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Abstract: Planetary gearbox is a critical component for many mechanical systems. It is essential to
monitor the planetary gearbox health and performance in order to maintain the whole machine works
well. The methodology of mechanical fault diagnosis is increasingly intelligent with the extensive
application of deep learning. However, the cross-domain issue caused by varying working conditions
becomes an enormous encumbrance to fault diagnosis based on deep learning. In this paper, in order
to fully excavate potentialities of deep neural network architectures, a novel generative adversarial
learning method was introduced for a completely new fault diagnosis based on a deep convolution
neural network. In addition, the intelligent fault diagnostic scheme for planetary gearbox under
varying speed conditions was developed. After that, some experiments on measured vibration signals
of planetary gearbox were conducted to verify the validity and efficiency of the fault diagnostic
scheme. The results showed that the proposed method enhanced the capability of the intelligent
diagnosis for planetary gear faults under varying speed conditions.

Keywords: planetary gearbox; cross-domain; intelligent fault diagnosis; generative adversarial
learning; varying working conditions

1. Introduction

Planetary Gearbox (PG) is widely used in different sorts of machinery, owing to its compact
structure, large transmission ratio, strong load capacity, and high efficiency, such as helicopters, wind
turbines and robots in manufacturing systems. The vital role that the planetary gearbox plays in
a mechanical system makes its fault diagnosis become really significant. Most researchers use the
vibration signal of the machine to diagnose its health status. However, the information inside the
vibration signal is intricate and masked by many noise components. Lei and Feng built mathematical
vibration models to show the multi-frequency components inside the signal and their experiments
validated the fact that the planetary gearbox vibration signal was complicated for fault diagnosis [1,2].
So, from the vibration mechanism, fault feature extraction, to fault pattern recognition, these research
topics on fault diagnosis via vibration signal have been widely studied in the field of planetary gearbox
fault diagnosis [3].

While various methods have been developed for the fault diagnosis of planetary gearboxes, the
intelligent fault diagnosis method is more and more widely utilized to tackle complicated mechanical
diagnosis problems due to its adaptive learning mechanism, strong fault tolerance and high non-linear
regression ability [4,5]. Combining signal processing methods and machine learning algorithms,
researchers have proposed many intelligent fault diagnosis schemes for planetary gearbox. Cheng
and Chen proposed a PG diagnosis scheme which combined the fused entropy feature from Ensemble
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Empirical Mode Decomposition (EEMD), machine learning algorithms of Kernel Principle Component
Analysis (KPCA) and Learning Vector Quantization (LVQ) [6]. Li used the signal processing method
based on Adaptive Multi-scale Morphological Filter (AMMF) and Modified Hierarchical Permutation
Entropy (MHPE) to extract fault features in PG vibration signals and then diagnosed the fault by
Binary Tree Support Vector Machine (BT-SVM) [7]. Lei also advanced a health condition identification
method for multi-stage PG, adopting multi-class relevant vector machine as a classifier and introduced
Accumulative Amplitudes of Carrier Orders (AACO) and Energy Ratio-based Difference Spectra
(ERDS) as fault features which improved diagnosis performance and robustness [8]. These intelligent
methods had certain limitations and uncertainties. Firstly, in the pre-processing stage of vibration
signal, the expertise knowledge was highly required, such as signal processing and data statistics.
On the other hand, the intrinsic features for the faults of planetary gearbox were not found in these
existing literatures, which were independent of the fluctuation of working conditions. Thus, these led
to the problem of cross-domain for intelligent fault diagnosis of PG.

