
sensors

Article

A Software Deep Packet Inspection System for
Network Traffic Analysis and Anomaly Detection

Wenguang Song 1, Mykola Beshley 2, Krzysztof Przystupa 3,* , Halyna Beshley 2,
Orest Kochan 2,3, Andrii Pryslupskyi 2, Daniel Pieniak 4 and Jun Su 5

1 School of Computer Science, Yangtze University, Jingzhou 434023, China; wenguang_song@yangtzeu.edu.cn
2 Department of telecommunications, Lviv Polytechnic National University, Bandery 12, 79013 Lviv, Ukraine;

mykola.i.beshlei@lpnu.ua (M.B.); halink@ukr.net (H.B.); orestvk@gmail.com (O.K.);
pr.andrii@gmail.com (A.P.)

3 Department of Automation, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
4 Department of Mechanics and Machine Building, University of Economics and Innovations in Lublin,

Projektowa 4, 20-209 Lublin, Poland; daniel.pieniak@wsei.lublin.pl
5 School of Computer Science, Hubei University of Technology, Wuhan 430068, China; sjhosix@gmail.com
* Correspondence: k.przystupa@pollub.pl

Received: 9 February 2020; Accepted: 12 March 2020; Published: 14 March 2020
����������
�������

Abstract: In this paper, to solve the problem of detecting network anomalies, a method of forming
a set of informative features formalizing the normal and anomalous behavior of the system on the
basis of evaluating the Hurst (H) parameter of the network traffic has been proposed. Criteria
to detect and prevent various types of network anomalies using the Three Sigma Rule and Hurst
parameter have been defined. A rescaled range (RS) method to evaluate the Hurst parameter has been
chosen. The practical value of the proposed method is conditioned by a set of the following factors:
low time spent on calculations, short time required for monitoring, the possibility of self-training,
as well as the possibility of observing a wide range of traffic types. For new DPI (Deep Packet
Inspection) system implementation, algorithms for analyzing and captured traffic with protocol
detection and determining statistical load parameters have been developed. In addition, algorithms
that are responsible for flow regulation to ensure the QoS (Quality of Services) based on the conducted
static analysis of flows and the proposed method of detection of anomalies using the parameter Hurst
have been developed. We compared the proposed software DPI system with the existing SolarWinds
Deep Packet Inspection for the possibility of network traffic anomaly detection and prevention. The
created software components of the proposed DPI system increase the efficiency of using standard
intrusion detection and prevention systems by identifying and taking into account new non-standard
factors and dependencies. The use of the developed system in the IoT communication infrastructure
will increase the level of information security and significantly reduce the risks of its loss.

Keywords: IoT; WSN; network anomaly; Hurst parameter; DPI; intrusion detection

1. Introduction

One of the manifestations of the society informatization process is the large-scale development of
network services, such as Internet of Things (IoT) services, Wireless Sensor Network (WSN) services,
Cloud services, Wireless Sensor Multimedia Networks (WSMN) services, etc. [1–3]. Administrators
of information systems, providing the services, face the task of ensuring the manageability and
accountability of these systems, data integrity, availability, and confidentiality. They also ensure the
system’s regular functioning and exclude as much as possible incidents of non-standard functioning
and network anomalies.

Sensors 2020, 20, 1637; doi:10.3390/s20061637 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4361-2763
https://orcid.org/0000-0001-7807-3515
http://dx.doi.org/10.3390/s20061637
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/6/1637?type=check_update&version=2

Sensors 2020, 20, 1637 2 of 41

With the increasing use of IoT and WSMN infrastructure, threats and attacks in existing corporate
network domains are growing proportionally in this infrastructure. The detection of attacks and
anomalies in the Internet of Things (IoT) infrastructure is a growing concern for IoT [4,5].

An anomaly is a deviation from generally accepted norms. Therefore, everything that deviates from
right or normal is called anomalous. Network anomalies are defined as deviations in the use of network
resources that are accessed through web services and network applications. Network anomalies
have different causes and may be related to hackers, incompetent users, hardware malfunctions, and
software defects. There are visible anomalies that appear directly in the incorrect operation of the
information computer system. The anomalies may not have visible signs, but they can cause failures
after a long time [6].

Anomaly detection is now one of the fastest growing areas of cybersecurity [7]. This is due to the
fact that anomalies are in most cases the initial stage of network attacks, which can have both negative
intangible effects and financial losses for organizations with substantial representation in cyberspace.
Typically, such anomalies are the result of intelligence or a "power-down" to further exploit detected
security problems for commercial gain.

Understanding the nature of network traffic anomalies is an important task. Whether or not the
anomalies are malicious, it is important to analyze them for two reasons:

- Anomalies can cause network congestion and increase router resource utilization, making their
detection critical.

- Some anomalies do not necessarily affect the network, but they can have a serious impact on a
client or end user.

A significant problem with anomaly detection is that the forms of anomalies can change depending
on the cause: from DoS attacks (denial of service) to incorrect configurations of the router. Denial of
Service, Data Type Probing, Malicious Control, Malicious Operation, Scan, Spying, and Wrong Setup
are such attacks and anomalies that can lead to failure of not only the IoT system, but across the entire
network infrastructure [8].

Detection and classification of anomalies assumes a continuous process of monitoring of events in
computer systems and networks; in this connection, processing big volumes of the data generated by
these sources is required. Using a deep packet inspection that combines the functionality of an intrusion
detection system (IDS) and an intrusion prevention system (IPS) is a good solution to detect network
anomalies and attacks [9]. Recent research shows that in the era of data encryption, the system can still
classify encrypted traffic, ensuring data security [10]. DPI-based solutions provide a complete picture
of network usage, identify subscribers that consume large amounts of traffic, and effectively manage
traffic in real time to help create or optimize service offerings, improve service quality, manage service
policies, and protect the network and its users [11–13]. Typically, DPI systems are installed at the most
loaded segments of the network (trunk links and connections to higher networks) and at points where
service management is required. By examining the packets passing through it (including the data
field), DPI determines which type of application a particular session belongs to and applies the rules
defined by the administrator. In this way, the administrator can block, restrict, prioritize, or redirect
traffic to other systems that meet the specified conditions. DPI uses rules based on signature analysis
as well as heuristic and statistical technologies to determine the protocols, so the rules specified by the
administrator will be applied based on the traffic being transmitted, even if the traffic is transmitted on
ports that are non-standard for the application used [14]. The signature-based analysis methods used
in modern intrusion detection systems are designed to detect known and accurately described types of
attacks, and they are unable to detect their modifications or new types, which makes the use of such
systems ineffective. The existing solutions for detecting network anomalies have so far prevented the
development of a single universal mechanism to detect previously unknown types of attacks. DPIs
are commercial software products that allow analyzing traffic for anomalies and threats in real time.
The limiting factors of using such systems are their high cost and closed architecture, which makes it
difficult to adapt them to the organization infrastructure.

Sensors 2020, 20, 1637 3 of 41

Despite the large amount of literature that describes basic network traffic characteristics, traffic
anomalies remain poorly understood [15–18]. There are many reasons for this. They require a
sophisticated monitoring infrastructure to identify anomalies, as well as tools to process measurements
fast enough to detect anomalies in real time. Another reason is that the nature of network traffic is
multidimensional and multiservice, which prevents useful anomaly information from being obtained
from traffic statistics.

The actual task at the moment is to find more effective universal methods of network anomalies
detection, which are the result of technical failures or unauthorized influence. The main requirement for
these methods is the possibility of detecting arbitrary types of anomalies, including those distributed
over time. Statistical studies of network traffic show the presence of self-similarity properties, as well
as the variability of these characteristics when anomalies appear in the network, which allows using
fractal analysis methods to detect attacks [19,20].

For this reason, the purpose of this paper is to develop effective algorithms for analysis of the
most used information protocols and to create a software DPI system that collects statistical data for
the further control of traffic in the network operator on the basis of the proposed Hurst parameter
estimation method for detecting and preventing network anomalies.

Thus, the proposed DPI system allows solving several important tasks at once: from optimizing
bandwidth and prioritizing traffic to the behavioral evaluation of subscribers and protecting networks
and sites from all kinds of attacks

This paper is organized as follows. Section 2 describes the related research work on network
anomaly detection methods, DPI systems, network traffic analysis, and anomaly detection in IoT and
WSN. Then, Section 3 introduces the proposed method for network traffic anomaly detection and
prevention. Section 4 describes the development of the software DPI system for network traffic analysis
and anomaly detection. Section 5 introduces the test bed for network traffic analysis and anomaly
detection, and it also includes the results and discussion. Finally, Section 6 concludes this work.

2. Related Work

2.1. Background on Network Anomaly Detection Methods

In this part, we illustrate the research status of development of the anomaly detection methods for
the information network.

Three commonly used categories of anomaly detection techniques are listed below:
Unsupervised anomaly detection technique. Systems using such techniques do not require

pre-prepared data and are, therefore, the most widely used. It is assumed that normal data in
a dataset is much more common than anomalous data. If the assumption is incorrect, systems built
using such techniques suffer from frequent false positives [21].

Supervised anomaly detection techniques. This technique assumes that there are two classes of entities
for normal and abnormal behavior. Normally, a model is constructed for the normal and anomaly
classes, after which the data not previously studied are compared to both classes to find out the one to
which one it belongs [22].

A semi-supervised anomaly detection technique. The technique implies that the data studied are
only available for the "norm" class. Considering that it is much easier to construct only a model of
normal behavior (since it is impossible to foresee all possible anomalies), this technique is more widely
applicable than the controlled method [23].

At the moment, there are quite a few methods to detect network traffic anomalies. They can be
grouped as follows:

Signature methods. The most commonly used group of methods, the essence of which consists
of compiling some alphabet from the events observed in the system and describing a set of attack
signatures in the form of regular expressions (in the general case) in the built alphabet. As a rule,
signature methods work at the lowest level of abstraction and analyze data that are directly transmitted

Sensors 2020, 20, 1637 4 of 41

over the network, system call parameters, and log file entries. The principle of this method’s operation
is described in the article. Signature methods are notable for the fact that hardware accelerators are
well used for them, but the method is not adaptive [24].

Neural networks using the knowledge base. Neural networks learn to detect anomalies for a period
of time when all behavior is considered normal. After training, the neural network is started in
recognition mode. In a situation where the input stream fails to recognize normal behavior, an attack is
recorded. Thus, by combining two different neural networks, you can identify and recognize computer
attacks with a fairly high degree of accuracy. The main advantages of using approaches based on
neural networks are the ability to adapt to dynamic conditions and the performance rates, which are
especially important when the system is operating in real time [25]. The disadvantage is that the
development of quality knowledge bases requires a lot of effort and time. Such methods are unable to
detect a rare or unknown anomaly.

Immune networks. The detection of anomalies is one of the possible applications of immune
methods. Since the number of examples of normal behavior usually exceeds the number of attack
examples by orders of magnitude, the use of immune networks for detecting anomalies is more
computationally complicated [26].

Expert systems. Information about normal behavior is presented in such systems in the form
of rules and monitored behavior in the form of facts. Based on the facts and rules, a decision is
made on whether the monitored behavior is "normal" or whether there is an anomaly [10]. The main
disadvantage of such systems is their high computational complexity (in the general case), in particular
at the detection of anomalies [27].

