary sensor; ∆vis,c represents the
actual error value between vis,x and vis,re f ; ∆vis,p represents the maximum permit satisfied error value
between vis,x and vis,re f ; vis,c represents the final corrected value calculated by Formula (24) when
correctness condition (Formula (23)) is not satisfied.

Reference velocity vis,re f will exert a measure of influence over the velocity-corrected effect. Thus,
the choice of auxiliary corrective velocity sampling source is significant. The specific gear speed on the
vehicle wheel side of the gear box is a good choice.

3.2. Softness Factor Adaptive Adjusting Model Based on Online Obtaining

The softness factor is a key parameter for DMC MPC; it plays plays an important role in balancing
the degree of robustness and rapidity for the DMC MPC tracking control system. If softness factor α

is chosen as a larger value, the system will have slower response speed and stronger robustness; by
contrast, if softness factor α is chosen as a smaller value, the system will have faster response speed
and worse robustness [36]. Thus, both response speed and robustness must be taken into account for
softness factor α setting.

Considering the trajectory characteristic and tracking control condition for automatic train
operation, the softness factor adaptive adjusting model based on online obtaining is established
as follows,

α = λαTs × αTs (s) + λαµy × αµy (y (k) , yr) (25)

where α represents the final calculated real-time softness factor; αTs represents the real-time softness
factor calculated based on the trajectory characteristic of the present position; αµy (y (k) , yr) represents
the real-time softness factor calculated based on tracking control condition of the present system
output y (k); λαTs and λαµy represent the fusion weights of αTs and αµy (y (k) , yr), respectively; and
λαTs + λαµy = 1.

The whole tracking control curve must be divided into several different types of subintervals by
position according to the trajectory characteristic and line conditions. The specific types of subintervals
are described as follows.

Type 1: The vibrating area nearby inflection point of tracking control curve.
In this area, there is the strong velocity fluctuation in the velocity trajectory. Thus, aiming at

improving the system robustness as much as possible, softness factor αTs should be an appropriate
larger value at the cost of reduce acceptable system rapidity.

Type 2: The smooth area of tracking control curve.
In this area, there is no obvious velocity fluctuation in the velocity trajectory. Thus, aiming

at improving the system rapidity as much as possible, softness factor αTs should be chosen as an
appropriate smaller value at the cost of reduce acceptable system robustness.

Type 3: The connected area in the middle of smooth area and the vibrating area of the tracking
control curve.

In this area, the system rapidity and rapidity are taken into account for softness factor αTs setting.
Thus, softness factor αTs should be choose a appropriate intermediate value.

In addition, although in the same type of subintervals, the softening factor αTs almost varies
because of the different intensity degrees of velocity fluctuation. The specific calculation formula for
softness factor αTs based on trajectory characteristic of the present position is described as follows,

αTs (s) =


αTr,si+ (αTr,si − αTr,si−1)× ((Ssi+S1)−s)

S1+S2
s<Ssi+S1

αTr,si Ssi+S1 ≤ s ≤ Ssi+1−S2

αTr,si+ (αTr,si+1 − αTr,si)× (s−(Ssi−S2))
S1+S2

s > Ssi+1−S2

(26)
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where si represents the subinterval index si ∈ {1, 2, ..., simax}; si_max represents the number of
subintervals; Ssi represents the starting position of the si-th subinterval; Ssi_max+1 represents the
terminal position of tracking control curve, it is a target parking position; αTr,si represents the reference
value of soften factor in the si-th subinterval; αTs,0 = αTs,1, αTs,si_ max+1 = αTs,si_ max; S1 and S2 represent
the connected length, in the connected area; the softness factor αTs is reduced or increased linearly and
smoothly, so as to avoid the instability of tracking control system.

Aiming at solving this control problem with fuzzy characteristic, an fuzzy adaptive adjusting
method for online obtaining softness factor αµy is applied. First of all, the satisfaction degree of control
is defined, so as to the automatic train operation tracking control problem can be transformed into
an optimization decision-making problem by fuzzy reasoning; then, the corresponding real-time
parameters of the controller are adjusted online to meet the requirements of the system control quality,
so as to achieve the purpose of system optimization control. The specific calculation formula for fuzzy
satisfaction degree µy(k) of system output y(k) is as follows,

µy(k) =



0 y (k)<ymin − s1

1 + y(k)−ymin
s1

ymin − s1 ≤ y (k)<ymin

1 ymin ≤ y (k)<ymax

1 + y(k)−ymax
s2

ymax ≤ y (k)<ymax + s2

0 ymin − s1 ≥ y (k)

(27)

where s1 and s2 represent the blur width, which can indicate the requirement of designer, if s1 = s2 = 0,
the requirements for the control system are strict, and the automatic train operation tracking control
is not so, and this represents a combination of the practical situation; ymax and ymin represent the
maximum and minimum value of design expectation, respectively, if ymax = ymin, it will be shown as
trigonometric membership function; otherwise, it will be shown as trapezoid membership function.
The corresponding diagram for fuzzy satisfaction degree calculation µy(k) of system output y(k) is
shown in Figure 3.

Figure 3. Diagram for fuzzy satisfaction degree calculation µy(k) of system output y(k).

The error between the output value and the reference target value of system (i.e., fuzzy satisfaction
degree µy(k) of system output y(k)) should also be considered. If the fuzzy satisfaction degree µy(k)
is larger, it can indicate that the error between the output value and the reference target value of
system is smaller, at this time, there is a small overshoot of the system and softness factor αµy so that
an appropriate lager value needs to chosen to increase the system rapidity; by contrast, there is an
obvious overshoot of the system and softness factor αµy so that an appropriate small value needs to be
chosen to reduce the system rapidity to ensure system robustness [36]. According to the influence of
softness factor αµy for the system dynamic response, the specific exponential calculation formula for
softness factor αµy by fuzzy satisfaction degree µy(k) of system output y(k) is as follows,

αµy (y (k) , yr) = αmax +
(

αmax × e−(b×µy(k)) − αmax

)
× µy(k) (28)
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where αmax represents the maximum value of softness factor µy(k); b represents the gain coefficient; it
determines the shape of the softening factor αµy (y (k) , yr) function curve.

The corresponding diagram for softness factor αµy of the fuzzy satisfaction degree calculation
µy(k), and softness factor αµy of system output y(k) are shown in Figures 4 and 5.

Figure 4. Diagram for fuzzy satisfaction degree calculation µy(k) of fuzzy satisfaction degree calculation µy(k).

Figure 5. Diagram for fuzzy satisfaction degree calculation µy(k) of system output y(k).

3.3. Improved Whale Optimization Algorithm for Softness Factor Adaptive Adjusting Parameters Optimization

Optimization algorithms are used to obtain a set of adjustable parameters for the satisfactory
tracking control effect in actual automatic train operation scenarios. The specific softness factor
adaptive adjusting parameters optimization model is as follows,

min F(x) = (Pk, ITAE
max(ITAE) ,

Ksa f e

max(Ksa f e)
)

s.t. x = (λαTs, λαµy, αTr, αmax, b)
gig(x) ≤ 0, ig = 1, 2, · · · , ng
x ∈ Ω′′

(29)

where x represents the solution vector; F(x) represents the target vector; Ω′′ represents feasible solution
space of x; gig(x) represents the ig-th equality or inequality constraint for automatic train operation
tracking control problem, ng represents the number of equalities and inequality constraints; the five
adjustable parameters (λαTs, λαµy, αTr, αmax, b) are decision variables.