In recent years, Deep Learning (DL) has been attracting growing attention from various fields.
The deep model hierarchical structures make DL capable of learning intrinsic representations of raw
complex data, which provide the foundation for its popular application in visual recognition and natural
language processing [9–13]. Researchers in the field of mechanical fault diagnosis have taken advantage
of the deep learning ability to realize more adaptive feature learning from vibration signals [14]. Some
researchers applied various sorts of deep learning models as an upgraded classifier with manually
extracted features [15–28]. Such as Li and Sanchez utilized a deep support vector classification
to diagnose gearboxes and bearings with statistic features in time, frequency and time-frequency
domains [21]; Chen and Li extracted several time and frequency features and employed a Deep Belief
Network (DBN) to classify different health status of a gearbox [22]; and Shao and Jiang composed
an optimized DBN with 18 time-domain features of signals as an input to enhance fault diagnosis of
bearings [28]. Among these methods, the fault features had to be extracted firstly by complex signal
processing methods, and DL models were only used as a replacement of traditional machine learning
algorithms. Beyond 2014, some researchers began to apply DL models on mechanical fault feature
extraction. Lei and Jia proposed a Deep Auto Encoder (DAE)-based scheme to diagnose the health
status of the multi-stage gearbox in the frequency domain, which reached 100% accuracy under a
single working condition [29]. Janssens and Slavkovikj adopted a convolutional neural network to
autonomously learn useful features for bearing fault detection in a frequency domain which performed
better than using another classifier with manually chosen features [30]. Jing and Zhao utilized a
convolution neural network to diagnose seven kinds of gearbox faults in four kinds of working loads,
achieving 83% testing accuracy in the time domain and 98% accuracy in the frequency domain [31].
Zhang and Peng proposed a Deep Convolutional Neural Networks with a Wide first-layer kernels
(WDCNN) model to diagnose bearing faults in the untrained working speeds data domain, which
achieved nearly 100% accuracy, and preliminary showed the strong feature extraction ability of DCNN
in mechanical fault diagnosis [32]. Many researchers also improved the CNN architecture to achieve
better results for mechanical fault diagnosis [33–35]. However, few of them considered the issues of the
cross domain caused by the varying working conditions and environments. So, recently, researchers
introduced other deep learning methods, such as transfer learning, to address the cross-domain
problem [36,37].

As for the DL-based fault diagnoses, they have tremendous ability of feature extraction and
state recognition in different domains if there are sufficient various data for training. However, it is a
notoriously slippery task to get enough labeled data in various domains for diagnosis model training
to overcome the problem of cross-domain, especially in the practical engineering field. In this paper,
Generative Adversarial Network (GAN) is introduced for training the fault diagnosis model to fully
exploit the potentialities of the intelligent diagnostic scheme without enough experimental data. The
GAN-enhanced CNN is constructed for intelligent fault diagnosis of PG. Through theoretical design
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and experimental verification, the methodology is better for the PG fault diagnosis under varying
working conditions than normal CNN.

The rest of the paper is organized as follows. The generative adversarial learning architecture
is described in Section 2. The intelligent fault diagnosis method based on GAN-enhanced CNN is
presented in Section 3. Section 4 details the experiment validation for the method. Section 5 concludes
the paper at last.

2. Generative Adversarial Learning Architecture

GAN framework is introduced for intelligent fault diagnosis model training, which consists of
two neural networks trained in opposition to one another. The generator G takes a random noise vector
z as an input and outputs a series of signal Xfake = G(z), which simulates the vibration signal of PG. The
discriminator D receives either a real vibration signal or a generated fake signal from the generator
as input and outputs of a probability distribution P(S | X) = D(X) over possible signal sources. The
discriminator is trained to minimize the log-likelihood loss function Ls that forces it to assign to the
correct source:

Ls = − E[log P(S = real | Xreal)] − E[log P(S = fake | Xfake)] (1)

In addition, the generator in GAN is trained to minimize the quadratic term in Equation (1).
However, the fault status and the working conditions have important influences in the formation of
PG vibration signals. The fault class and working condition are employed as inputs independent of z.
The Auxiliary Classifier GAN (ACGAN) framework is adopted as shown in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 17 

 

The rest of the paper is organized as follows. The generative adversarial learning architecture is 
described in Section 2. The intelligent fault diagnosis method based on GAN-enhanced CNN is 
presented in Section 3. Section 4 details the experiment validation for the method. Section 5 concludes 
the paper at last. 