Cluster analysis. The essence of this group of methods is to divide the set of observable vectors
and system properties into clusters, among which are allocated clusters of normal behavior. Each
specific method of cluster analysis uses its own metrics, which allows assessing whether the observed
vector of system properties belongs to one of the clusters or is outside of the known clusters [9]. Most
of the methods based on clustering have been proposed for processing only continuous attributes. The
assumption is that large clusters are the norm, and small clusters are an anomaly. If it is not, then the
work of the method is difficult. Using an inappropriate measure of proximity of objects affects the
frequency of false alarms [28].

Statistical analysis. This group of methods is based on building a statistical profile of the system’s
behavior during a certain period of "learning", in which the system’s behavior is considered normal.
For each parameter of the system functioning, an interval of acceptable values is built using some
known distribution law. Further, in the detection mode, the system evaluates deviations of observed
values from the values obtained during the training. If deviations exceed some specified values, an
anomaly (attack) is recorded. Statistical analysis is characterized by a high level of false alarms when
used in local networks, where the behavior of objects has no smooth, averaged character. In addition,
this method is only stable within a particular system, i.e., the constructed statistical profiles cannot
be used on other similar systems. The advantage of this approach is that it does not require prior
knowledge about the properties of anomalies and can therefore be effective with unknown anomalies
and even with changes in existing known anomalies. One statistical method of detection is a method
based on fractal analysis [29–32].

The use of the described types of methods and systems of anomaly detection allows strengthening
security policies and bringing more flexibility in the process of network resources exploitation. However,
any system has certain advantages as well as some disadvantages. At the analysis of these means, it
appears that the majority of them carry out only one or several specific functions that cannot provide a
certain degree of complexity of information protection. As a result of the carried analysis of methods
and systems for detecting anomalies, it is allocated that only due to a combination of several methods
and systems is it possible to reach effective protection and to provide counteraction to threats.

Sensors 2020, 20, 1637 5 of 41

2.2. Background on DPI System

At the moment, there are a large number of intrusion detection systems. Commercial and
open-source systems can be distinguished for classification by the distribution method. Since the
algorithms of anomaly detection engines in commercial intrusion detection systems are in the vast
majority of cases an object of commercial secret, it is logical to describe the most famous open-source
projects—Snort, SolarWinds Network Performance Monitor and Suricata—to illustrate the principles
of work [33–35].

Snort is an open source free network intrusion, prevention, and detection system (IPS) with the
ability to perform packet registration and real-time traffic analysis in IP networks. So, the packet
received by Snort goes through decoders and preprocessors, and then it gets to the detector that applies
the rules. The task of the decoder is to separate the network and transport layer data (IP (Internet
Protocol), TCP (Transmission Control Protocol), UDP (User Datagram Protocol)) from the channel layer
protocols (Ethernet, 802.11, Token Ring...). The preprocessor task is to prepare data for rule application.
As a result, before entering the detector, prepared packets are formed, to which the detector begins to
apply the rules [36]. The rules themselves consist of a description of traffic, the required signature, a
description of the threat, and a description of the response to detection. Snort is a software product, and
although it has a proven track record, it still has some shortcomings. Similar to Snort, Suricata is a free
SWS (Software System) and PSB (Program Specification Block) with open source code. It was founded
by developers who worked on the IPS version of Snort [37]. The main differences between Suricata
and Snort include the ability to use the GPU (graphics processor) in IDS (Intrusion Detection System)
mode, more advanced system IPS, and multitasking. As a consequence, Suricata has high performance,
allowing to process traffic up to 10 Gbit on conventional equipment, and much more, including full
support for the format of rules Snort. Similar to Snort, Suricata consists of several modules: capture,
collection, decoding, detection, and output [38]. The most important feature of Suricata is that in
addition to its unique developments, it uses almost everything that is already implemented for Snort.

With the advent of encrypted protocols, the task of identifying network protocols became more
complex, which led to new developments. Work [39] considers the development and realization of
nDPI, which are libraries with an open source code for classification of protocols. This approach
uses package header and payload. The testing of the nDPI system in practice has confirmed the high
efficiency and accuracy of protocol detection. Another paper [40] proposes a practical approach for
improving the efficiency of traditional traffic classification methods by consistently passing the rapid
classification stages (based on ports and machine learning). Although the proposed method reduces
false positives and is more accurate, it requires significant time and resources when developing a DPI
system. The authors of work [41] propose to use deep learning (DL) techniques to develop practical
classifiers of mobile traffic that are capable of handling encrypted traffic. The basic problems regarding
the realization of such classifiers are considered and the efficiency of use of the offered classifier
is shown.

With the growing spread of computer networks and services that depend on them, the problem
of detecting abnormal network activity becomes more and more acute. Network anomalies and
their detection techniques have an established classification. Anomaly detection methods also have a
sufficiently detailed classification, which helps to determine the method used by a modern intrusion
detection system.

2.3. Related Research on Network Traffic Analysis and Anomaly Detection in IoT and WSN

WSNs and IoT have become very popular recently [42,43]. These networks, consisting of many
miniature nodes equipped with a low-power transceiver, microprocessor, and sensor, can connect
global computer networks with the physical world [44–46]. The concept of wireless sensor networks
has attracted the attention of many scientists, research institutes, and commercial organizations, which
has provided a large flow of scientific work on this topic [47–53]. The integration of low-power wireless

Sensors 2020, 20, 1637 6 of 41

networking technologies such as (WSNs) and low-cost cameras and microphones has allowed the
development of so-called WMSNs (Wireless Multimedia Sensor Networks) [54].

The potential and feasibility of graph-based deep learning for detecting anomalies in these
WSNs are also explored. Finally, some remarks on modeling anomaly detection methods, using
appropriate datasets for validation purposes, and interpreting complex machine learning models are
given. Unfortunately, such methods are unable to detect a rare or unknown network anomaly [55].

The authors [56] propose a new approach for the automatic detection of anomalies in heterogeneous
sensor networks, based on the analysis of data on the boundaries of communication with the analysis
of cloud data. This approach uses a fully unmanaged artificial neural network algorithm, while cloud
data analysis uses a multi-parameter editing distance algorithm. The experimental evaluation of the
proposed method is carried out using edge and cloud analysis on real data, which were obtained in
the internal environment of the building, and then distorted with a number of synthetic violations.
The obtained results show that the proposed method can self-adapt to environmental changes and
correctly detect anomalies. The authors show how a combination of edge and cloud computing can
mitigate the disadvantages of pure edge analysis or pure cloud solutions.

In paper [57], the authors presents a literature survey of the work done in the field in recent years
focusing primarily on machine learning techniques to network anomaly detection. Major research gaps
regarding the practical feasibility of these schemes are also identified from surveyed work in Industrial
Wireless Sensor Networks (IWSN), and critical water infrastructure is discussed as a use case.

In order to more effectively detect new attacks, a model of anomaly detection using the Hurst
exponent vector and the multifractal spectrum is proposed in work [58]. It is shown that a multifractal
analysis shows sensitivity to any deviation of network traffic properties resulting from anomalies.
Proposed traffic analysis methods can be ideal for protecting critical data and maintaining the continuity
of Internet services, including the IoT. The disadvantage of the proposed method for detecting anomalies
requires a significant monitoring interval, preventing a rapid response to anomalies.

The authors [59] explore the use of big data and machine learning to identify abnormal actions
that can occur in a smart home environment. The Hidden Mark Model (HMM) learns how to handle
network level sensor data from a multi-sensor test bed with intelligent devices. The generated HMM
shows 97% accuracy when identifying potential anomalies that indicate an attack.

The survey [60] gives a brief idea about challenges in DPI and some of the design objectives and
then briefly explains different matching algorithms and their limitations. At the end, some of the most
popular techniques using DPI are outlined.

The paper [61] suggests a new model to improve the performance of intrusion detection systems
by using in/out-based attributes of records. It takes comparatively less time and has better accuracy
than the existing classifiers.

In the course of the review of the work, the existing methods of anomaly detection and tools for
this purpose were studied. It turned out that despite the large number of existing research in this
field, the topic has not lost its relevance, and the existing solutions still have a number of significant
shortcomings. In addition, a number of facts and regularities were found in the course of the study that
allowed the authors of the work to offer a new method based on the calculation of the Hurst parameter
as a digital value to indicate the normality or anomaly of network traffic.

3. Description of the Proposed Method for Network Traffic Anomaly Detection and Prevention

As a solution to the problem of network anomalies detection, a new method is proposed based on
the algorithm developed by the authors below.

The approach implies the development of a software–hardware complex (SHC) for detecting
network anomalies. Under SHC, we mean the installation of the software product developed by the
authors, which performs the functions of DPI on available hardware platforms (servers). In addition,
modern technologies already allow making full-featured DPI in the form of a special router [62].

Key steps in using the method (approach):

Sensors 2020, 20, 1637 7 of 41

1. Installing the device (SHC) in the enterprise network;
2. Capturing of subscriber traffic and processing using an algorithm;
3. Reaction to the detected anomaly (depends on the installation scheme).

A summary principle of the algorithm’s operation is described below.
In order to detect an anomaly, it is proposed to use a table of reference values for each new

subscriber who appears in the network. The algorithm has two stages: the Training stage and the
Detection stage. The algorithm also has three main components: Collector, Analyzer, and Regulator.
The list of objects for which the reference values are calculated is the subject of discussion, but it is
obvious that the key objects are the values of the transport and network level headers. In a simple
interpretation, data obtained during the training phase will be compared with data obtained during the
detection phase after its completion. If the training stage is final (authors proposes to set this training
to 1 minute from the moment the subscriber appears in the field of view of the system), the detection
stage is not present, and it is a cyclic repetition of the calculation of the value for the time window of
monitoring and comparison with the reference values.

The authors of this paper proposed using the Hurst parameter (H) as an anomaly criterion. The
authors assumed that by making a number of control measurements and filling out the subscriber’s
table, it is possible in further monitorings to draw conclusions about the normality or anomaly of traffic
based on the remoteness of the actual values received from the reference. The H parameter, which is
called the Hurst parameter, is a measure of self-similarity or a measure of the long-term dependence of
the stochastic process. A value H = 0.5 indicates that there is no long-term dependence. The closer the
H value is to 1, the higher the degree of stability of the long-term relationship. This is true for large
samples, while in this work, it is suggested to use very small samples, which is also the author’s idea.

There are a number of methods to determine the Hurst parameter: R/S-analysis (normalized scale
method), the change in time of dispersion of an aggregated series, calculation using wavelet analysis,
and fractality index determination. Taking into account the needs of the authors of this paper (the
need to obtain a certain final value), R/S analysis of the time series was chosen. In spite of the fact
that R/S-analysis gives only an approximate value of the Hurst index [63], the decisive factor was the
simplicity of the calculations. The wavelet analysis was also considered, but it was discarded due to
the fact that the complexity of calculations and the sample volume necessary for the calculation of
scaling factors are excessive for the method proposed in this paper.

After receiving the values and writing them to the table, the system will calculate the average
value for each group of values by intervals, as well as the standard deviation (SN). Based on these data,
the system will build an interval according to the Three Sigma rule, and in the case of the proposed
method, when the average value of the entire sample is unknown. When the Three Sigma rule is
applied, provided the normal distribution, all values with a probability of more than 99% will fall [64].
This is necessary to estimate the level of anomaly depending on the hitting of the value obtained at the
stage of detection, within a range of (-3 SN; +3 SN).