Objective decomposition is an effective method to solve the multi-objective optimization problems.
The Tchebycheff decomposition method is selected in this paper among many objective decomposition
methods [37]. The specific calculation formula for the aggregate function value of the Tchebycheff
decomposition method is as follows,

mingte(x|λ, z∗) = max
1≤i≤m

{λi| fi(x)− z∗i |}

s.t.x ∈ Ω′′
(30)



Sensors 2020, 20, 1719 13 of 31

where z∗ represents the reference point, (z∗i = min{ fi(x)|x ∈ Ω}, i = 1, ..., m), which is the optimal

solution of each objective function at present; λi is the weight of the i th objective,
m
∑

i=1
λi = 1.

Whale optimization algorithm with strong global optimization ability is chosen in this paper.
Whale optimization algorithm (WOA) is a new metaheuristic optimization algorithm learned from
whale predatory behavior. There are two operators (position update and prey searching) in the
computation process of the whale optimization algorithm [38]. The specific calculation formula for the
position update of the basic whale optimization algorithm is as follows,

X(t + 1) =

{
X∗(t)− A · D p < Ps

X∗(t) + Dp · eBl · cos(2πl) p ≥ Ps
(31)

where X∗(t) represents the optimal position vector obtained by the current optimization; Dp =

|X∗(t)− X(t)| represents the distance between humpback whales and their prey; p represents the
behavioral selection probability of humpback whales, p ∈ [0, 1]; Ps represents the probability of
surrounding prey of humpback whales, Ps ∈ [0, 1]; the probability of spiral hunting is 1 − ps; B
represents a constant, which is used to define the shape of spiral; l represents the random number
in (−1, 1); t is the current iteration number; Tmax is the maximum number of iterations; a represents
convergence factor; A and C represent the correlation coefficients respectively; r1 and r2 are random
numbers, r1 ∈ [0, 1], r2 ∈ [0, 1].

The specific calculation formulas for convergence factor a, correlation coefficients A, and C is
as follows,

a = 2− 2× t/Tmax (32)

A = 2a× r1 − a (33)

C = 2× r2 (34)

After the position updated, prey searching is implemented by means of random individual
positions. The specific calculation formula for prey searching of the basic whale optimization algorithm
is as follows,

D = |CXrand − X(t)| (35)

X(t + 1) = Xrand − A · D (36)

where Xrand is the position vector of randomly selected whales. If A ≥ 1, a search leader individual is
randomly selected, and the position of other whales is updated based on the whale position of the
leader individual, so as to guide the whales to leave the prey and find a more suitable prey to enhance
the global search ability of the algorithm.

The relatively fixed method of linear decline of convergence factor a will reduce the population
diversity maintenance ability, so that the algorithm can easy to fall into local convergence in the late
iteration. Aiming at solving this problem, the strategy of cosine decline combined with chaotic random
method for convergence factor nonlinear decline is proposed in this paper. The specific calculation
formula is as follows,

a = 2 · cos
(

π
2 ·

t
Tmax

)
pa (t) < Pa

a = 2 · rand2 · sin (π · rand) pa (t) > Pa
(37)
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where pa (t) represents the behavioral selection probability of the convergence factor a, pa (t) ∈ [0, 1]; Pa

represents the probability of cosine decline of the convergence factor a, Pa ∈ [0, 1]; and the probability
of chaotic random is 1− Pa.

Compared with the linear decline strategy, the decline rate of the convergence factor is significantly
different in the whole iteration cycle caused by the nonlinear decline strategy with a certain degree of
chaos uncertainty for convergence factor a, and it is helpful for maintaining the population diversity,
thus the algorithm global convergence performance will be improved [39].

According to the Tchebycheff decomposition method, the aggregate function value is the fitness
index for the multi-objective optimization algorithm. After the computation process of each iteration,
the newly generated non-dominated solutions of the current population are put into the elite archive.
The archive must kept within a certain size by some elite individuals with small differences from other
elite individuals, so as to avoid computational burden of the algorithm. According to the updating
rules of the whale optimization algorithm, the reference point z∗ plays an important role in guiding the
direction of global convergence, and a certain degree of local convergence due to this fixed foraging
behavior. Meanwhile, the selector, crossover, and mutation of the genetic algorithm can generate a
large number of new solutions with great differences for the whale optimization algorithm based on
evolutionary processes, so as to further improve the global convergence performance due to more
powerful population diversity maintenance ability.

The specific steps of improved whale optimization algorithm proposed in this paper are as follows.
Step 1: Initialization.
Initialize the whale population (the size is Nw), and the Tchebycheff aggregation function values

of each whale individual are calculated.
Step 2: Iterative computations.
the Archive is obtained;
Archive = ∅, the reference point z∗ = (z∗1 , z∗2 , ..., z∗m), and z∗j = min( f j(x)), j = 1, 2, ..., m, m

represents the number of objectives, a uniformly distributed weight vector set λ0 is generated, and
λ1=λ0.

If the current iteration number is greater than 1, the weight λt,i for solution xt,i are need to be
recalculated. According to the literature [40], in the t-th iteration, the specific calculation formula for
weight λt,i,k of the k-th optimization index of the i-th individual (solution) xt,i in the population is
as follows,

λt,i,k =
1

f (xt,i)
k − Zre f ,k

(
m

∑
ik=1

1

f (xt,i)
ik − Zre f ,ik

)−1

(38)

where i ∈ {1, 2, ..., Nw}, k ∈ {1, 2, ..., m}.
For any solution target zc = (zc

1, zc
2, ..., zc

m) of Pareto front, its weight vector is

1
f (x)−Zc

(
m
∑

ik=1

1
f (x)−Zc,ik

)−1
. Because the Pareto front is not easily available, it is replaced by the nearest

solution target Zre f in Archive;
The strategy of cosine decline combined with chaotic random method is used to calculate

convergence factor a;
The updating rules of the whale optimization algorithm are used to update each individual whale.
Step 3: The archive and genetic evolution mechanism.
The Pareto front of the current whale population is obtained, and it is used to expand the Archive.
Some elite individuals with small differences from other elite individuals are deleted, until the

size of Archive is not exceed allowed limit archive size NA.
Three operators (selection, crossover, and mutation) of the genetic algorithm are applied in the

whole whale population, so as to further improve the population diversity maintenance ability.
Step 4: Termination judging.
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The hypervolume indicator is chosen as termination judging indicator. Using the hypervolume
indicator of the dominated portion of the objective space as a measure for the quality of Pareto set
approximations is appropriate and effective. The specific formula for hypervolume indicator for
objective vector set A with reference point (0,0,...,0) is as follows.

I∗H (A) =
∫ (1,1,...,1)

(0,0,...,0)
αA (z)dz (39)

where A is any objective vector set in objective space Ω; if there is an objective vector a, Pareto superior
z and a belongs to A, αA (z) = 1; otherwise, αA (z) = 0 [41].