2. Generative Adversarial Learning Architecture 

GAN framework is introduced for intelligent fault diagnosis model training, which consists of 
two neural networks trained in opposition to one another. The generator G takes a random noise 
vector z as an input and outputs a series of signal Xfake = G(z), which simulates the vibration signal of 
PG. The discriminator D receives either a real vibration signal or a generated fake signal from the 
generator as input and outputs of a probability distribution P(S | X) = D(X) over possible signal 
sources. The discriminator is trained to minimize the log-likelihood loss function Ls that forces it to 
assign to the correct source: 

Ls = − E[log P(S = real | Xreal)] − E[log P(S = fake | Xfake)] (1) 

In addition, the generator in GAN is trained to minimize the quadratic term in Equation (1). 
However, the fault status and the working conditions have important influences in the formation of 
PG vibration signals. The fault class and working condition are employed as inputs independent of 
z. The Auxiliary Classifier GAN (ACGAN) framework is adopted as shown in Figure 1.  

 

Figure 1. Generative adversarial learning architecture. 

Every generated sample has a corresponding fault class label, c ∼ pc and working condition label, 
w ∼ pw in addition to the noise z. G uses all of these to generate vibration signals Xfake = G(c, w; z). The 
discriminator gives both a probability distribution over sources and a probability distribution over 
the labels, such as P(S | X), P(C | X) and P(W | X). The loss function has three parts: the log-likelihood 
of the correct source, LS of Equation (1); the log-likelihood of the correct fault class, LC of Equation (2); 
and the log-likelihood of working condition, LW of Equation (3).、 

Figure 1. Generative adversarial learning architecture.

Every generated sample has a corresponding fault class label, c ∼ pc and working condition label,
w ∼ pw in addition to the noise z. G uses all of these to generate vibration signals Xfake = G(c, w; z). The
discriminator gives both a probability distribution over sources and a probability distribution over the
labels, such as P(S | X), P(C | X) and P(W | X). The loss function has three parts: the log-likelihood of
the correct source, LS of Equation (1); the log-likelihood of the correct fault class, LC of Equation (2);
and the log-likelihood of working condition, LW of Equation (3).

LC = − E[log P(C = c | Xreal)] − E[log P(C = c | Xfake)] (2)

LW = − E[log P(W = w | Xreal)] − E[log P(W = w | Xfake)] (3)



Sensors 2020, 20, 1685 4 of 16

In the ACGAN scheme, D is trained to minimize LS + LC + LW while G is trained to minimize LC +

LW − LS. This ACGAN frameworks can learn a representation for z that is independent of the fault
class label and working condition.

Mode collapse is a vital issue to consider when training and implementing the GAN framework.
The training is said to result in mode collapse if the generator ends up mapping multiple z vectors to
the same output x, which is assigned a high probability of being real by the discriminator. The common
view of mode collapse and instability in GAN training is that it is caused by the supports of real and
model distributions being disjoint or lying on low-dimensional manifolds, and the generator cannot get
useful gradients to learn [38]. A novel gradient penalty scheme called Deep Regret Analytic Generative
Adversarial Networks (DRAGAN), which enables faster training, achieves improved stability and
modeling performance is applied here. The strategy to mitigate mode collapse is to regularize the
discriminator using the following penalty [39].