The main idea is that the packets from each subscriber of the internal network run through two
stages: training and discovery. The training phase lasts for a specified period of time, and after its
completion, the system will have a table of values for this subscriber. Going to the detection stage,
the system will compare the real-time calculations for certain intervals with the value in the table and
make conclusions about the presence of anomaly activity. A table is maintained for each subscriber,
and the training and detection stages are different for each subscriber.

3.1. Block Diagram of the Network Anomaly Detection Algorithm Based On Hurst Parameter Estimation by
R/S Method

The collector captures the traffic and obtains digital values from the packet headers per time
unit of monitoring. By monitoring unit, we mean a group of values for a certain time interval. The
collector is also engaged in sorting traffic by subscribers and transmitting values for further processing
to the analyzer.

Sensors 2020, 20, 1637 8 of 41

The analyzer, in its turn, applies mathematical formulas to the values received from the collector
and must decide what to do with the traffic further. To do it, it needs to understand whether the
subscriber is new or has been in the system’s sight before. If the subscriber is new, the system moves
on to the training stage, i.e., a new blank table of reference values is started, and its filling starts. If
the subscriber is already in the system base, the analyzer must understand what stage he is at. If the
subscriber is in the training stage, it is necessary to continue writing to the existing table.

The time mark in a certain cell in the table will allow the analyzer to understand how long the
training stage has been started. If the subscriber is at the training stage, this is where it ends. If
a subscriber is at the detection stage, the time stamp is forwarded to the regulator. The regulator
compares the values obtained from the analyzer with the values from tables (obtained during the
training stage) and makes conclusions about the presence or absence of an anomaly. If an anomaly is
detected, the action is applied. An action may be some kind of a sanction (for example, the limitation
of ICMP traffic for a subscriber) or passive behavior (notification of the system administrator about a
potential problem).

The below shows a block diagram of the algorithm (Figure 1).

Sensors 2020, 20, x FOR PEER REVIEW 8 of 42

subscriber is already in the system base, the analyzer must understand what stage he is at. If the
subscriber is in the training stage, it is necessary to continue writing to the existing table.

 The time mark in a certain cell in the table will allow the analyzer to understand how long the
training stage has been started. If the subscriber is at the training stage, this is where it ends. If a
subscriber is at the detection stage, the time stamp is forwarded to the regulator. The regulator
compares the values obtained from the analyzer with the values from tables (obtained during the
training stage) and makes conclusions about the presence or absence of an anomaly. If an anomaly is
detected, the action is applied. An action may be some kind of a sanction (for example, the limitation
of ICMP traffic for a subscriber) or passive behavior (notification of the system administrator about a
potential problem).

The below shows a block diagram of the algorithm (Figure 1).

Figure 1. Block diagram of the anomaly detection algorithm.

As discussed above, it is proposed to use R/S analysis to calculate the Hurst parameter as a
method for obtaining a numerical value (which will be written to Table 1).

Figure 1. Block diagram of the anomaly detection algorithm.

Sensors 2020, 20, 1637 9 of 41

As discussed above, it is proposed to use R/S analysis to calculate the Hurst parameter as a method
for obtaining a numerical value (which will be written to Table 1).

Table 1. Example of a subscriber table.

IP.addr = XX.XX.XX.XX Another.data

Int., s. H1 H2 H3 H4 Hn

Window.size = 3 sec.
1–3 H1–31 H1–32 H1–33 H1–34 H1–3n
4–6 H4–61 H4–62 H4–63 H4–64 H4–6n
7–9 H7–91 H7–92 H7–93 H7–94 H7–9n

. . . –
58–60 H58–601 H58–602 H58–603 H58–604 H58–60n

Havg(3sec) Havg1 Havg2 Havg3 Havg 4 Havg n
SN(3sec) SN(3sec)1 SN(3sec)1 SN(3sec)1 SN(3sec)1 SN(3sec)1

Window.size = 15 sec.
1–15 H1–151 H1–152 H1–153 H1–154 H1–15n

16–30 H16–301 H16–302 H16–303 H16–304 H16–30n
31–45 H31–451 H31–452 H31–453 H31–454 H31–45n
46–60 H46–601 H46–602 H46–603 H46–604 H46–60n

Havg(15sec) Havg1 Havg2 Havg3 Havg 4 Havg n
SN(15sec) SN (15sec)1 SN (15sec)1 SN (15sec)1 SN (15sec)1 SN (15sec)1

Window.size = 60 sec.
1–60 H1–31 H1–32 H1–33 H1–34 H1–3n

Havg(60sec) Havg 1 Havg2 Havg 3 Havg 4 Havg n

Its essence is as follows.
First, it determines the average value of the traffic packets intensity Xk(k = 1 . . .N), in which N

stands for the size of the sample:

MN =
1
N

N∑
k=1

Xk. (1)

The dispersion of traffic packets intensity is determined Xk(k = 1 . . .N):

S2
N =

1
N

N∑
k=1

(Xk −MN)
2. (2)

Standard deviation is defined as follows:

SN =

√√√
1
N

N∑
k=1

(Xk −MN)
2. (3)

If a small sample is selected N < 50, the Bessel correction is entered, and the standard deviation is
defined as follows:

SN =

√√√
1

N − 1

N∑
k=1

(Xk −MN)
2. (4)

For estimation of the range of the traffic packets intensity values, it is suggested to use the integral
deviation, which is an interval determination of the deviation of the sum of the network traffic intensity
values j from the average intensity values j.

Sensors 2020, 20, 1637 10 of 41

The integral deviation is determined:

D j =

j∑
k=1

Xk − jM, j ∈ [1; N]. (5)

Accordingly, an array of data is formed, for which the range is determined as the difference
between the maximum and minimum values of the integral deviation.

The difference between the integral deviation of traffic intensity (is the range of the first N
cumulative deviations from the mean) is determined:

RN = maxD j
1≤ j≤N

−minD j
1≤ j≤N

. (6)

From the ratio:
RN

SN
≈

(N
2

)H
. (7)

The Hurst parameter H for network traffic is determined:

H =
log

(RN
SN

)
log

(
N
2

) . (8)

It is suggested to take a quantitative value of data of a certain type for 1 second per monitoring
unit. Knowing the duration of the training stage (1 minute), we can propose the following scheme
for calculating values: once in 5 seconds, once in 20 seconds, and once in 60 seconds. Accordingly,
parameter N of the Formula 7 will be for 5, 2, and 60 measurements. Figure 2 shows a time span of 60
seconds with the following indications of the monitoring windows.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 42

parameter N of the Formula 7 will be for 5, 2, and 60 measurements. Figure 2 shows a time span of 60
seconds with the following indications of the monitoring windows.

0
0 10 20 30

Times [s]

40 50 60

25

50

75

100

125

150

Tr
an

sf
er

 ra
te

 [p
ac

ke
ts

/s
]

3s

15s

60s
Figure 2. Monitoring windows (3, 15, and 60 seconds).

An important part of the method is the concept of storing reference values in tables. Tables are
supposed to store data obtained after applying a mathematical formula. Each subscriber has its own
table. Tables are considered expired when the device does not receive data from a subscriber within a
specified timeout. A subscriber's table stores his IP address, time when the table was created (zero
point, time when the subscriber appeared in the field of view of the system), and other values that are
invariable during the system operation time. In addition, the subscriber's table stores data from three
different monitoring windows (20 rows of a 3-second window, four rows of a 15-second window, and
one row of a minute window). Table 1 shows an example of a subscriber's table completed as a result
of the training stage operation.

Table 1. Example of a subscriber table.

IP.addr = XX.XX.XX.XX Another.data
Int., s. H1 H2 H3 H4 Hn

Window.size = 3 sec.
1–3 H1–31 H1–32 H1–33 H1–34 H1–3n
4–6 H4–61 H4–62 H4–63 H4–64 H4–6n
7–9 H7–91 H7–92 H7–93 H7–94 H7–9n

…–… … … … … …
58–60 H58–601 H58–602 H58–603 H58–604 H58–60n

Havg(3sec) Havg1 Havg2 Havg3 Havg 4 Havg n
SN(3sec) SN(3sec)1 SN(3sec)1 SN(3sec)1 SN(3sec)1 SN(3sec)1

Window.size = 15 sec.
1–15 H1–151 H1–152 H1–153 H1–154 H1–15n

16–30 H16–301 H16–302 H16–303 H16–304 H16–30n
31–45 H31–451 H31–452 H31–453 H31–454 H31–45n
46–60 H46–601 H46–602 H46–603 H46–604 H46–60n

Havg(15sec) Havg1 Havg2 Havg3 Havg 4 Havg n
SN(15sec) SN (15sec)1 SN (15sec)1 SN (15sec)1 SN (15sec)1 SN (15sec)1

Window.size = 60 sec.
1–60 H1–31 H1–32 H1–33 H1–34 H1–3n

Figure 2. Monitoring windows (3, 15, and 60 seconds).

An important part of the method is the concept of storing reference values in tables. Tables are
supposed to store data obtained after applying a mathematical formula. Each subscriber has its own
table. Tables are considered expired when the device does not receive data from a subscriber within a
specified timeout. A subscriber’s table stores his IP address, time when the table was created (zero
point, time when the subscriber appeared in the field of view of the system), and other values that are
invariable during the system operation time. In addition, the subscriber’s table stores data from three
different monitoring windows (20 rows of a 3-second window, four rows of a 15-second window, and

Sensors 2020, 20, 1637 11 of 41

one row of a minute window). Table 1 shows an example of a subscriber’s table completed as a result
of the training stage operation.

As you can see from the subscriber table example, at the end of each block, the average value for
each supervised object is written. If the monitoring window is equal to 60 seconds, these values are
not counted (not necessary). The standard deviation is also counted and recorded in the table. The
standard deviation is counted for monitoring windows of 3 and 15 seconds.

The point of using three different types of monitoring windows is to have more accurate data for
the algorithm during the detection phase.

It is suggested to use the "Three Sigma" rule for determining the interval of traffic values
distribution. The Three Sigma Rule states that (3σ) practically all values of a normally distributed
random value lie in the interval (MN -3 σ; MN +3 σ). More strictly, with approximately 0.9973 probability,
the value of the normally distributed random value lies within the specified interval (provided that the
value is true and is not obtained as a result of sample processing). If the true value is unknown, then it
is not SN that should be used. Thus, the Three Sigma rule is transformed into the Three SN. Normal
distribution probability density graph and random hit percentage values per segments equal to the
standard deviation are shown in Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 42

Havg(60sec) Havg 1 Havg2 Havg 3 Havg 4 Havg n

As you can see from the subscriber table example, at the end of each block, the average value for
each supervised object is written. If the monitoring window is equal to 60 seconds, these values are
not counted (not necessary). The standard deviation is also counted and recorded in the table. The
standard deviation is counted for monitoring windows of 3 and 15 seconds.

The point of using three different types of monitoring windows is to have more accurate data for
the algorithm during the detection phase.

It is suggested to use the "Three Sigma" rule for determining the interval of traffic values
distribution. The Three Sigma Rule states that (3σ) practically all values of a normally distributed
random value lie in the interval (MN -3 σ; MN +3 σ). More strictly, with approximately 0.9973
probability, the value of the normally distributed random value lies within the specified interval
(provided that the value is true and is not obtained as a result of sample processing). If the true value
is unknown, then it is not SN that should be used. Thus, the Three Sigma rule is transformed into the
Three SN. Normal distribution probability density graph and random hit percentage values per
segments equal to the standard deviation are shown in Figure 3.