Thus, the hypervolume indicator indicates the dominated portion in objective space Ω. Generally,
Hypervolume as Klee’s Measure Problem (HKMP) is an effective calculation method for hypervolume

indicator [42]. As only 3 objects (Pk, ITAE
max(ITAE) ,

Ksa f e

max(Ksa f e)
) must be taken into account, the calculation

method by using equivalent volume model for the volume of irregular objects can be used. The specific
formulas for the hypervolume indicator for 3 objects by using equivalent volume model is as follows,

I∗H (A) =

na
∑

ia=1

nb
∑

ib=1

nc
∑

ic=1
αA (cp(ia, ib, ic))

na× nb× nc
(40)

where na, nb, and nc are the split numbers for each normalization objective domain (0,1); cp(ia, ib, ic)
represents the central point of the (ia, ib, ic)th cube of normalization objective space.

The schematic diagram of the hypervolume indicator for 3 objects by using equivalent volume
model is shown in Figure 6.

Figure 6. Schematic diagram of hypervolume indicator for 3 objects by using equivalent volume model.

If the hypervolume indicator I∗H (A) is reached beforehand, an unchanged number of
hypervolume indicators nH will be resetted; otherwise, make nH = nH + 1.

If the maximum unchanged number of the hypervolume indicator nHmax is reached,
the calculation will be terminated; otherwise, return Step 2.

The flowchart of improved whale optimization algorithm proposed in this paper is shown in
Figure 7.

Aiming at improving the global searching ability, the evolution law is must be considered in the
computation process. The excellent individuals should have a small mutation probability, so that
they can accumulate optimization results effectively, and the poor individuals should choose a large
mutation probability, which can be fully eliminated, so as to enhance the capacity of exploration [43].
The mutation probability calculation formula based on sigmoid function y = 1

1+e−x is as follows,

pm = pm_ max
1

1 + e−ap(Ns− f it(x)′)
(41)
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where Pm is the mutation probability value; pm_ max is the maximum mutation probability; ap is the
shape factor for the sigmoid function of mutation probability; Ns is the demarcation point of the whale
population; f it(x)′ is the normalized value of fitness function value f it(x) of whale individual x in the
whale population.

Figure 7. The flowchart of the improved whale optimization algorithm proposed in this paper.

This mutation probability calculation method has certain fairness, and the whale individuals have
appropriate mutation probability according to fitness function value, so as to prevent the population
controlled by advantage individuals and persist evolution opportunity for disadvantaged individuals.

A multimodal crossover method is conducive to finding a more satisfactory optimal solution
for the complex optimization issue [44,45]. The multimodal crossover combining popular blended
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crossover and unimodal normal distribution crossover is applied in this paper. The specific calculation
formula for multimodal crossover is as follows,

xc = rp1 × xp1 +
(
1− rp1

)
× xp2 pc < pcb

xc = xp + εd +
µ

∑
ic=1,ic 6=p

νiceic pcb < pc < (pcb + pcu)
(42)

where xc is the solution after multimodal crossover operation; xp1 and xp2 are two parent solutions for
blended crossover; pc is the behavioral selection probability about multimodal crossover operation;
pcb and pcu are the crossover probabilities for blended crossover and unimodal normal distribution
crossover, respectively; xp is the midpoint for µ parent solutions for unimodal normal distribution
crossover; d is the differential vector; eic is the ic th orthogonal basis; ε and νic are the random numbers
obey normal distribution N

(
0, σ1

2) and N
(
0, σ2

2).
3.4. Performance Analysis of Optimization Algorithms Based on Standard Test Functions

Aiming at verifying the effectiveness of IWOA proposed in this paper, standard test functions
(ZDT1, ZDT3, and DTLZ2) are selected as optimization objects, and multi-objective particle
swarm optimization based on decomposition (dMOPSO) [46] and multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [47] are selected as contrasted optimization algorithms.
The improved whale optimization algorithm parameters are set as follows; maximum number of
iterations is 100; probability of surrounding prey of humpback whales Ps is 0.6; population size Nw
is 50; allowed limit archive size NA is 30; probability of cosine decline of the convergence factor Pa

is 0.9; shape constant of spiral b is 1; shape factor for sigmoid function of mutation probability ap
is 4.9; demarcation point of whale population Ns is 0.8; probability of blended crossover pcb and
unimodal normal distribution crossover pcu are 0.3 and 0.3, respectively; selection probability is 0.5;
split number for each normalization objective na, nb, and nc are all 50; the maximum unchanged
number of hypervolume indicator nHmax is 25. The Matlab/simulink platform is used for verifying,
and the Matlab/simulink revision and the computer processor type are 2016b, MathWorks and CPU
Core i9-7920X @ 2.9GHZ. The specific optimization results (approximate Pareto solution set) for test
functions of each optimization algorithms are shown in Tables 1 and 2 and Figure 8.

Figure 8. The optimization results for test functions of each optimization algorithms. (a) Optimization
results for ZDT1. (b) Optimization results for ZDT3. (c) Optimization results for DTLZ2.
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Table 1. The hypervolume indicator ratio I∗H(A(op))
I∗H(A(tp)) for test functions of each optimization algorithm.

Optimization Algorithm ZDT1 ZDT1 DTLZ2

IWOA 99.81% 99.73% 99.04%
MOEA/D 99.72% 99.60% 98.73%
dMOPSO 99.54% 99.37% 98.57%

Table 2. The computation time for test functions of each optimization algorithm.

Optimization Algorithm ZDT1 ZDT1 DTLZ2

IWOA 1279s 1541s 1895s
MOEA/D 1384s 1733s 2079s
dMOPSO 1423s 1694s 2104s

As can be seen from Tables 1 and 2, compared with other optimization algorithms (dMOPSO and
MOEA/D), IWOA has been improved to a considerable extent, not only in the computation speed,
but also in the optimization effect for approximate Pareto solution set reflected by the hypervolume
indicator ratio I∗H(A(op))

I∗H(A(tp)) , A (op) and A (tp) are the approximate Pareto solution sets obtained by
optimization algorithms and real Pareto front set, respectively. According to Figure 9, compared with
other optimization algorithms (dMOPSO and MOEA/D), only the better approximate Pareto solution
sets closer to the Pareto fronts of ZDT1, ZDT3, and DTLZ2 were found using IWOA, but also the
distribution for obtained approximate Pareto solution set was more evenly. This indicates that the
IWOA proposed in this paper has better optimization effectiveness.

3.5. Improved DMC Model Predictive Controller and Hardware-In-The-Loop Simulation Platform

Based on the traditional Fuzzy DMC model predictive controller, a new functional module
is necessary to be realized the function of online obtaining of softness factor and fusion velocity.
The schematic diagram of improved DMC model predictive controller for automatic train operation
designed in this paper is shown in Figure 9.

Figure 9. The schematic diagram of improved DMC model predictive controller for automatic train
operation designed in this paper.