LR =Ex∼Preal,δ∼Nd(0,cI)[|| ∇x D(x + δ) || − k]2 (4)

where ∇x is the gradient against real data x. This works as a small perturbation of real data, which is
to constrain its gradients in the ambient data space and is likely to lie off the data-manifold. In the
training process, the instance noise δ of Nd(0,cI) is input to the discriminator with real data. The loss
functions for discriminator D and generator G can be synthesized as

L(D) = λSLS + λCLC + λWLW + λRLR (5)

L(G) = λCLC + λWLW − λSLS (6)

where L(D) is the loss function of the discriminator, and L(G) is the loss function of the generator; λS,
λC, λW, and λR are the coefficients of each loss in the synthesized loss function, which are selected as 1,
3, 5, and 0.5 in the later experiments.

3. Fault Diagnosis Method Based on GAN Enhanced CNN

3.1. One-Dimensional Convolution of CNN

A deep CNN architecture is always composed of several convolution blocks to enhance the feature
representation ability of CNN. A convolution block is normally composed of convolution layers,
activation layers, pooling layers, and so on. According to the extracted features by convolution block,
some activated fully connected layers and soft-max function follow afterward, acting as a classifier.
The convolution layer performs the convolution operation on the input signal to produce an output to
the next layer. Because the vibration signal is a one-dimensional time series, the convolution kernel
vector with size K j × 1 is applied here; the output of the convolution operation is:

y j = xw j (7)

y j[n] =
K j∑

k=1

x[n− k + 1]w j[k] (8)

where y j is the output of convolution, x is input data, and w j is the jth kernel. Formula (7) is the
definition, and (8) is the calculation of the convolution. Since x is the vibration signals or mapped
features defined in the time domain, the convolution operation corresponds to a Finite Impulse
Response (FIR) filtering operation, and the convolution kernel can be regarded as a passband FIR filter.
According to this band-pass filtering property of the convolution kernel, each convolution operation
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can extract features within a special frequency band, and the output of all convolution operations in a
convolution layer can be accumulated. So, the output of the convolution layer is

Y[n] =
∑

j

K j∑
k=1

x[n− k + 1]w j[k] (9)

Because the bias effect will be counteracted in the next batch normalization layer, the bias
parameters in the convolution formula are omitted. By mean of accumulation and abbreviation, the
characteristics in multiple frequency bands can be represented in only one feature map, so the number
of network parameters is reduced dramatically and the CNN architecture can be made deeper.

3.2. Batch Normalization

The vibration signal of PG is unstable because of the variable working conditions. Batch
Normalization (BN) is designed to re-scale the input feature map to reduce the shift of internal
covariance. The transformation of the BN layer is

BN = γ
x− E[x]√
V[x] + ε

+ β (10)

where E[x] and V[x] are the expectation and variance of the corresponding input feature maps; ε is a
very small constant in case of dividing zero; and γ and β are the scale and shift parameters, which
are trainable. This operation standardizes the input feature and learns the covariance shift between
different batches of input data to adjust the output features, which significantly solves the problems of
gradient vanishing and gradient exploding. It converts the original unknown data distribution into a
new fixed distribution, which fits right the feature that the model learns.

3.3. Rectified Linear Units Activation

For increasing the nonlinear properties of the final decision function without affecting the receptive
fields of the convolution layer, nonlinear activation function f is adopted after the convolution layer.
The activation output is defined as

y′ = f (y(i)) (11)

Rectified Linear Units (ReLU) is often preferred to the other activation functions in CNN. ReLU
activation function applies the non-saturating activation function to the input features. The employed
ReLU activation function is

f (y(i)) = max
{
0, y(i)

}
(12)

where y(i) is the input feature map. ReLU effectively decreases the parameter mutual dependency
and reduces the chance of the vanishing gradient problem in the deep network because its gradient is
either 0 or 1. It will increase the feature sparsity and improve general adaptive capability of CNN.