µ 1σ 2σ 3σ -1σ -2σ -3σ
0.0

0.2

0.1

0.3

0.4

0.1% 2.1%
13.6% 13.6%

34.1% 34.1%

0.1%2.1%

1SN 2SN 3SN-1SN-2SN-3SN MN

σ, SN - standard deviation

µ, MN - average value(mean)

Figure 3. Graph of normal distribution probability density and percentage of random value hit on the
sections equal to the standard deviation.

In this case, it seems logical to suggest using remoteness from the range (-1 SN;+1 SN) as the traffic
anomaly criterion. Thus, traffic values in the ranges of (-∞;-1SN) and (1SN;+∞) can be considered
anomalous. It has been established by experience that the generated anomalies are characterized not
only by a sharp increase in the values calculated by Formula 7, but also by their desire to decrease
under certain conditions. In other words, the farther from (in any direction) the value obtained at the
detection stage, the more likely it is that the traffic can be considered anomalous.

It is assumed that the data is sent from the analyzer to the regulator (which means that the system
works with subscriber traffic already at the detection stage). The analyzer transmits the calculated
value to the regulator within the minimum interval (3 seconds). The analyzer compares the calculated
values with the table ones in order to fulfill the following condition:

1 1N NS H S    . (9)

where the H is the value of Hurst parameter obtained after Formula 7.
If the condition is satisfied in the window for 3 seconds, then everything is considered to be in

order. If the condition is not satisfied in the 3-second window (H values are outside the normal range),
the system has reason to believe that there is an anomaly. However, the system will wait for the value
of the 15-second window and compare it with the tables calculated in the training phase. If there is no
anomaly on the 15-second window, this is considered the norm, and no action is taken. If there is an
anomaly here too, it is necessary to find out how much the value deviates from the conditional norm.
If the deviation range lies in (+1 SN;+2 SN) or (-2 SN;-1 SN), restrictive measures will be taken, and the

Figure 3. Graph of normal distribution probability density and percentage of random value hit on the
sections equal to the standard deviation.

In this case, it seems logical to suggest using remoteness from the range (-1 SN;+1 SN) as the traffic
anomaly criterion. Thus, traffic values in the ranges of (-∞;-1SN) and (1SN;+∞) can be considered
anomalous. It has been established by experience that the generated anomalies are characterized not
only by a sharp increase in the values calculated by Formula 7, but also by their desire to decrease
under certain conditions. In other words, the farther from (in any direction) the value obtained at the
detection stage, the more likely it is that the traffic can be considered anomalous.

It is assumed that the data is sent from the analyzer to the regulator (which means that the system
works with subscriber traffic already at the detection stage). The analyzer transmits the calculated
value to the regulator within the minimum interval (3 seconds). The analyzer compares the calculated
values with the table ones in order to fulfill the following condition:

−1SN ≤ H ≤ +1SN. (9)

where the H is the value of Hurst parameter obtained after Formula 7.
If the condition is satisfied in the window for 3 seconds, then everything is considered to be in

order. If the condition is not satisfied in the 3-second window (H values are outside the normal range),
the system has reason to believe that there is an anomaly. However, the system will wait for the value
of the 15-second window and compare it with the tables calculated in the training phase. If there is no
anomaly on the 15-second window, this is considered the norm, and no action is taken. If there is an

Sensors 2020, 20, 1637 12 of 41

anomaly here too, it is necessary to find out how much the value deviates from the conditional norm.
If the deviation range lies in (+1 SN;+2 SN) or (-2 SN;-1 SN), restrictive measures will be taken, and
the system will continue to wait for the minute window values. If the range is (+2 SN;+∞) or (-∞;-2
SN), the system will take immediate restrictive action. In the minute window, it is possible to get only
one value, so in this window, a simple comparison of H values of the H 6 Havg1-60 will be used as a
criterion. If the declared condition is satisfied, the traffic is considered normal, if it is not satisfied, the
traffic is anomalous. Below, Figure 4 shows a detailed block diagram of the algorithm operation at the
detection stage.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 42

system will continue to wait for the minute window values. If the range is (+2 SN;+∞) or (-∞;-2 SN), the
system will take immediate restrictive action. In the minute window, it is possible to get only one
value, so in this window, a simple comparison of H values of the H ⩽ Havg1-60 will be used as a
criterion. If the declared condition is satisfied, the traffic is considered normal, if it is not satisfied, the
traffic is anomalous. Below, Figure 4 shows a detailed block diagram of the algorithm operation at the
detection stage.

Figure 4. Block diagram of the detection algorithm in terms of the "Regulator" component operation.

As you can see from the algorithm, when detecting an anomaly on the smallest monitoring
window (3 seconds), the system will mark this value as suspicious, but it will not take action (since it
is impossible to say with full confidence that the traffic is anomalous, given the " burst " nature of
network traffic), because perhaps it is only a "dotted" anomaly. If the anomalous behavior is stored in
the monitoring window for 15 seconds, appropriate measures (restrictive or prohibitive) will be taken.
If the anomalous behavior is also stored on the minute monitoring window, then prohibitive measures
will be taken already (Blocking of traffic). It should be noted that the application of measures is only
possible in the "burst mode". Otherwise, the system passively informs the administrator about the
problem (message in syslog, e-mail, etc., or limiting the throughput of this traffic to ensure QoS for
real-time services).

3.2. Demonstration of the Anomaly Criterion H Calculation on the Example of Web Traffic

To demonstrate the calculations, we illustrate them by the example of three-second windows for
the monitoring object TCP (Transmission Control Protocol) packets. Traffic for the demonstration of
calculations is collected on the test computer in the standard mode of user work with websites. Traffic

Figure 4. Block diagram of the detection algorithm in terms of the "Regulator" component operation.

As you can see from the algorithm, when detecting an anomaly on the smallest monitoring
window (3 seconds), the system will mark this value as suspicious, but it will not take action (since
it is impossible to say with full confidence that the traffic is anomalous, given the " burst " nature of
network traffic), because perhaps it is only a "dotted" anomaly. If the anomalous behavior is stored in
the monitoring window for 15 seconds, appropriate measures (restrictive or prohibitive) will be taken.
If the anomalous behavior is also stored on the minute monitoring window, then prohibitive measures
will be taken already (Blocking of traffic). It should be noted that the application of measures is only
possible in the "burst mode". Otherwise, the system passively informs the administrator about the
problem (message in syslog, e-mail, etc., or limiting the throughput of this traffic to ensure QoS for
real-time services).

Sensors 2020, 20, 1637 13 of 41

3.2. Demonstration of the Anomaly Criterion H Calculation on the Example of Web Traffic

To demonstrate the calculations, we illustrate them by the example of three-second windows for
the monitoring object TCP (Transmission Control Protocol) packets. Traffic for the demonstration of
calculations is collected on the test computer in the standard mode of user work with websites. Traffic
was collected using the most popular traffic analyzer Wireshark [65]. Figure 5 shows the graph of TCP
packets distribution for the monitoring period of 60 seconds.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 42

was collected using the most popular traffic analyzer Wireshark [65]. Figure 5 shows the graph of TCP
packets distribution for the monitoring period of 60 seconds.

As the first input data, we get three values (2, 2, 0) in a three-second monitoring window. Using
Formula (4), we get the deviation equal to 1.15. Swing is the maximum value for the monitoring
window minus the minimum value. By substituting the values in Formula (7), we obtain the following

2 3
2.15 2

H
   
 

, (10)

1.5log 1.73H = . (11)

The resulting H value is 1.35. This value will be recorded in the subscriber's table. Having made
similar operations for all monitoring windows, we will receive following values for TCP packets. As it
is visible from Table 2, if the input data for a window of supervision are "zeros", then a calculation is
not made, and dashes are input into the table. After that, the average value for each group of window
values and the standard deviation are calculated.

0
0 10 20 30

Times [s]

40 50 60

5

10

15

20

25

Tr
an

sf
er

 ra
te

 [p
ac

ke
ts

/s
]

3s

15s

60s
Figure 5. The graph of TCP (Transmission Control Protocol) packets of web traffic distribution for the

monitoring period of 60 seconds.

Table 2. Subscriber tables for TCP packets of web traffic.

Int., s. = 3 H3 Int., s. = 15 H15 Int., s. = 60 H60
1–3 1.35 1–15 0.4

1–60

0.5

 4–6 1.35
7–9 1.33

10–12 1.7
13–15 1.7
16–18 1.65 16–30 0.6
19–21 1.35
22–24 1.35
25–27 –
28–30 –
31–33 1.35 31–45 0.62
34–36
37–39
40–42

Figure 5. The graph of TCP (Transmission Control Protocol) packets of web traffic distribution for the
monitoring period of 60 seconds.

As the first input data, we get three values (2, 2, 0) in a three-second monitoring window. Using
Formula (4), we get the deviation equal to 1.15. Swing is the maximum value for the monitoring
window minus the minimum value. By substituting the values in Formula (7), we obtain the following

2
2.15

≈

(3
2

)H
, (10)

H = log1.5 1.73. (11)

The resulting H value is 1.35. This value will be recorded in the subscriber’s table. Having made
similar operations for all monitoring windows, we will receive following values for TCP packets. As it
is visible from Table 2, if the input data for a window of supervision are "zeros", then a calculation is
not made, and dashes are input into the table. After that, the average value for each group of window
values and the standard deviation are calculated.

In this example, values of the H parameter for web traffic are calculated in the same way the
values are calculated for the other supervised objects. In the next section of this work, a number of
practical monitorings will be made on the test bed using the DPI system and real traffic with examples
of network attacks to test the algorithm’s performance. As a result, tables will be filled in, charts will
be plotted, and conclusions will be made.

The method proposed in this section can be referred to the class of uncontrolled detection
techniques. Such techniques are characterized by the fact that at the first stages (training), they do not
know anything about what traffic can be considered normal and what is anomalous. Having a number
of disadvantages, they still have a serious advantage over those under control, namely the potential to
detect anomalies that were previously unknown.

The authors of the work suggests using the calculated Hurst parameter as the values entered in
the subscriber’s table as an anomaly criterion.

Sensors 2020, 20, 1637 14 of 41

Table 2. Subscriber tables for TCP packets of web traffic.

Int., s. = 3 H3 Int., s. = 15 H15 Int., s. = 60 H60

1–3 1.35

1–15 0.4

1–60 0.5

4–6 1.35
7–9 1.33

10–12 1.7
13–15 1.7
16–18 1.65

16–30 0.6
19–21 1.35
22–24 1.35
25–27 –
28–30 –
31–33 1.35

31–45 0.62
34–36
37–39
40–42
43–45 1.7
46–48 1.35

46–60 0.67
49–51
52–54
55–57
58–60

Havg(3sec) 1.47 Havg (15sec) 0.57 Havg (60sec) 0.5
SN(3sec) 0.16 SN (15sec) 0.19 – –

4. Development of Software DPI System for Network Traffic Analysis and Anomaly Detection

This section discusses existing software and Open Source tools that can be used to implement
the core of a software DPI system that can track channel status based on incoming traffic type data
and regulate information flows. The WinDivert library is best suited for developing software for
the network traffic control in the DPI system [66], because this library requires additional buffers.
WinDivert implements the operation of a system driver that is installed at the kernel level between the
network card and the operating system and reads packages from the kernel level buffer. Then, on the
basis of the rules set by the developer, it is decided whether to send or drop the packets.