In Figure 9, the improved DMC model predictive controller could provide control commands
for the corresponding equipments in real-time using fuzzy DMC MPC based on online obtaining
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of softness factor and fusion velocity, enabling the the urban rail vehicle to track the target velocity
trajectory; the Speed and softness factor analyzer could provide the precision instantaneous fusion
velocity vis,a and softness factor α for rolling optimization and feedback correction based on three kinds
of velocity sampling sources (vis,v, vis,F, and vis,s) and a set of softness factor α adjustable parameters.
The intelligent digital torque sensor, gear speed sensor, and displacement pickup are data acquisition
devices. The physical diagram of the intelligent digital torque sensor is shown in Figure 10.

Figure 10. The physical diagram of the intelligent digital torque sensor.

In Figure 10, the acquisition equipment is an intelligent digital torque sensor of model No. JN338;
the fixed bracket is made of iron and has two functions of fixing and preventing jitter; the power
source supplies electricity to torque sensor of model No. JN338; the communication module transmits
the real-time value of motor speed and torque using the 485 communication protocol; the sampling
data connectors are connectors for sampling data (motor speed and torque); and can be connected
to communication module, controller, or other equipment; rotation shaft of intelligent digital torque
sensor must be connected to rotation shaft of traction motor and load (breaker or rheostat box).

To more effectively test the performance of the tracking control algorithm in actual automatic
train operation tracking control scenarios, the dSPACE HILS technology is adopted. In this way,
the optimization algorithm or control algorithm needed to be verified is written into the chip of the
optimizer or controller. The structure diagram of HILS platform used in this paper for automatic train
operation tracking control scenario, and the physical diagram of controller cabinet and simulation
cabinet for HILS platform are shown in Figures 11 and 12.

In Figure 11, the Displacement generator is used to generate the train instantaneous displacement,
so that the static (no actual displacement) HILS platform can truly reflect the actual automatic train
operation tracking control scenario; various sensors are used to feed electrical waves of sampling
sources back to the Controller in real-time; the Conditioning circuit can regulate electrical signals
properly for the Tracking controller appropriately; the Motor controller could provide electrical control
commands for Traction moto and other corresponding equipments of Electrical loop in real-time using
a proper electrical control algorithm. DC power source, Converter system, Traction motor, Digital
rheostat box, and Gear box are simulation electric hardware equipments.

In Figure 12, the ’train controller cabinet’ and ’train emulator cabinet’ are the vital equipments
for automatic train operation HILS, except for the controller and emulator, the conditioning circuit,
signal processing unit, and corresponding switch groups are included. The ’emulator’ provides
some correlative simulation environments for the automatic train operation HILS, the related models
included such as accurate braking model, traction transformer model, running line model, velocity
fluctuation model, etc. The ’conditioning circuit’ can regulate electrical signals properly for ’Controller’.
The ’signal processing unit’ can regulate net signals properly for ’Optimizer’ appropriately.
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Figure 11. The structure diagram of the hardware-in-the-loop simulation (HILS) platform used in this
paper for automatic train operation tracking control scenario.

Figure 12. The physical diagram of controller cabinet and simulation cabinet for HILS platform.

4. Simulation for Automatic Train Operation Tracking Control Scenario

4.1. Data and Parameters for Automatic Train Operation Tracking Control Scenario

The automatic train operation tracking control scenario for rail transit line No.12 in Dalian, China
is chosen as the experimental simulation object. Rail transit line No.12 is a significant urban rail transit
line with 40.38 kilometers from Hekou station to Lvshun New Port. The running simulation line
of scenario about rail transit line No.12 is from Lvshun New Port to Tieshan Town, there are three
long steep ramps and three velocity limit subintervals in running interval. The main parameters of
the automatic train operation tracking control scenario are shown in Table 3, and the target velocity
trajectory, slopes, and limited velocity curves for automatic train operation are shown in Figure 13.

Table 3. The main parameters of the automatic train operation tracking control scenario.

Parameter Name Parameter Characteristics

Maximum limited velocity (km/h) 75
Running interval distance (m) 2940
Prospective running time (s) 180
Maximum allowed parking error (m) 0.4
Maximum allowed punctual time error (s) 0.5

The basic DMC MPC parameters are set as follows; sampling time is 500 µs; model length N
is 60; control length is 15; predictive length is 15. The addition adjustable parameters for online
obtaining of softness factor are set by practical experience as follows; blur width s1 = s2 = 0.05 km/h;
maximum and minimum value of design expectation ymax = yr + 0.05 km/h and ymin = yr − 0.05
km/h; connected length S1 = S2 = 0.4 m. Considering the online real-time calculation efficiency and
tracking control effect of the improved DMC MPC proposed in this paper, the following parameters
are given based on the relevant scientific literature, field experience, and simulation results of
multiple experiments. The Matlab/simulink simulation platform is used for softness factor adaptive
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adjusting parameters optimization and the experience parameters are as follows; maximum allowed
multi-objective performance index, ITAE index, and security index are 0.8, 750, and 6%, respectively;
ideal multi-objective performance index, ITAE index, and security index are 0.2, 250, and 3%,
respectively. The chosen addition adjustable parameters for online obtaining of softness factor obtained
by each optimization algorithms (improved whale optimization algorithm, MOEA/D, dMOPSO) are
as follows; fusion weights of λαTs and λαµy , λαTs = 0.582, 0.592, 0.573 and λαµy = 0.418, 0.408, 0.427;
maximum value of softness factor αmax is 0.939, 0.941, and 0.930; gain coefficient b is 0.909, 0.911,
and 0.913. The subinterval range obtained by practical experience, reference value of soften factor
obtained by each optimization algorithms, synthetic weight of fusion velocity obtained by entropy
weight method are shown in Table 4. The specific optimization results (approximate Pareto solution
set) for softness factor adaptive adjusting parameters optimization of each optimization algorithms are
shown in Table 5 and Figure 14.

Figure 13. The target velocity trajectory, slopes, and limited velocity curves for automatic train
operation tracking control scenario. (a) Target velocity trajectory. (b) Slopes and limited velocity curves.

Table 4. The optimization results for subinterval range, reference value of soften factor αTr, and
synthetic weight of fusion velocity λis.

Subinterval Index Subinterval Range s (m) αTr Obtained by (IWOA, MOEA/D, dMOPSO) Synthetic Weight λis

1 0–140 0.892, 0.896, 0.897 0.76, 0.15, 0.09
2 140–210 0.924, 0.926, 0.919 0.20, 0.71, 0.09
3 210–753 0.885, 0.883, 0.882 0.83, 0.11, 0.16
4 753–830 0.924, 0.922, 0.926 0.20, 0.61, 0.19
· · · · · · · · · · · ·
14 1430–1490 0.930, 0.928, 0.927 0.33, 0.51, 0.16
· · · · · · · · · · · ·
24 2910–2940 0.914, 0.911, 0.912 0.09, 0.08, 0.83

Figure 14. The optimization results for the softness factor adaptive adjusting parameters optimization
of each optimization algorithm.
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Table 5. The hypervolume indicator ratio I∗H(A(op))
V(ΩS)

and computation time for softness factor adaptive
adjusting parameters optimization of each optimization algorithms.