3.4. Generator of Vibration Signal

A 128-dimensional random noise vector z is taken as the latent space for the generator. The side
information includes fault class and working condition information. The fault class is one-hot encoded
into a 64 × 1-dimensional vector c. Here, the rotation speed working condition is just considered
according to the real data samples in our experiments. Binary encoding is used to encode the attribute
of rotation speed as a 64 × 1-dimensional vector w. The vector z, c and w are connected together into
a 256 × 1-dimensional vector, which is input into the generator. The input vector is extended into
512 dimensions through the fully connected layer at first. Then, 10 convolution blocks are utilized to
modulate the input signal into different pattern signals. After that, four deconvolution blocks are used
to up-sample the adequately modulated signal into a 8192 × 1-dimensional fake signal.
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As shown in Figure 2, the convolution block is composed of a convolution layer, a BN layer and a
ReLU activation layer. Here, the 1-D convolution kernel is used. In the convolution layers, “c64, k9, s1”
means that there are 64 convolution kernels; the 1-D kernel size is 9 × 1; and the stride size is 1. The
deconvolution block is composed of a deconvolution layer, a BN layer and a ReLU activation layer,
and “c256, k9, s2” means that there are 256 deconvolution kernels, the 1-D kernel size is 9 × 1, and the
stride size is 2. The last convolution layer amplifies and accumulates the signals of each channel, and
outputs the final synthetic signal.Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 
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3.5. Discriminator of Fault Diagnosis

The PG vibration signals or fake signals are input to the discriminator of fault diagnosis. As
shown in Figure 3, the first convolution block of the discriminator is composed of a convolution layer,
a BN layer, a ReLU activation layer, and a Global Average Pooling (GAP) layer. “c32, k9, s1” of the
convolution layer means that there are 32 convolution kernels, the 1-D kernel size is 9, and the stride
size is 1 in the convolution layer. Here, the GAP pooling layer acts as an anti-aliasing low-pass filter to
reduce the noise effect, and “w3” in pooling layer means the pooling size is 3, which corresponds to
different cut-off frequencies. The next eight convolution blocks are composed of a convolution layer,
a BN layer, a ReLU activation layer, and a max pooling layer, which extract multi-scale features of
signal. The three fully connection layers and soft-max layers are adopted to realize the recognition of
signal sources, classification of the faults, and regression of rotation speed conditions at last.
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4. Experiment Validation

The vibration signals for validation of GAN-enhanced CNN were collected from the planetary
gearbox fault diagnosis test rig shown in Figure 4. The motor drives the input shaft of the planetary
gearbox, which is fixed to the sun gear. The ring gear is standstill, and the planet carrier is coupled to the
output shaft, which drives the spur gearbox and the load. The rotation speed of the planetary gearbox
input shaft is measured by the tachometer. The vibration signals are sampled by an accelerometer
mounted on the planetary gearbox. The experimental planet gears are shown in Figure 5. As shown
in the figure, three kinds of PG health states are made, which are normal planet gear(NA) in (a),
man-made tooth clipped planet gear(TC) in (b), and teeth surface worn planet(SW) gear in (c).

The raw vibration signals of the planetary gearbox were sampled with a sampling frequency
of 12,000 Hz. For three health states of a normal gearbox, gearbox with a tooth clipped planet gear,
and gearbox with a surface worn planet gear, the vibration signals were collected under five speed
conditions, and in total, 15 segments of vibration signals were obtained. About 10,000 pieces of data
sets with 8192 data points were made in each segment through sliding window. The working frequency
details of the vibration signals are shown in Table 1. The Working Condition A (WC-A) is an input
rotation speed of 1500 r/min, the Working Condition B (WC-B) is an input rotation speed of 1200 r/min,
the Working Condition C (WC-C) is an input rotation speed of 900 r/min, the Working Condition D
(WC-D) is input rotation speed of 600 r/min, and the Working Condition E (WC-E) is an input rotation
speed of 300 r/min.
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Table 1. Planetary gearbox working parameters.