The WinPcap and WinSock 2 library for implementing the program controller requires the use
of user-level dataset cyclic buffers [67]. As a result, the creation of TUN/TAP (Tunnel/ Test Access
Point virtual network adapters slow down the program, and since the DPI system must function at
least with the rate of the input flow, then the rate plays an important role. However, for software
development, using WinDivert, you need to undergo a certification procedure and a digital signature
for drivers [68–70]. Certification is performed to minimize the risk of operating system crash, since
WinDivert works at a kernel level where any developer error can lead to an OS (Operating System)
failure. Therefore, for the development of the simulation model within the framework of this paper,
the WinSock 2 library was selected. For the development of software using this library, the procedure
for the digital signature of drivers is not required. In addition, the advantage of this library is that it is
part of the standard Visual Studio libraries. On the basis of this library, the program traffic controller
and packet capture module from the network interface were implemented for the software DPI system.

A new software DPI System for the research of effective means of controlling flows of information
protocols and anomaly detection using Hurst parameter criterion has been developed based on the
above considerations. The core of the system is implemented using the Microsoft Visual Studio
2013 development environment. The graphical interface is designed using the Qt 5.6.2 framework.
Functions for capturing packets from network interfaces and traffic control are implemented using
the WinSock 2.2 library. To write a work program, the programming language C ++ was used [71].
The structural scheme of the developed DPI system is depicted in Figure 6.

Sensors 2020, 20, 1637 15 of 41Sensors 2020, 20, x FOR PEER REVIEW 15 of 42

Figure 6. The structural scheme of the developed Deep Packet Inspection (DPI) system.

In this next subsection for DPI system implementation, algorithms for analyzing and captured
traffic with protocol detection and determining statistical load parameters have been developed. In
addition, algorithms that are responsible for flow regulation based on the conducted static analysis of
flows and the proposed method of detection of anomalies using the Hurst parameter have been
developed. These algorithms have been implemented as programs for a new software DPI system.

Graphical interface

Configuration
of model

Traffic
analyzer

Traffic
controller

File of (.pcap)

Network
interface

Figure 6. The structural scheme of the developed Deep Packet Inspection (DPI) system.

In this next subsection for DPI system implementation, algorithms for analyzing and captured
traffic with protocol detection and determining statistical load parameters have been developed. In
addition, algorithms that are responsible for flow regulation based on the conducted static analysis
of flows and the proposed method of detection of anomalies using the Hurst parameter have been
developed. These algorithms have been implemented as programs for a new software DPI system.

4.1. Algorithms for Network Traffic Capturing, Analyzing, and Detecting

The current trend is to move away from proprietary and closed standards to cover IP (Internet
Protocol)-based sensor networks. This allows connection between WSN and the Internet, allowing
smart objects to participate in the Internet of Things (IoT) [72,73]. However, building an all-IP (Internet
Protocol) infrastructure from scratch will be difficult, as many different sensor and actuator technologies
(both wired and wireless) have been deployed over the years [74]. The IoT sensor data are generated
from various heterogeneous devices, communication protocols, and data formats that are enormous in
nature [75]. This requires the development of effective tools for protocol monitoring and traffic analysis.

The traffic analyzer program is a complex system characterized by a modular construction
principle and consists of the following parts: the module for reading data from the input interface;
a module for parsing network and transport layer headers; protocol detectors; session tables for the
protocol detector; the statistics collection module; and the graphical user interface. The input interface
to the program can be any interface from which packets are received. The most common interfaces are
the file and the network card interface.

The purpose of the network and transport layer header parsing module is to analyze the headers
of the corresponding levels and divide the group flow into smaller flows belonging to one subscriber. If
there are complex encapsulations, tunneling, and compression of the OSI (Open Systems Interconnection
) network and transport layer headers, it is necessary to first extract the primary data that were sent from
one subscriber to another. Subsequently, the flow from one subscriber is divided into elementary flows
and flows that are analyzed (for example, one TCP session, or several related UDP (User Datagram
Protocol) sessions).

When elementary flows are selected, it is necessary to perform protocol detection and protocol
type definition. DPI systems must perform this task with a very high degree of accuracy, as a detection
error can lead to the user being improperly served or not served at all.

The session table for the protocol detector stores the detection result. Since a TCP or UDP session
initiated by a particular application is installed and continues to exist on a particular socket, it is
advisable to perform protocol detection once and enter the result into the session table, and when each
subsequent packet arrives, only to look for the record in the session table.

It is reasonable to implement the session table as a tree or a hash table in order to minimize the
time of searching for the required record. Thus, in the table, the information on what protocol the
given package belongs to, and also if necessary certain statistical information that is necessary during
the session should be stored. The key in the table is the structure containing the following fields:

Sensors 2020, 20, 1637 16 of 41

- IP address of source and destination.
- Source and destination port
- Protocol (TCP or UDP)
The purpose of the statistics collection module is to determine the traffic parameters, both general

and for each specific protocol, including the registration of unknown traffic or traffic analyzed with
errors. A general algorithm of the analyzer’s program operation is depicted in Figure 7.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 42

Figure 7. Algorithm of software system for network traffic capturing, analyzing, and detecting.

Packets from the input interface are sent to the network and transport layer header analysis
module, which generates a key for the session table. Then, the key is searched for in the session table,
and if no record is found, the protocol is detected by the detector. All information about the packet is
collected as a result of processing by each module and then is analyzed by the statistics collection
module. The resulting information is presented to the user in the form of tables and graphs.

4.1.1. Algorithms for Capturing Data from the Input Interface

The network traffic analyzer's input interfaces are the computer's network card and pcap file. All
packets coming to the network card from the computer and from outside the network are captured
and written to a pcap file, with a 16-byte header written before each packet, which stores the packet
length and captures the packet. You can capture traffic from one or more interfaces, and you can also
specify the division into files by size and time. When the network card is used as an input interface,
packets are read in real time using the WinPcap library. In this case, you only need to connect the
library correctly and call the interface functions.

Capturing from a file is more complicated than capturing from the network interface. Packets are
written into a pcap file at the moment when they arrive, while capturing from a file is performed at an
approximately constant rate. Normal capturing from a file distorts the statistical results because it
does not take into account packet writing to the file. For the results not to differ when reading from
two interfaces, you need an additional algorithm so that the moments of the beginning of analysis of
each next packet are fixed, as shown in Figure 8.

Figure 8. Algorithm for network packet capturing.

According to the algorithm, the worker flow starts to process the packet if the program's running
time at the current moment is N times less than the time stamp of the packet in the file. Otherwise, the
thread will wait and check the condition again.

Analysis of the headings
of the network and

transport level

Is there a
record in the

session table?

Yes
Collecting statistics

From the table,
determine which

protocol is the data

Analysis of the
protocol by the

detector

The protocol is
defined

Insert a record in
the session table No

Result

Packets
reading

Yes

Incoming packet

Tpcap = offset the
packet in time relative to

the start of the file
T = Current time T * N >=

Tpcap
No

Packets analysis

The flow is
asleep

Yes

Figure 7. Algorithm of software system for network traffic capturing, analyzing, and detecting.

Packets from the input interface are sent to the network and transport layer header analysis
module, which generates a key for the session table. Then, the key is searched for in the session table,
and if no record is found, the protocol is detected by the detector. All information about the packet
is collected as a result of processing by each module and then is analyzed by the statistics collection
module. The resulting information is presented to the user in the form of tables and graphs.

4.1.1. Algorithms for Capturing Data from the Input Interface

The network traffic analyzer’s input interfaces are the computer’s network card and pcap file.
All packets coming to the network card from the computer and from outside the network are captured
and written to a pcap file, with a 16-byte header written before each packet, which stores the packet
length and captures the packet. You can capture traffic from one or more interfaces, and you can also
specify the division into files by size and time. When the network card is used as an input interface,
packets are read in real time using the WinPcap library. In this case, you only need to connect the
library correctly and call the interface functions.

Capturing from a file is more complicated than capturing from the network interface. Packets are
written into a pcap file at the moment when they arrive, while capturing from a file is performed at an
approximately constant rate. Normal capturing from a file distorts the statistical results because it
does not take into account packet writing to the file. For the results not to differ when reading from
two interfaces, you need an additional algorithm so that the moments of the beginning of analysis of
each next packet are fixed, as shown in Figure 8.

Sensors 2020, 20, 1637 17 of 41

Sensors 2020, 20, x FOR PEER REVIEW 17 of 42

Figure 7. Algorithm of software system for network traffic capturing, analyzing, and detecting.

Packets from the input interface are sent to the network and transport layer header analysis
module, which generates a key for the session table. Then, the key is searched for in the session table,
and if no record is found, the protocol is detected by the detector. All information about the packet is
collected as a result of processing by each module and then is analyzed by the statistics collection
module. The resulting information is presented to the user in the form of tables and graphs.

4.1.1. Algorithms for Capturing Data from the Input Interface

The network traffic analyzer's input interfaces are the computer's network card and pcap file. All
packets coming to the network card from the computer and from outside the network are captured
and written to a pcap file, with a 16-byte header written before each packet, which stores the packet
length and captures the packet. You can capture traffic from one or more interfaces, and you can also
specify the division into files by size and time. When the network card is used as an input interface,
packets are read in real time using the WinPcap library. In this case, you only need to connect the
library correctly and call the interface functions.

Capturing from a file is more complicated than capturing from the network interface. Packets are
written into a pcap file at the moment when they arrive, while capturing from a file is performed at an
approximately constant rate. Normal capturing from a file distorts the statistical results because it
does not take into account packet writing to the file. For the results not to differ when reading from
two interfaces, you need an additional algorithm so that the moments of the beginning of analysis of
each next packet are fixed, as shown in Figure 8.

Figure 8. Algorithm for network packet capturing.

According to the algorithm, the worker flow starts to process the packet if the program's running
time at the current moment is N times less than the time stamp of the packet in the file. Otherwise, the
thread will wait and check the condition again.

Analysis of the headings
of the network and

transport level

Is there a
record in the

session table?

Yes
Collecting statistics

From the table,
determine which

protocol is the data

Analysis of the
protocol by the

detector

The protocol is
defined

Insert a record in
the session table No

Result

Packets
reading

Yes

Incoming packet

Tpcap = offset the
packet in time relative to

the start of the file
T = Current time T * N >=

Tpcap
No

Packets analysis

The flow is
asleep

Yes

Figure 8. Algorithm for network packet capturing.

According to the algorithm, the worker flow starts to process the packet if the program’s running
time at the current moment is N times less than the time stamp of the packet in the file. Otherwise, the
thread will wait and check the condition again.

4.1.2. Development of Protocols Detector

Without the protocol detector, the DPI system is unable to do almost anything, because the
function of the detector is to distinguish between protocols and applications for further statistics
collection. Historically, there are thousands of protocols on the Internet, for each of which you need
to develop a separate detection algorithm. Most of the protocols are not standardized, and the
development of protocols in the best case is in accordance with the documents RFC (Request for
comments), which complicates the development of protocol detectors, because the RFC in many cases
is only a recommendation. An organization developing a particular application does not necessarily
have to fully comply with the RFC, but it may have to make some adjustments.

Detecting protocols is complicated by the fact that most companies developing protocols for their
private purposes do not disclose details of protocol implementation, and in free access, at best, there
are only presentations that describe all the benefits of using this protocol. Very often, the document
description of the protocol is available only for employees of the company or developer.