Optimization Algorithm Computation Time Hypervolume Indicator Ratio

IWOA 3726s 60.94%
MOEA/D 4582s 63.37%
dMOPSO 5047s 71.84%

In Figure 14, the approximate Pareto solution sets have been obtained by optimization algorithms
(IWOA, dMOPSO, and MOEA/D), and one of the approximate Pareto solutions has been chosen
for automatic train operation tracking control scenario. As can be seen from Figure 14, compared
with other optimization algorithms (dMOPSO and MOEA/D), the wider dominated portion for
approximate Pareto solution sets obtained by using IWOA. This indicates that the IWOA proposed in
this paper has better optimization effectiveness. As can be seen from Table 5, compared with other
optimization algorithms (dMOPSO and MOEA/D), IWOA has been improved to a considerable extent
not only in the computation speed but also in the optimization effect for approximate Pareto solution
set reflected by the hypervolume indicator ratio I∗H(A(op))

V(ΩS)
. V (ΩS) is the volume of selected objective

space ΩS by experience, and it is 0.16 ( 3
5 ×

2
3 ×

2
5 ) in this paper.

4.2. Matlab/simulink Simulation Results for Automatic Train Operation Tracking Control Scenario

The sampling process is not necessary in the Matlab/simulink simulation platform. According
to the automatic train operation tracking control scenario of rail transit line No.12 in Dalian, China,
the Matlab/simulink simulation results are obtained by using the fuzzy DMC MPC based on online
obtaining of softness factor α, and the softness factor adaptive adjusting parameters optimization using
IWOA proposed in this paper (denoted as DMC MPC II); the fuzzy DMC MPC is based on online
obtaining of softness factor α, which uses softness factor adaptive adjusting parameters optimization
using MOEA/D (denoted as DMC MPC I) and traditional fuzzy DMC MPC. The specific configuration
of the Matlab/simulink platform used in this paper is described as follows; the Matlab/simulink
revision is 2016b, MathWorks; the type of computer processor is CPU Core i9-7920X @ 2.9GHZ. The
specific Matlab/simulink results are shown in Figures 15–18 and Tables 6 and 7.

Figure 15. The Matlab/simulink velocity trajectory curves of different DMC MPC algorithms for
automatic train operation tracking control scenario.

As can be seen from Tables 6 and 7, the tracking control results obtained by the DMC MPC II are
superior to that of DMC MPC I and traditional fuzzy DMC MPC, and four indexes of multi-objective
performance index (energy saving, punctuality, parking precision, and comfort), ITAE index, and
security index for automatic train operation have been improved considerably. As can be seen from
the Figures 15 and 16, the DMC MPC II can make the tracking control curves closer to target curves,
so as to obtain the ideal tracking control results as smooth as possible. As can be seen from the six
enlarged areas of the velocity trajectory curves in Figures 15 and 16, the velocity fluctuation degree is
weaker and the velocity trajectory is closer to the target by using DMC MPC II. As can be seen from the
one enlarged areas of time distance curves of Figure 16, compared with DMC MPC I and traditional
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fuzzy DMC MPC, the time traceability of DMC MPC II is more powerful, so as to obtained the time
distance curve closer to target. As can be seen from Figure 17, the smaller velocity error effect can be
obtained by using DMC MPC II. As can be seen from Figure 18, the more ideal parking results can be
obtained by using DMC MPC II; both the distance and time errors of parking are reduced to certain
extent, so as to improve the punctuality and fixed position effect.

Figure 16. The Matlab/simulink time traceability curves of different DMC MPC algorithms for
automatic train operation tracking control scenario. (a) Time–velocity curves. (b) Time–distance curves.

Figure 17. The Matlab/simulink time velocity error curves of different DMC MPC algorithms for
automatic train operation tracking control scenario.

Table 6. The Matlab/simulink tracking control results of energy saving, punctuality, parking precision,
and comfort for automatic train operation.

Algorithm Energy Consumption Actual Time Parking Position Comfort Level

Target curve 98615 KJ 179.914 s 2939.884 5.517 m/s2/km
Fuzzy DMC MPC 112094 KJ 179.871 s 2939.774 30.725 m/s2/km

DMC MPC I 110844 KJ 179.892 s 2939.781 28.754 m/s2/km
DMC MPC II 108759 KJ 179.032 s 2939.812 24.339 m/s2/km

Table 7. The Matlab/simulink tracking control results of multi-objective performance index, ITAE
index, and security index for automatic train operation.

Algorithm Multi-Objective Performance Index ITAE Index Security Index

Fuzzy DMC MPC 0.507 552.69 5.12%
DMC MPC I 0.467 454.87 4.89%
DMC MPC II 0.370 380.54 4.63%
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Compared with traditional fuzzy DMC MPC and DMC MPC I, DMC MPC II has several obvious
superiorities in the matlab/simulation environment. However, as there is no hardware equipment
in the actual automatic train operation tracking control scenario in matlab/simulation environment,
the effectiveness of DMC MPC proposed in this paper must be further tested and verified.

Figure 18. The Matlab/simulink parking error curves of different DMC MPC algorithms for automatic
train operation tracking control scenario. (a) Distance–velocity curves. (b) Time–velocity curves. (c)
Time–distance curves.

4.3. HILS Results for Automatic Train Operation Tracking Control Scenario

In this way, sampling accuracy must be taken into account. To further verify the effectiveness
of the algorithm, according to the automatic train operation tracking control scenario of rail transit
line No.12 in Dalian, China, the HILS results are obtained by using the fuzzy DMC MPC based on
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online obtaining of softness factor α and fusion velocity, which uses the softness factor adaptive
adjusting parameters optimization using IWOA proposed in this paper (denoted as DMC MPC V), the
fuzzy DMC MPC based on online obtaining of softness factor α and fusion velocity, which softness
factor adaptive adjusting parameters optimization using dMOPSO (denoted as DMC MPC IV) and
the fuzzy DMC MPC based on online obtaining of fusion velocity (denoted as DMC MPC III). The
specific configuration of the automatic train operation HILS platform used in this paper is described
as follows; the Matlab/simulink revision is “2016b, MathWorks”; the type of computer processor
is “CPU Core i9-7920X @ 2.9GHZ”; the core chip of “Tracking controller” and “Motor optimizer” is
“TMS320F28335”; the simulation software of “dSPACE emulator” is dSPACE control desk (revision is
control desk 6.1); the communication protocol of the HILS platform is MVB (multifunction vehicle
bus); the fuzzy PID (proportion integration differentiation) algorithm is adopted as motor control
algorithm; vehicle velocity proportion is (0.83 × 400 rad/min)/(80 km/h). The specific HILS results
are shown in Figures 19–22 and Tables 8 and 9.

Table 8. The HILS tracking control results of energy saving, punctuality, parking precision, and comfort
for automatic train operation.

Algorithm Energy Consumption Actual Time Parking Position Comfort Level

Target curve 98703 KJ 179.874 s 2939.823 5.429 m/s2/km
DMC MPC III 119,192 KJ 179.809 s 2939.704 35.403 m/s2/km
DMC MPC IV 115,048 KJ 179.824 s 2939.754 32.935 m/s2/km
DMC MPC V 113,784 KJ 179.835 s 2939.778 31.354 m/s2/km

Table 9. The HILS tracking control results of multi-objective performance index, ITAE index, and
security index for automatic train operation.