Parameter
Frequency (Hz)

WC-A WC-B WC-C WC-D WC-E

Sun gear rotation
frequency 25 20 15 10 5

Planet gear meshing
frequency 546.88 437.47 328.1 218.74 109.37

Planet carrier rotation
frequency 5.47 4.38 3.28 2.19 1.09

Planet gear pass
frequency 21.88 17.50 13.13 8.75 4.38

Planet gear rotation
frequency 9.72 7.78 5.83 3.89 1.94

Faulty planet gear
frequency 15.19 12.15 9.11 6.08 3.04

4.1. Experiment of Vibration Signal Generation

At the beginning of the experiment of PG vibration signal generation, the WC-D were treated
as the target domain for the uncertain various speed conditions, and the rest of the four kinds of test
data sets (WC-A, WC-B, WC-C, WC-E) composed the source domain data as the training data sets.
After the training of GAN-enhanced CNN with the test data sets in the source domain, the generator
could generate the vibration signals of normal gearbox, gearbox with tooth clipped planet gear, and
gearbox with surface worn planet gear under various rotation speed conditions. The comparisons of
real vibration signals and generated vibration signals of different state gearboxes in source domains
were made at first. For representation of generated vibration signals and real vibration signals in
source domains, Figure 6 to 11 show the time domain waveforms, all spectrums and the spectrums
around the planet gear mesh frequency of the six vibration signals for the three health states (NA, TC,
SW) under working conditions of WC-A and WC-E.
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In Figures 6–11, (a) and (b) are the time domain waveforms, (c) and (d) are the all spectrums,
and (e) and (f) are the spectrums around the planet gear mesh frequency of the generated vibration
signal and the real vibration signal. According to the comparison of information in three health states
under WC-A and WC-E conditions, the time domain waveforms of the generated signals (a) and real
signals (b) show the similar amplitudes and shapes, and there are almost the same frequency peaks and
energy distributions in all the spectrums of (c) and (d), but the side bands around the planet gear mesh
frequency are a bit different in the spectrums around the planet gear mesh frequency of (e) and (f). The
energies of the generated signals disperse to more frequency bands than the real signals in the whole
spectrums. The spectrums of the generated signal and real signal are more similar in Figures 9–11 than
in Figures 6–8 because the signal-to-noise ratio of real signal under WC-E is lower than that under the
higher speed condition of WC-A. So, the vibration signals generated by GAN can be regarded as the
real one with more noise, and it is better for training of the CNN model.
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The comparisons of real vibration signals and generated vibration signals of different state
gearboxes in the target domain of WC-D are shown as Figures 12–14. In the figures, the amplitudes
of the (a) generated signal time domain waveforms are smaller than (b) the real signals, but the
waveform shapes are similar. On the same position of the low-frequency band in (c) and (d), there
are corresponding prominent frequency peaks while there are many more frequency peaks and side
bands around the planet gear mesh frequency in (e) the generated signal spectrum than (f) in the real
signal spectrum. From the perspective of the all spectrum, there are more high-frequency peaks in the
generated normal signal spectrums, while the spectrum forms of the generated fault signal and the
real fault signal are similar in the middle and high frequency bands.Sensors 2020, 20, x FOR PEER REVIEW 13 of 17 
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After training of GAN-enhanced CNN with the test data sets in source domain, not only can the
generator produce the vibration signals, but also the discriminator can classify the fault of PG. In the
experiments, the fault classification accuracy of a batch of generated vibration signals was applied
as evaluation criterion. Table 2 shows the fault classification accuracy of the generated signals in the
source domain and target domain. The fault classification accuracy of the generated signal in the
source domain is in the interval of 83%–95% which is 78.7% in target domain. It means that all the
generated signals have the same fault characteristics as the real vibration signals. These evidences
prove the generator and the generated signals are effective measures for improving fault diagnosis
ability of CNN.

Table 2. The fault classification accuracy of the generated signals in source domain and target domain.