If the protocol is not described, the developer should investigate the principles of its work himself,
because it is only possible to write a detector that will have high performance and low probability of
error when the developer knows the process of interaction between network devices and the structure
and parameters of the packages.

The set of fields forms the uniqueness of a particular protocol and, due to this, you can write a
protocol detector. However, in conditions of high-speed traffic with algorithms of protocol detection,
there are strict requirements for performance, because the program must process large amounts of
data and create a minimum transmission delay. Detection algorithms must be both simple and robust,
so that the probability of a false alarm is minimal [76].

The detection algorithm can be of two types:

- Sequential (Figure 9)—used for low-speed data flows. Each of the detection algorithms is executed
when the execution of the previous algorithm is blocked. One processor thread is used.

- Parallel (Figure 10)—for high-speed data flows. Detection algorithms are executed in parallel,
each in its own processor thread. When each thread has finished executing its own algorithm,
if the protocol is defined by one of the algorithms, the execution stops; if not, each thread is
provided with a new algorithm for execution.

Sensors 2020, 20, 1637 18 of 41

Sensors 2020, 20, x FOR PEER REVIEW 18 of 42

4.1.2. Development of Protocols Detector

Without the protocol detector, the DPI system is unable to do almost anything, because the
function of the detector is to distinguish between protocols and applications for further statistics
collection. Historically, there are thousands of protocols on the Internet, for each of which you need to
develop a separate detection algorithm. Most of the protocols are not standardized, and the
development of protocols in the best case is in accordance with the documents RFC (Request for
comments), which complicates the development of protocol detectors, because the RFC in many cases
is only a recommendation. An organization developing a particular application does not necessarily
have to fully comply with the RFC, but it may have to make some adjustments.

Detecting protocols is complicated by the fact that most companies developing protocols for their
private purposes do not disclose details of protocol implementation, and in free access, at best, there
are only presentations that describe all the benefits of using this protocol. Very often, the document
description of the protocol is available only for employees of the company or developer.

If the protocol is not described, the developer should investigate the principles of its work
himself, because it is only possible to write a detector that will have high performance and low
probability of error when the developer knows the process of interaction between network devices
and the structure and parameters of the packages.

The set of fields forms the uniqueness of a particular protocol and, due to this, you can write a
protocol detector. However, in conditions of high-speed traffic with algorithms of protocol detection,
there are strict requirements for performance, because the program must process large amounts of
data and create a minimum transmission delay. Detection algorithms must be both simple and robust,
so that the probability of a false alarm is minimal [76].

The detection algorithm can be of two types:
- Sequential (Figure 9)—used for low-speed data flows. Each of the detection algorithms is

executed when the execution of the previous algorithm is blocked. One processor thread is used.

Figure 9. Sequential algorithm of detection.

- Parallel (Figure 10)—for high-speed data flows. Detection algorithms are executed in parallel,
each in its own processor thread. When each thread has finished executing its own algorithm, if the
protocol is defined by one of the algorithms, the execution stops; if not, each thread is provided with a
new algorithm for execution.

Figure 10. Parallel detection algorithm.

Protocol found

The result of the protocol
detector 1 + M * N

The result of the protocol
detector2 + M * N

The result of the protocol
detector M + M * N

No
The number of
iterations N = 0

Data block
N = N + 1 Number of

protocols> M * N

Yes

Flow 1

Flow 2

Flow M
Yes

Protocol
defined

No

Unknown protocol

Figure 9. Sequential algorithm of detection.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 42

4.1.2. Development of Protocols Detector

Without the protocol detector, the DPI system is unable to do almost anything, because the
function of the detector is to distinguish between protocols and applications for further statistics
collection. Historically, there are thousands of protocols on the Internet, for each of which you need to
develop a separate detection algorithm. Most of the protocols are not standardized, and the
development of protocols in the best case is in accordance with the documents RFC (Request for
comments), which complicates the development of protocol detectors, because the RFC in many cases
is only a recommendation. An organization developing a particular application does not necessarily
have to fully comply with the RFC, but it may have to make some adjustments.

Detecting protocols is complicated by the fact that most companies developing protocols for their
private purposes do not disclose details of protocol implementation, and in free access, at best, there
are only presentations that describe all the benefits of using this protocol. Very often, the document
description of the protocol is available only for employees of the company or developer.

If the protocol is not described, the developer should investigate the principles of its work
himself, because it is only possible to write a detector that will have high performance and low
probability of error when the developer knows the process of interaction between network devices
and the structure and parameters of the packages.

The set of fields forms the uniqueness of a particular protocol and, due to this, you can write a
protocol detector. However, in conditions of high-speed traffic with algorithms of protocol detection,
there are strict requirements for performance, because the program must process large amounts of
data and create a minimum transmission delay. Detection algorithms must be both simple and robust,
so that the probability of a false alarm is minimal [76].

The detection algorithm can be of two types:
- Sequential (Figure 9)—used for low-speed data flows. Each of the detection algorithms is

executed when the execution of the previous algorithm is blocked. One processor thread is used.

Figure 9. Sequential algorithm of detection.

- Parallel (Figure 10)—for high-speed data flows. Detection algorithms are executed in parallel,
each in its own processor thread. When each thread has finished executing its own algorithm, if the
protocol is defined by one of the algorithms, the execution stops; if not, each thread is provided with a
new algorithm for execution.

Figure 10. Parallel detection algorithm.

Protocol found

The result of the protocol
detector 1 + M * N

The result of the protocol
detector2 + M * N

The result of the protocol
detector M + M * N

No
The number of
iterations N = 0

Data block
N = N + 1 Number of

protocols> M * N

Yes

Flow 1

Flow 2

Flow M
Yes

Protocol
defined

No

Unknown protocol

Figure 10. Parallel detection algorithm.

Algorithm for DNS protocol detection

DNS (Domain Name System) is an application layer service protocol, without which other
protocols cannot work. So, DNS packets are always present among network traffic. Therefore, it is
worth adding the algorithm of DNS protocol processing to the traffic analysis system. DNS detection
consists in comparing the structure of the incoming packet and the structure of the DNS packet. The
format of the DNS message is depicted in the Figure 11a [77]. The message contains a 12-byte header
followed by four variable length fields [78].

Sensors 2020, 20, x FOR PEER REVIEW 19 of 42

Algorithm for DNS protocol detection
DNS (Domain Name System) is an application layer service protocol, without which other

protocols cannot work. So, DNS packets are always present among network traffic. Therefore, it is
worth adding the algorithm of DNS protocol processing to the traffic analysis system. DNS detection
consists in comparing the structure of the incoming packet and the structure of the DNS packet. The
format of the DNS message is depicted in the Figure 11a [77]. The message contains a 12-byte header
followed by four variable length fields [78].

a)

b)

Figure 11. DNS message format (a) and the flag field in the DNS header (b).

The value in the identification field is set by the client and returned by the server and allows
determining which request has received a response. The 16-bit field of the flags is divided into several
parts, as shown in Figure 11b.

The flag field consists of the following main fields:
- QR (Query Response)(message type) field with the size of 1 bit 0 denotes the request, 1 denotes

the response
- The zero field is 3 bits, which should be equal to 0.
- Rcode is a 4-bit return code field. It takes the following values: 0 (no error) and 3 (name error).
The following four 16-bit fields indicate the number of entries in four variable length fields. In a

query packet, the number of questions is usually 1, and the counter for the other fields is 0. In a query
packet, the number of answers is at least 1, and the other two counters can be either zero or non-zero.

So, knowing the structure of the DNS packet fields, you can make a detector that will discard
packets with impossible field values. If the packet passes all the checks, it is DNS. The algorithm of the
DNS protocol detector is shown in Figure 12.

Figure 11. DNS message format (a) and the flag field in the DNS header (b).

The value in the identification field is set by the client and returned by the server and allows
determining which request has received a response. The 16-bit field of the flags is divided into several
parts, as shown in Figure 11b.

The flag field consists of the following main fields:

- QR (Query Response)(message type) field with the size of 1 bit 0 denotes the request, 1 denotes
the response

- The zero field is 3 bits, which should be equal to 0.

Sensors 2020, 20, 1637 19 of 41

- Rcode is a 4-bit return code field. It takes the following values: 0 (no error) and 3 (name error).

The following four 16-bit fields indicate the number of entries in four variable length fields. In a
query packet, the number of questions is usually 1, and the counter for the other fields is 0. In a query
packet, the number of answers is at least 1, and the other two counters can be either zero or non-zero.

So, knowing the structure of the DNS packet fields, you can make a detector that will discard
packets with impossible field values. If the packet passes all the checks, it is DNS. The algorithm of the
DNS protocol detector is shown in Figure 12.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 42

Figure 12. The algorithm of the DNS protocol detector.

Despite the complexity of the block diagram, the algorithm must work quickly, because no
complex operations are performed, except to check the content of fields. The sequence of the
algorithm's actions is as follows:

1) Checking the port. UDP and TCP ports number 53 are reserved for DNS protocol. Although in
most cases, DNS packets are transferred through UDP, and support for TCP operation is one of the
main requirements for the DNS server.

2) Check the number of requests and number of responses fields. If the type of message is a
query, then the response field will be empty; if the type is a response, then the query field will be
empty.

3) Make as many iterations as the number of queries/responses, reducing the number of
queries/responses by 1 at each iteration. When the value 0 is reached, we exit the loop and make a
decision. At each iteration, we parse the domain name—that is, we read the pointers and go to the
values they specify. Exiting the package means that it is not DNS. Zero pointer means the end of the
domain name. The request type and class for such packets should be 0 x 0001.

Figure 12. The algorithm of the DNS protocol detector.

Despite the complexity of the block diagram, the algorithm must work quickly, because no complex
operations are performed, except to check the content of fields. The sequence of the algorithm’s actions
is as follows:

Sensors 2020, 20, 1637 20 of 41

1) Checking the port. UDP and TCP ports number 53 are reserved for DNS protocol. Although in
most cases, DNS packets are transferred through UDP, and support for TCP operation is one of the
main requirements for the DNS server.

2) Check the number of requests and number of responses fields. If the type of message is a query,
then the response field will be empty; if the type is a response, then the query field will be empty.

3) Make as many iterations as the number of queries/responses, reducing the number of
queries/responses by 1 at each iteration. When the value 0 is reached, we exit the loop and make a
decision. At each iteration, we parse the domain name—that is, we read the pointers and go to the
values they specify. Exiting the package means that it is not DNS. Zero pointer means the end of the
domain name. The request type and class for such packets should be 0 x 0001.

4) If the packet type is the answer, you should read the length of the resource data and navigate
by the pointer.

5) When the query/answer variable reaches the value of 0, it is decided that this is a DNS packet.
Algorithm for RTP protocol detection
The RTP (Real-time Transport Protocol)protocol transfers in its header the data needed to collect

audio or video from the receiving node, as well as data on the type of information encoding (JPEG,
MPEG, etc.). The header of this protocol transmits the timestamp and package number. These
parameters allow you to determine with minimal delay the order and moment of decoding of each
packet and interpolate lost packets.