Algorithm Multi-Objective Performance Index ITAE Index Security Index

DMC MPC III 0.712 821.57 5.68%
DMC MPC IV 0.585 744.23 5.14%
DMC MPC V 0.530 690.43 5.09%

According to the HILS results of different algorithms from Tables 8 and 9, compared with DMC
MPC III and DMC MPC IV, DMC MPC V has an obvious performance improvement effectiveness, the
multi-objective performance index (energy saving, punctuality, parking precision, and comfort) of the
tracking control trajectory has been improved considerably; meanwhile, the ITAE index and security
index have also been reduced considerably. In Figure 19, during the automatic train operation tracking
control experiment simulation, all the pilot lights and buttons are in normal. As can be seen from
Figures 19 and 20, the DMC MPC V can bring the tracking control curves closer to the target curves,
so as to obtain the ideal tracking control results as smooth as possible. As can be seen from the six
enlarged areas of velocity trajectory curves of Figures 19 and 20, the velocity trajectory curves obtained
by DMC MPC V were smoother; compared with the traditional improved tracking control algorithm
(DMC MPC), DMC MPC V enables the train to be in the optimal working state as much as possible,
so as to reduce the velocity fluctuation degree and obtain more ideal tracking control results. As can
be seen from the one enlarged areas of the time–distance curves in Figure 20, compared with DMC
MPC III and DMC MPC IV, the time traceability of DMC MPC V is more powerful, so as to obtain a
time–distance curve closer to target. As can be seen from Figure 21, the velocity error obtained by
using DMC MPC V is smaller. As can be seen from Figure 22, the more ideal parking point (parking
time and position) can be obtained by using DMC MPC V, its parking point is closer to prospective
parking point (180 s and 2940 m).
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Figure 19. The HILS velocity trajectory curves of different DMC MPC algorithms for automatic train
operation tracking control scenario.

Figure 20. The HILS time traceability curves of different DMC MPC algorithms for automatic train
operation tracking control scenario. (a) Time–velocity curves. (b) Time–distance curves.

Figure 21. The HILS time–velocity error curves of different DMC MPC algorithms for automatic train
operation tracking control scenario.
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Figure 22. The HILS parking error curves of different DMC MPC algorithms for automatic
train operation tracking control scenario. (a) Distance–velocity curves. (b) Time–velocity curves.
(c) Time–distance curves.

The above HILS results show that DMC MPC V is a tracking control algorithm with good practical
tracking control effect for automatic train operation tracking control scenario.

5. Conclusions

Tracking control optimization for automatic train operation is a sophisticated optimization
problem, and the model predictive controller is widely used to solve this problem due to its advantages
of strong robustness and good performance in tracking speed and tracking precision. Aiming at
obtaining a more ideal tracking control performance for automatic train operation, an improved model
predictive control algorithm and corresponding controller based on online obtaining of softness factor
and fusion velocity for automatic train operation are proposed and developed, and an improved whale
optimization algorithm based on Tchebycheff decomposition method was proposed for softness factor
adaptive adjusting parameters optimization. This clearly shows that model predictive controller has
been improved to a considerable extent in tracking control optimization for automatic train operation
not only in the pure software scenarios but also in the hardware-in-the-loop simulation scenarios (the
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ITAE index obtained by DMC MPC II is 16.3% and 31.2% lower than that of DMC MPC I and Fuzzy
DMC MPC, and that obtained by the DMC MPC V is 7.3% and 16.1% lower than that of DMC MPC IV
and DMC MPC III). The specific advantages are described below.

(I) Aiming at improving the efficiency of the whale optimization algorithm based on the Tchebycheff
decomposition method, the strategy of cosine decline combined with chaotic random method for
convergence factor nonlinear decline is proposed, so as to obtain more satisfactory softness factor
adaptive adjusting parameters for tracking control.

(II) Not only is an improved online adaptive adjusting method for softness factor based on fuzzy
satisfaction of system output value and velocity distance trajectory characteristic adopted, but also
a fusion velocity model and a corrected model of real-time sampling for automatic train operation
tracking control are adopted. Thus, compared with traditional improved model predictive
controller, the improved model predictive controller developed in this paper based on online
obtaining of softness factor and fusion velocity could enable the train in the optimal working state
as much as possible, so as to obtain a more ideal tracking control result with more satisfactory
performance indexes, including energy saving, punctuality, parking precision and comfort, ITAE,
and security index.

(III) For any tracking control system, the accomplishing capacity of computational tasks real-time
is significant important. The only purpose of the improved strategies is the online obtaining of
optimal softness factor and fusion velocity, so as to obtain the more reasonable real-time control
quantity u(k), and enable the automatic train operation tracking control system robustness and
rapidity as much as possible. Thus, the quantity of additional computational tasks is not very
large. In addition, some complex computational tasks for adjustable parameters optimization
for softness factor adaptive adjusting and setting synthetic weight of the velocity sampled
according to entropy weight method are achieved offline. Then, the advanced urban rail vehicle
velocity monitoring device and the additional function chip of online obtaining of softness
factor and fusion velocity are applied to improved the accomplishing capacity of computational
tasks real-time is significant important. Finally, some complex functions such as logarithm or
exponential function are avoided in online computation. Thus, it has advantage of simple and
easily conducted.

According to the Matlab/simulink results and ATO HILS results (compare with the other DMC
MPC algorithms for comparison), the improved DMC MPC based on online obtaining of softness
factor and fusion velocity proposed in this paper has better tracking control performance, so it can
obtain more ideal tracking control results. In actuality, it can also be designed by other ways for online
obtaining of softness factor and fusion velocity. It is important to note that, as the computational tasks
such as various matrix computation of basic DMC MPC are onerous, the designed scheme should be
simple and appropriate caused by the limited computation margin in real-time.
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ATO automatic train operation
HILS hardware-in-the-loop simulation
DMC MPC dynamic matrix control model predictive control
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DMC MPC I fuzzy DMC MPC based on online obtaining of softness factor which softness factor adaptive
adjusting parameters optimization using MOEA/D

DMC MPC II fuzzy DMC MPC based on online obtaining of softness factor which softness factor adaptive
adjusting parameters optimization using IWOA

DMC MPC III fuzzy DMC MPC based on online obtaining of fusion velocity
DMC MPC IV fuzzy DMC MPC based on online obtaining of softness factor and fusion velocity which

softness factor adaptive adjusting parameters optimization using dMOPSO
DMC MPC V fuzzy DMC MPC based on online obtaining of softness factor and fusion velocity which

softness factor adaptive adjusting parameters optimization using IWOA

References

1. Jiateng, Y.; Chen, D.; Li, L. Intelligent Train Operation Algorithms for Subway by Expert System and
Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2561–2571.

2. Liang, Y.; Liu, H.; Qian, C. A Modified Genetic Algorithm for Multi-Objective Optimization on Running
Curve of Automatic Train Operation System Using Penalty Function Method. Int. J. Intell. Transp. Syst. Res.
2019, 17, 74–87. [CrossRef]

3. Adrián, F.; Antonio, F.; Asunción, P.C.; Marı’a, D.; Tad, G. Design of Robust and Energy-Efficient ATO Speed
Profiles of Metropolitan Lines Considering Train Load Variations and Delays. IEEE Trans. Autom. Sci. Eng.
2015, 16, 2061–2071.