Source Domain Target Domain
WC-A WC-B WC-C WC-E WC-D

classification accuracy 83% 88.3% 85.3% 95% 78.7%
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4.2. Experiment of Fault Diagnosis in Target Domain

In the experiment of the fault diagnosis in the target domain, the train sets are used to train the
neural network model, and validation sets are used to evaluate the training quality. In verification of
the GAN-enhanced CNN fault diagnosis ability in the target domain under various speed conditions,
the four kinds of working conditions from the total five conditions were selected as source domains,
and the other one was treated as the target domain. For comparison, at first the experimental data
sets in the source domains of WC-A, WC-B, WC-C, and WC-E were utilized as training data for the
CNN, and then the generated data in all the domains and the experimental data in source domains
were employed for training the GAN-enhanced CNN. In order to reveal the detail of the differences
between the CNN and the GAN-enhanced CNN, 100 data sets in the target domain of WC-D were
tested at the end of each training epoch that was up to 20,000. The comparison of cross-domain fault
diagnosis performance of CNN and GAN-enhanced CNN is shown in Figure 15. The blue curved line
is the validation accuracy in the target domain after each training epoch, and the red dotted line is the
average accuracy throughout the process. The validation accuracy in the target domain is improved by
the GAN-enhanced CNN, and the average accuracy is increased from 61.3% to 77.25% in the figure. It
demonstrates that the cross domain diagnostic capability of CNN is enhanced by the generated signals
of the generator.
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Then the other experiment was conducted in order to validate further how the GAN enhanced
CNN model performed in different target domains under various speed conditions. When the neural
network model has been trained to have satisfying performance on validation sets, it can be used in
the diagnosing stage. The data sets in four kinds of speed conditions from the total five conditions
were chosen as training data, and the data sets in the other one condition were employed as the target
domain data sets that were used in the diagnosing stage. The result accuracies of GAN-enhanced
CNN and normal CNN in the target domain are shown in Figure 16. We can see that the accuracies
of the GAN-enhanced CNN are almost higher than normal CNN in all five kinds of target domains,
and the highest accuracy reaches 99.5% in working condition WC-A, and the lowest accuracy reaches
94.8% in working condition WC-E. The normal CNN performs well in working condition WC-A and
WC-B, which is only about 2–5% lower than that of GAN-enhanced CNN. However, the performance
of normal CNN is pretty bad when the target domains are changed to working conditions of WC-C,
WC-D and WC-E. It is because the fault characteristics are different in the vibration signal in the
lower working speed, the normal CNN fails to extract the fault patterns under these kinds of working
conditions, but generated signals of GAN carry the fault features in target domains for training. So,
the GAN-enhanced CNN model has more powerful fault diagnosis capability in target domains under
various working conditions.
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5. Conclusions

The varying working conditions cause feature distribution changing of the vibration signal in
the time domain and frequency domain, which will provoke the trouble of the cross-domain for
intelligent fault diagnosis. The fault diagnosis of PG under varying working conditions is hard and
tedious. We proposed an intelligent diagnostic scheme based on GAN-enhanced CNN to address the
problem. The GAN architecture is designed combining the fault classes and working conditions of
PG. The deep neural network model of the generator can simulate the dynamic model of PG and can
generate the vibration signals of PG in different fault states under varying working conditions after
generative adversarial learning. In addition, the CNN model of the discriminator is trained by the
measured vibration signals in the source domain and enhanced by the generated vibration signals of
the generator in the target domain. The cross-domain fault diagnosis accuracy of GAN-enhanced CNN
under varying working conditions is as much as 99.5% in the experiments. The results prove that the
cross-domain accuracy of GAN-enhanced CNN is 15.22% on average, and up to 30.9% higher than that
of the normal CNN in the experiments. It is verified that the GAN-enhanced CNN can be utilized to
diagnose the fault states of PG under varying working conditions with much accuracy. We will keep
researching the fault diagnostic scheme that can measure the deviation between source domain and
target domain and cross-domain intelligent fault diagnosis with only a few labeled training examples.
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