RTP has no standard reserved port number. The connection is basically established on an even
port, and the next odd number is used for communication via RTCP (Real-Time Transport Control
Protocol), which is used for feedback from recipients. An RTP session is established for each media
stream. The session consists of an IP address and a port pair for RTP and RTCP. Audio and video
streams will be transmitted through different RTP sessions. The ports that form the session are
connected to each other by means of other protocols, such as SIP(Session Initiation Protocol) and RTSP
(Real Time Streaming Protocol). The RTP protocol has a variable length header (Figure 3.13). The
minimum length of the header is 12 bytes and consist of fields [79]:

V (2 bits). Version field. The current version is the second one.
P (1 bit). Field of filling. This field indicates that octets are being filled at the end of the payload.

Filling is used when the application requires that the payload size be a multiple of, for example, 32 bits.
In this case, the last octet indicates the number of filling octets.

X (1 bit). Header extension field. When a bit is set, the main header contains another additional
one that is used in experimental RTP extensions.

CC (4 bits). Sender number field. This field contains the number of sender identifiers, whose data
is in the package, and the identifiers themselves follow the main header.

M (1 bit). Marker field. The purpose of this field depends on the payload. A token bit is usually
used to indicate the boundaries of the data stream. In the case of video, it denotes the end of the frame.
In the case of voice, it specifies the beginning of speech after the silence period.

PT (7 bits). Field of payload type. This field identifies the payload type and data format. In a
stationary state, the sender only uses one payload type during a session, but can change it in response
to changing conditions if RTCP signals this.

Sequence Number (16 bits). Sequence number field. Each source begins to number packets with
an arbitrary number, increasing the sequence number by one with each RTP packet sent. This allows the
loss of the packets to be detected and the packets to be re-sorted if there is a mix. Multiple consecutive
packets can have the same timestamp if they are logically generated at the same time, such as packets
belonging to the same video frame.

Timestamp (32 bits). This is the timestamp. This field contains the value of the moment of time
(mostly in counts as a sample rate) at which the first payload data octet was created.

Sensors 2020, 20, 1637 21 of 41

Synchronization Source (SSRC) Identifier (32 bits) and Synchronization Source Identifier Field.
A random number that identifies the source of a session and is independent of the network address.
This number plays an important role in processing data from a single source.

Contributing source (CSRC) Identifier (32 bits). A list of source identifier fields that are "mixed"
into the main stream, for example, using a mixer. The mixer inserts a whole list of SSRC source IDs
that were used to build this RTP packet. This list is called the CSRC. The number of items in the list is
from 0 to 15. If the number of participants is more than 15, the first 15 are selected. An example of this
is an audio conference where the RTP packet contains the voice data of the participants, each of which
has its own SSRC. Since the RTP header has no clearly defined fields except for the version field, it
is impossible to use classical pattern analysis. However, the problem of detection of RTP protocol is
easily solved with use of the behavioral analysis of the protocol, despite the value of separate fields of
the protocol. However, the behavioral analysis, unlike the signature analysis, always requires more
memory, because there is a need to save the package header. The algorithm of the RTP protocol detector
is depicted in Figure 13.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 42

memory, because there is a need to save the package header. The algorithm of the RTP protocol detector
is depicted in Figure 13.

Figure 13. The algorithm of the RTP protocol detector.

For each UDP packet, two simple checks must be performed: the version must be at least 2 and
the length must be sufficient to parse the header. This check will filter more than half of the UDP
packets. The packet header and packet information that has passed the simple check are stored in the
detector. When two packets (or more if necessary) are received, three fields are analyzed.

The difference in the ordinal numbers of the packets is small. The threshold value should be
selected depending on the probability of losing packets. The higher the probability of loss, the higher
the threshold should be selected, but the higher the probability of error.

The difference in time stamps (samples) should be less than a certain threshold value. It depends
on the type of traffic (audio/video) and the difference in order numbers. Therefore, if you know the
flow parameters, you can estimate the maximum possible value of this field. If the flow parameters are
unknown, the default values should be used. The SSRC of all packets must be the same.
Algorithm for HTTP protocol detection

HTTP (Hyper Text Transfer Protocol) is an application layer data transfer protocol and is the
primary protocol for obtaining information from websites. The HTTP protocol uses client–server
technology: the client sends a request and initiates the connection; the server that receives the request,
processes the request, and sends the result to the client. An example HTTP header is shown in the
work [80,81].

Each HTTP message consists of three parts, which are transmitted in the specified order: the start
line defines the type of message; headers are useful information that characterize the message body,
transmission parameters, and other information.)

The message body is in HTML (HyperText Markup Language)code for displaying it in a
browser. Each of the headers must be separated by an empty line. HTTP is an unsecured protocol.
Anyone can access information by intercepting it. For example, an operator can intercept information
from a client connected to it. HTTPS is an extension of the HTTP protocol and is an HTTP protocol

 Start

Data Size > 12 Byte Unpacking RTP -
header

Version field >=2
And Data Size > 12 Byte

+ СС * 4

This is the first
packet

Save packet header
Yes

New
UDP - packet

It is no
RTP

 No

Yes

No

Sequence number difference <Threshold 1
And the time stamp difference <Threshold 2

I SSRC of both packages coincide?

It is RTP

Yes

No

Figure 13. The algorithm of the RTP protocol detector.

For each UDP packet, two simple checks must be performed: the version must be at least 2 and
the length must be sufficient to parse the header. This check will filter more than half of the UDP
packets. The packet header and packet information that has passed the simple check are stored in the
detector. When two packets (or more if necessary) are received, three fields are analyzed.

The difference in the ordinal numbers of the packets is small. The threshold value should be
selected depending on the probability of losing packets. The higher the probability of loss, the higher
the threshold should be selected, but the higher the probability of error.

The difference in time stamps (samples) should be less than a certain threshold value. It depends
on the type of traffic (audio/video) and the difference in order numbers. Therefore, if you know the
flow parameters, you can estimate the maximum possible value of this field. If the flow parameters are
unknown, the default values should be used. The SSRC of all packets must be the same.

Sensors 2020, 20, 1637 22 of 41

Algorithm for HTTP protocol detection

HTTP (Hyper Text Transfer Protocol) is an application layer data transfer protocol and is the
primary protocol for obtaining information from websites. The HTTP protocol uses client–server
technology: the client sends a request and initiates the connection; the server that receives the request,
processes the request, and sends the result to the client. An example HTTP header is shown in the
work [80,81].

Each HTTP message consists of three parts, which are transmitted in the specified order: the start
line defines the type of message; headers are useful information that characterize the message body,
transmission parameters, and other information.)

The message body is in HTML (HyperText Markup Language)code for displaying it in a browser.
Each of the headers must be separated by an empty line. HTTP is an unsecured protocol. Anyone
can access information by intercepting it. For example, an operator can intercept information from
a client connected to it. HTTPS is an extension of the HTTP protocol and is an HTTP protocol with
TLS(Transport Layer Security) encryption. TLS protocol is used to create eavesdropping-proof and
information-substitution connections between network nodes. It is suitable for transmitting any
amount of data in both directions, as well as checking that the data exchange takes place exactly
between these nodes, for which the channel was planned. These tasks are called, respectively, ensuring
the confidentiality, integrity, and authenticity of the connection. TLS, as well as usual HTTP, works
on TCP protocol. By the beginning of data transfer, the client and the server should carry out the
initialization process.

As TLS works on TCP, between a client and a server, TCP connections (SYN–SYN; ACK–ACK) are
established. The client sends a specification to the server specifying the version of the protocol it wants to
use, supported encryption methods, etc. (ClientHello). The server confirms the version of the protocol
used, selects the encryption method from the list provided, attaches its certificate, and sends the response
to the client in the form of several commands (ServerHello—Certificate—ServerHelloDone). The client
checks the received certificate and initiates the key exchange using the RSA (Rivest-Shamir-Adleman)
algorithm or the Diffi–Hellman protocol, depending on the set parameters. It then sends a final message
(ClientKeyExchange—ChangeCipherSpec—Finished). The server processes the message received from
the client, checks the MAC (Media Access Control Addres), and sends the final (Finished) message to
the client in encrypted form. This is followed by the transfer of encrypted data (Application Data). The
data is transmitted to TLS in the form of TLS records, each of which consists of a header containing such
fields: (data type (1 byte); Version (2 bytes); TLS now has such versions: 0x0300, 0x0301, 0x0302, 0x0303;
Data length (2 bytes); Data field). After the record’s data field, there are blocks, each of which has a
structure that depends on the record type. For example, in record with 0x16 type (TLS handshake),
which is contained in the first package of session, blocks will have the following structure: (Type (1
byte)—message from client (code 0x01) or from server (0x02); Length (3 bytes); Version (2 bytes)).

Since the HTTP protocol has a clearly defined structure, it is not difficult to detect. The HTTP
session starts with the client sending to the server one of the known requests, i.e., TCP; the segment
must start with one of the commands, after which the URI (Uniform Resource Identifier) address and
version are written. The algorithm of the RTP protocol detector is depicted in Figure 14.

Algorithm for TLS protocol detection

The detection of TLS protocol is carried out by the first packet, which is sent from the client to the
server. This package contains a 5-byte record header followed by a 6-byte block header (Figure 15).
So, the TCP size of a package should be not less than 11 bytes, the versions specified in the headings
should correspond to the actual version of the protocol, and the record type and block accordingly
should be equal to 0 × 16 (TLS handshake) and 0 × 01 (TLS client handshake). The algorithm for TLS
protocol detection is depicted in Figure 15.

Sensors 2020, 20, 1637 23 of 41

Sensors 2020, 20, x FOR PEER REVIEW 23 of 42

with TLS(Transport Layer Security) encryption. TLS protocol is used to create eavesdropping-proof
and information-substitution connections between network nodes. It is suitable for transmitting any
amount of data in both directions, as well as checking that the data exchange takes place exactly
between these nodes, for which the channel was planned. These tasks are called, respectively,
ensuring the confidentiality, integrity, and authenticity of the connection. TLS, as well as usual HTTP,
works on TCP protocol. By the beginning of data transfer, the client and the server should carry out
the initialization process.

As TLS works on TCP, between a client and a server, TCP connections (SYN–SYN; ACK–ACK)
are established. The client sends a specification to the server specifying the version of the protocol it
wants to use, supported encryption methods, etc. (ClientHello). The server confirms the version of the
protocol used, selects the encryption method from the list provided, attaches its certificate, and sends
the response to the client in the form of several commands (ServerHello—Certificate—
ServerHelloDone). The client checks the received certificate and initiates the key exchange using the
RSA (Rivest-Shamir-Adleman) algorithm or the Diffi–Hellman protocol, depending on the set
parameters. It then sends a final message (ClientKeyExchange—ChangeCipherSpec—Finished). The
server processes the message received from the client, checks the MAC (Media Access Control
Addres), and sends the final (Finished) message to the client in encrypted form. This is followed by
the transfer of encrypted data (Application Data). The data is transmitted to TLS in the form of TLS
records, each of which consists of a header containing such fields: (data type (1 byte); Version (2
bytes); TLS now has such versions: 0x0300, 0x0301, 0x0302, 0x0303; Data length (2 bytes); Data field).
After the record's data field, there are blocks, each of which has a structure that depends on the record
type. For example, in record with 0x16 type (TLS handshake), which is contained in the first package
of session, blocks will have the following structure: (Type (1 byte)—message from client (code 0x01) or
from server (0x02); Length (3 bytes); Version (2 bytes)).

Since the HTTP protocol has a clearly defined structure, it is not difficult to detect. The HTTP
session starts with the client sending to the server one of the known requests, i.e., TCP; the segment
must start with one of the commands, after which the URI (Uniform Resource Identifier) address and
version are written. The algorithm of the RTP protocol detector is depicted in Figure 14.