4. Zhou, M.; Dong, H.; Zhao, Y.; Ioannou, P.A.; Wang, F. Optimization of Crowd Evacuation With Leaders in
Urban Rail Transit Stations. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4476–4487.. [CrossRef]

5. Watanabe, S.; Koseki, T.; Isobe, E. Evaluation of Automatic Train Operation Design for Energy Saving Based
on the Measured Efficiency of a Linear-Motor Train. IEEE Trans. Intell. Transp. Syst. 2017, 137, 460–468.
[CrossRef]

6. Marı’a, D.; Antonio, F.; Asunción, P.C.; Ramón, R.P. Energy Savings in Metropolitan Railway Substations
Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles. IEEE Trans. Autom.
Sci. Eng. 2012, 9, 496–504.

7. Cheng, R.; Yu, W.; Song, Y.; Chen, D.; Ma, X.; Cheng, Y. Intelligent Safe Driving Methods Based on Hybrid
Automata and Ensemble CART Algorithms for Multihigh-Speed Trains. IEEE Trans. Cybern. 2019, 49,
3816–3826. [CrossRef]

8. Shangguan, W.; Yan, X.; Cai, B.; Wang, J. Multiobjective Optimization for Train Speed Trajectory in CTCS
High-Speed Railway With Hybrid Evolutionary Algorithm. IEEE Trans. Intell. Transp. Syst. 2015, 16,
2215–2225. [CrossRef]

9. Gao, S.; Dong, H.; Chen, Y.; Ning, B.; Chen, G. Approximation-Based Robust Adaptive Automatic Train
Control: An Approach for Actuator Saturation. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1733–1742.
[CrossRef]

10. Bai, Y.; Tin, K.H.; Mao, B.; Ding, Y.; Chen, S. Energy-Efficient Locomotive Operation for Chinese Mainline
Railways by Fuzzy Predictive Control. IEEE Trans. Intell. Transp. Syst. 2014, 15, 938–948. [CrossRef]

11. Chen, D.; Chen, R.; Li, Y.; Tang, T. Online Learning Algorithms for Train Automatic Stop Control Using
Precise Location Data of Balises. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1526–1535. [CrossRef]

12. Li, Z.; Hou, Z.; Yin, C. Iterative learning control for train trajectory tracking under speed constrains with
iteration-varying parameter. Trans. Inst. Meas. Control 2015, 34, 485–493. [CrossRef]

13. Meng, J.; Xu, R.; Li, D.; Chen, X. Combining the Matter-Element Model With the Associated Function of
Performance Indices for Automatic Train Operation Algorithm. IEEE Trans. Intell. Transp. Syst. 2019, 20,
253–263. [CrossRef]

14. Ma, Y.; Cai, Y. A Fuzzy Model Predictive Control Based Upon Adaptive Neural Network Disturbance
Observer for a Constrained Hypersonic Vehicle. IEEE Access 2018, 6, 5927–5938. [CrossRef]

15. Borhan, H.; Vahidi, Y.; Phillips, A.M.; Kuang, M.; Kolmanovsky, I.V.; Cairano, S. MPC-Based Energy
Management of a Power-Split Hybrid Electric Vehicle. IEEE Trans. Control Syst. Technol. 2012, 20, 593–603.
[CrossRef]

16. Du, Y.; Wu, J.; Li, S.; Long, C.; Onori, S. Coordinated Energy Dispatch of Autonomous Microgrids with
Distributed MPC Optimization. IEEE Trans. Ind. Inform. 2019, 15, 5289–5298. [CrossRef]

http://dx.doi.org/10.1007/s13177-018-0158-6
http://dx.doi.org/10.1109/TITS.2018.2886415
http://dx.doi.org/10.1002/eej.23059
http://dx.doi.org/10.1109/TCYB.2019.2915191
http://dx.doi.org/10.1109/TITS.2015.2402160
http://dx.doi.org/10.1109/TITS.2013.2266255
http://dx.doi.org/10.1109/TITS.2013.2292712
http://dx.doi.org/10.1109/TITS.2013.2265171
http://dx.doi.org/10.1177/0142331214543095
http://dx.doi.org/10.1109/TITS.2018.2805917
http://dx.doi.org/10.1109/ACCESS.2017.2780118
http://dx.doi.org/10.1109/TCST.2011.2134852
http://dx.doi.org/10.1109/TII.2019.2899885


Sensors 2020, 20, 1719 30 of 31

17. Mi, X.; Zou, Y.; Li, S.; Karimi, H. Self-triggered DMPC Design for Cooperative Multi-agent Systems.
IEEE Trans. Ind. Inform. 2020, 67, 512–520. [CrossRef]

18. Shadmand, M.B.; Balog, R.S.; Abu-Rub, H. Model Predictive Control of PV Sources in a Smart DC Distribution
System: Maximum Power Point Tracking and Droop Control. IEEE Trans. Energy Convers. 2014, 29, 913–921.
[CrossRef]

19. Wang, L.; Cheng, Y.; Zou, J. Battery available power prediction of hybrid electric vehicle based on improved
Dynamic Matrix Control algorithms. J. Power Sources 2014, 261, 337–347. [CrossRef]

20. Moon, U.C.; Lee, K.Y. Step-Response Model Development for Dynamic Matrix Control of a Drum-Type
Boiler-Turbine System. IEEE Trans. Energy Convers. 2009, 24, 423–430. [CrossRef]

21. Liu, K.; Wang, X.; Qu, Z. Research on Multi-Objective Optimization and Control Algorithms for Automatic
Train Operation. Energies 2018, 12, 3842. [CrossRef]

22. Fu, Q.; Zhu, J.; Mao, Z.; Zhang, G; Chen, T. Online Condition Monitoring of Onboard Traction Transformer
Core Based on Core-Loss Calculation Model. IEEE Trans. Ind. Electron. 2018, 65, 3499–3508. [CrossRef]

23. Zhang, J.; Ding, G.; Zhou, Y.; Jiang, J.; Ying, X.; Qin, S. Identification of key design parameters of high-speed
train for optimal design. Int. J. Adv. Manuf. Technol. 2014, 73, 251–265. [CrossRef]

24. Tongxin, S.; Min, X.; Chen, J.; Clarence, D. An Energy Efficient Adaptive Sampling Algorithm in a Sensor
Network for Automated Water Quality Monitoring. Sensors 2017, 17, 2551–2565.

25. Mayet, C.; Delarue, P.; Bouscayrol, A.; Chattot, E. Hardware-In-the-Loop Simulation of Traction Power
Supply for Power Flows Analysis of Multi-Train Subway Lines. IEEE Trans. Veh. Technol. 2017, 66, 5564–5571.
[CrossRef]

26. Hasanzadeh, A.; Edrington, C.S.; Stroupe, N.; Bevis, T. Real-Time Emulation of a High-Speed Microturbine
Permanent-Magnet Synchronous Generator Using Multiplatform Hardware-in-the-Loop Realization.
IEEE Trans. Ind. Electron. 2014, 61, 3109–3118. [CrossRef]

27. Terwiesch, P.; Keller, T.; Scheiben, E. Rail vehicle control system integration testing using digital
hardware-in-the-loop simulation. IEEE Trans. Control Syst. Technol. 1999, 7, 352–362. [CrossRef]

28. Yang, X.; Yang, C.; Peng, T.; Liu, B.; Gui, W. Hardware-in-the-Loop Fault Injection for Traction Control
System. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 696–706. [CrossRef]

29. Qiu, B.; Wang, G.; Fan, Y.; Mu, D.; Sun, X. Robust Adaptive Trajectory Linearization Control for Tracking
Control of Surface Vessels With Modeling Uncertainties Under Input Saturation. IEEE Access 2018, 7,
5057–5070. [CrossRef]

30. Howlett, P.; Cheng, J. Optimal driving strategies for a train on a track with continuously varying gradient.
J. Aust. Math. Soc. 1997, 38, 388–410. [CrossRef]

31. Aufderheide, B.; Bequette, B.W. Extension of dynamic matrix control to multiple models. Comput. Chem.
Eng. 2003, 27, 1079–1096. [CrossRef]

32. Ravi, V. R.; Thyagarajan, T.; Maheshwaran, G.U. Dynamic Matrix Control of a Two Conical Tank Interacting
Level System. Procedia Eng. 2012, 38, 2601–2610. [CrossRef]

33. Wang, D.; Li, C. Self-Adaptive Dynamic Matrix Control for High-Speed Machining Servo Control. Int. J. Adv.
Manuf. Technol. 2003, 21, 733–738. [CrossRef]

34. Kozlik, C.; Geringer, B.; Schirrer, A.; Jakubek, S. Dynamic matrix control applied to emission control of a
diesel engine. Int. J. Engine Res. 2016, 17, 1–20. [CrossRef]

35. Wang, L.; Wang, X.; Sun, D.; Hao, H. Multi-objective optimization improved GA algorithm and fuzzy PID
control of ATO system for train operation. Commun. Comput. Inf. Sci. 2017, 13–22._2. [CrossRef]

36. Li, S.; Du, G. Online Parameter Tuning of Generalized Predictive Controller based on Fuzzy Satisfying
Degree Function. Control Decis. 2002, 17, 852–863.

37. Lu, H.; Zhang, M.; Fei, Z.; Mao, K. Multi-Objective Energy Consumption Scheduling in Smart Grid Based on
Tchebycheff Decomposition. IEEE Trans. Smart Grid 2015, 6, 2869–2883. [CrossRef]

38. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
39. Gao, Y.; An, X.; Liu, J. A Particle Swarm Optimization Algorithm with Logarithm Decreasing Inertia Weight

and Chaos Mutation. Int. Conf. Comput. Intell. Secur. 2008, 1, 61–65.
40. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Norwell, MA, USA, 2017.
41. Zitzler, E.; Dimo, B.; Lothar, T. The hypervolume indicator revisited: On the design of Pareto-compliant

indicators via weighted integration. In International Conference on Evolutionary Multi-Criterion Optimization;
Springer: Berlin/Heidelberg, Germany, 2007.

http://dx.doi.org/10.1109/TIE.2019.2896098
http://dx.doi.org/10.1109/TEC.2014.2362934
http://dx.doi.org/10.1016/j.jpowsour.2014.03.091
http://dx.doi.org/10.1109/TEC.2009.2015986
http://dx.doi.org/10.3390/en12203842
http://dx.doi.org/10.1109/TIE.2017.2758721
http://dx.doi.org/10.1007/s00170-014-5822-7
http://dx.doi.org/10.1109/TVT.2016.2622245
http://dx.doi.org/10.1109/TIE.2013.2279128
http://dx.doi.org/10.1109/87.761055
http://dx.doi.org/10.1109/JESTPE.2018.2794339
http://dx.doi.org/10.1109/ACCESS.2018.2889721
http://dx.doi.org/10.1017/S0334270000000746
http://dx.doi.org/10.1016/S0098-1354(03)00038-3
http://dx.doi.org/10.1016/j.proeng.2012.06.306
http://dx.doi.org/10.1007/s00170-002-1296-0
http://dx.doi.org/10.1177/1468087415592991
http://dx.doi.org/10.1007/978-981-10-6373-2_2
http://dx.doi.org/10.1109/TSG.2015.2419814
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008


Sensors 2020, 20, 1719 31 of 31

42. Beume, N.; Rudolph, G. S-Metric Calculation by Considering Dominated Hypervolume as Klee’s Measure
Problem. Evol. Comput. 2009, 17, 477–492. [CrossRef]

43. Prasad, K.; Ranjan, R.; Sahoo, N.C.; Chaturvedi, A. Optimal Reconfiguration of Radial Distribution Systems
Using a Fuzzy Mutated Genetic Algorithm. IEEE Trans. Power Deliv. 2005, 20, 1211–1213. [CrossRef]

44. Ariyarit, A.; Kanazaki, M. Multi-modal distribution crossover method based on two crossing segments
bounded by selected parents applied to multi-objective design optimization. J. Mech. Sci. Technol. 2015, 29,
1443–1448. [CrossRef]

45. Herrera, F.; Lozano, M.; Pére, E.; Sánchez, A.M.; Villar, P. Multiple Crossover per Couple with Selection of
the Two Best Offspring An Experimental Study with the BLX−α Crossover Operator for Real-Coded Genetic
Algorithms. Ibero-Am. Conf. Artif. Intell. 2002, 392–401._40. [CrossRef]

46. Peng, H.; Li, R.; Cao, L.; Li, L. Multiple Swarms Multi-Objective Particle Swarm Optimization Based on
Decomposition. Procedia Eng. 2011, 15, 3371–3375.

47. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evol. Comput. 2008, 11, 712–731. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/evco.2009.17.4.17402
http://dx.doi.org/10.1109/TPWRD.2005.844245
http://dx.doi.org/10.1007/s12206-015-0316-6
http://dx.doi.org/10.1007/3-540-36131-6_40
http://dx.doi.org/10.1109/TEVC.2007.892759
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Predictive Controller for Automatic Train Operation Tracking Control
	Evaluation Index for Automatic Train Operation Tracking Control
	Conventional Dynamic Matrix Control Model Predictive Control
	DMC Predictive Model
	Rolling Optimization
	Feedback Correction

	Fuzzy DMC Model Predictive Controller for Automatic Train Operation

	 Model Predictive Controller Based on Online Obtaining of Softness Factor and Fusion Velocity
	Fusion Velocity Computation Model and Corrected Model Based on Online Obtaining 
	Fusion Velocity Computation Model Based on Online Obtaining 
	Fusion Velocity Corrected Model Based on Online Obtaining 

	Softness Factor Adaptive Adjusting Model Based on Online Obtaining 
	Improved Whale Optimization Algorithm for Softness Factor Adaptive Adjusting Parameters Optimization 
	Performance Analysis of Optimization Algorithms Based on Standard Test Functions 
	Improved DMC Model Predictive Controller and Hardware-In-The-Loop Simulation Platform 

	Simulation for Automatic Train Operation Tracking Control Scenario
	Data and Parameters for Automatic Train Operation Tracking Control Scenario 
	Matlab/simulink Simulation Results for Automatic Train Operation Tracking Control Scenario 
	HILS Results for Automatic Train Operation Tracking Control Scenario 

	Conclusions
	References