Figure 14. The algorithm of the HTTP protocol detector.

Algorithm for TLS protocol detection
The detection of TLS protocol is carried out by the first packet, which is sent from the client to the

server. This package contains a 5-byte record header followed by a 6-byte block header (Figure 15). So,
the TCP size of a package should be not less than 11 bytes, the versions specified in the headings
should correspond to the actual version of the protocol, and the record type and block accordingly
should be equal to 0х16 (TLS handshake) and 0х01 (TLS client handshake). The algorithm for TLS
protocol detection is depicted in Figure 15.

Start

The TCP segment starts with captions:
‘GET’, ‘POST’‘HEAD’,

‘PUT’,‘DELETE’,‘TRACE’,
‘OPTIONS’,‘CONNECT’,

followed by the characters 'space and / '.

Yes

Skip URI

Find record HTTP /,
subtract version, after

the version written
characters 0x0d 0x0a

Version:
0.9 або 1.0. або

1.1, або 2.0

Yes

No HTTP

HTTP
Yes

No

Figure 14. The algorithm of the HTTP protocol detector.
Sensors 2020, 20, x FOR PEER REVIEW 24 of 42

Figure 15. Algorithm for TLS (Transport Layer Security) protocol detection.

Algorithms for BitTorrent and uTorrent Transport Protocol (uTP) detection
BitTorrent and uTorrent Transport Protocol (uTP) are now the primary protocols for file transfer

in peer-to-peer networks [82,83]. When files are transferred, they are broken up into small pieces and
transmitted as such. The torrent client downloads all parts and then collects the file. The main
difference between the torrent protocols and FTP (File Transfer Protocol) is that during the slice
download process, the client immediately gives access to the slices for downloading to other members
of the network and allows the torrent files to be transferred at a much faster speed.

The disadvantage of the BitTorrent protocol is that it works over TCP and therefore torrent traffic
will slow down other applications, such as the browser, mail client, etc., which are much more
important for the user.

The uTP protocol is an alternative to the BitTorrent protocol. It works over UDP, which will
result in torrent traffic being transmitted with a lower priority than TCP traffic. At the same time, data
transmission via uTP is more effective, through a smaller volume of service traffic.

The uTP header structure consists of the following fields:
• Type of package. This field can take values 0–4;
• Protocol version. For current version of the protocol 1;
• Extensions. This field is like TCP options. If this field is not zero, the extension field will be

placed after the uTP header;
• The connection identifier. This field contains a random number that all packets belonging to a

particular connection have;
• Time stamp. Contains the sending of the packet in microseconds;
• The difference in the time stamps. Defines the time a packet is transmitted over the network;
• The size of the window. Defines the number of packets that can be transmitted between hosts

without confirmation;
• Sequential number of packets. Determines the current number of the packet;
• The number of the confirmed packet. Determines the last packet to which the confirmation

was received.

Start

Data size TCP >
11 byte

Yes

Type == 0х16 І
Version >= 0x0300 І
Version <= 0x0303

Yes

Type block == 1 І
Version >= 0x0300 І
Version<= 0x0303

Analyze the
recording header

Analyze the block
header

TLS

It is no TLS
No

No

No

Figure 15. Algorithm for TLS (Transport Layer Security) protocol detection.

Algorithms for BitTorrent and uTorrent Transport Protocol (uTP) detection

BitTorrent and uTorrent Transport Protocol (uTP) are now the primary protocols for file transfer
in peer-to-peer networks [82,83]. When files are transferred, they are broken up into small pieces
and transmitted as such. The torrent client downloads all parts and then collects the file. The main
difference between the torrent protocols and FTP (File Transfer Protocol) is that during the slice
download process, the client immediately gives access to the slices for downloading to other members
of the network and allows the torrent files to be transferred at a much faster speed.

The disadvantage of the BitTorrent protocol is that it works over TCP and therefore torrent
traffic will slow down other applications, such as the browser, mail client, etc., which are much more
important for the user.

Sensors 2020, 20, 1637 24 of 41

The uTP protocol is an alternative to the BitTorrent protocol. It works over UDP, which will result
in torrent traffic being transmitted with a lower priority than TCP traffic. At the same time, data
transmission via uTP is more effective, through a smaller volume of service traffic.

The uTP header structure consists of the following fields:

• Type of package. This field can take values 0–4;
• Protocol version. For current version of the protocol 1;
• Extensions. This field is like TCP options. If this field is not zero, the extension field will be placed

after the uTP header;
• The connection identifier. This field contains a random number that all packets belonging to a

particular connection have;
• Time stamp. Contains the sending of the packet in microseconds;
• The difference in the time stamps. Defines the time a packet is transmitted over the network;
• The size of the window. Defines the number of packets that can be transmitted between hosts

without confirmation;
• Sequential number of packets. Determines the current number of the packet;
• The number of the confirmed packet. Determines the last packet to which the confirmation

was received.

The detection of the uTP session should be performed on the first packet in this sequence: first
check whether the data size is large or equal to 20 bytes. Then parse the header, and check the version
and value of the type. Since the first packet in the session cannot yet have the timestamp difference
field set, it should contain 0. The connection ID must not be 0, and the extension field must not contain
a value greater than 8.

The algorithms for BitTorrent and uTP detection are depicted in Figure 16.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 42

The detection of the uTP session should be performed on the first packet in this sequence: first
check whether the data size is large or equal to 20 bytes. Then parse the header, and check the version
and value of the type. Since the first packet in the session cannot yet have the timestamp difference
field set, it should contain 0. The connection ID must not be 0, and the extension field must not contain
a value greater than 8.

The algorithms for BitTorrent and uTP detection are depicted in Figure 16.

a)

b)

Figure 16. Algorithms for BitTorrent (a) and uTorrent Transport Protocol (uTP) (b) detection.

4.1.3. Statistics Collection Algorithm

Statistics are collected using a basic data structure (Stat), a copy of which is used to collect
statistics from one of the protocols. The fields of the structure are as follows: total number of bytes (N);
number of bytes after last bandwidth recalculation (n); time of last bandwidth recalculation (T); and
last throughput value (Thr).

To collect statistics on all protocols, an array of Stat structures is used, the size of which is equal
to the number of protocols that are processed plus 2, because it is necessary to keep the general
statistics and statistics on unknown traffic. In addition, a separate array of Stat structures must be
stored for each subscriber.

The statistics collection algorithm is depicted in Figure 17.

 Start

Data size > 20 байт

Yes

First byte 0х13,

Then tape «BitTorrent protocol»

New
TCP - packet

It is no
BitTorrent

Yes

No

No

BitTorrent

 Start

Data size >= 20 byte

Version == 1, а
Type <= 4

Extensions> 8 or difference
 in time stamps> 0

New
UDP - packet

No uTP

Yes

uTP

No

Connection ID == 0

Analyzing the
packet header

No

Yes

No

Yes

Figure 16. Algorithms for BitTorrent (a) and uTorrent Transport Protocol (uTP) (b) detection.

4.1.3. Statistics Collection Algorithm

Statistics are collected using a basic data structure (Stat), a copy of which is used to collect statistics
from one of the protocols. The fields of the structure are as follows: total number of bytes (N); number

Sensors 2020, 20, 1637 25 of 41

of bytes after last bandwidth recalculation (n); time of last bandwidth recalculation (T); and last
throughput value (Thr).

To collect statistics on all protocols, an array of Stat structures is used, the size of which is equal to
the number of protocols that are processed plus 2, because it is necessary to keep the general statistics
and statistics on unknown traffic. In addition, a separate array of Stat structures must be stored for
each subscriber.

The statistics collection algorithm is depicted in Figure 17.
Sensors 2020, 20, x FOR PEER REVIEW 26 of 42

Figure 17. Statistics collection algorithm.

The input data for the statistics collection system is a socket, a protocol type, or an unknown type
and socket. According to this, the Stat structure of statistics is selected, in which we update the values
of fields N, n of the Stat structure according to the value L.

The throughput is calculated at the moment of time corresponding to the chart update period.

4.2. Algorithms for Network Traffic Capturing, Analyzing, and Detecting

This model implements the regulation of information flow by protocols. Decisions on blocking,
restriction, or priority granting are made depending on the protocol type and load is created by it. For
the definition of speed of an incoming stream, the following algorithm is applied. The algorithm is
executed during the whole time of the program operation and is used to measure the load of input
streams. Each socket is treated as a separate data stream. For each data stream, the number of input
data in bytes per time unit is recorded.

At the beginning of the algorithm, the program's running time is recorded, and the timeline is set.
For the timeline division, 1000 ms is taken. Then, the algorithm goes to step 1.

Step 1. Find the difference in time between the start of the program and real time; if this
difference is greater or equal to the price of the scale, then proceed to step 2. If the difference in time is
less than the price of the division, then proceed to step 3.

Step 2. The instantaneous load values are passed to another flow of the program that is
responsible for controlling the flow, the global time stamp is assigned a real-time value, and the
instantaneous load values are set to zero. Go to step 3.

Step 3. Check if the new packet has arrived at the interface's input; if it does not, go back to the
previous step. In the event that a new packet arrives, step 4 is executed; otherwise, go back to step 1.

Step 4. Read the packet’s type and its length in bytes. We sum up the load for a specific type and
the total load. Go to step 1.

The algorithm for determining the load of information flows is depicted in Figure 18.

 Input: socket,
protocol type, and

packet length L
Start

Select the appropriate statistics
structure Stat

Stat.N = Stat.N + L
Stat.n = Stat.n + L

DeltaTime = Current time
Time – Stat.T

DeltaTime >
Update period Stop

No

Yes

Stat.Thr = stat.n / DeltaTime
Stat.T = Current time Stat.n = 0

Figure 17. Statistics collection algorithm.

The input data for the statistics collection system is a socket, a protocol type, or an unknown type
and socket. According to this, the Stat structure of statistics is selected, in which we update the values
of fields N, n of the Stat structure according to the value L.

The throughput is calculated at the moment of time corresponding to the chart update period.

4.2. Algorithms for Network Traffic Capturing, Analyzing, and Detecting

This model implements the regulation of information flow by protocols. Decisions on blocking,
restriction, or priority granting are made depending on the protocol type and load is created by it. For
the definition of speed of an incoming stream, the following algorithm is applied. The algorithm is
executed during the whole time of the program operation and is used to measure the load of input
streams. Each socket is treated as a separate data stream. For each data stream, the number of input
data in bytes per time unit is recorded.

At the beginning of the algorithm, the program’s running time is recorded, and the timeline is set.
For the timeline division, 1000 ms is taken. Then, the algorithm goes to step 1.

Step 1. Find the difference in time between the start of the program and real time; if this difference
is greater or equal to the price of the scale, then proceed to step 2. If the difference in time is less than
the price of the division, then proceed to step 3.

Step 2. The instantaneous load values are passed to another flow of the program that is responsible
for controlling the flow, the global time stamp is assigned a real-time value, and the instantaneous load
values are set to zero. Go to step 3.

Sensors 2020, 20, 1637 26 of 41

Step 3. Check if the new packet has arrived at the interface’s input; if it does not, go back to the
previous step. In the event that a new packet arrives, step 4 is executed; otherwise, go back to step 1.

Step 4. Read the packet’s type and its length in bytes. We sum up the load for a specific type and
the total load. Go to step 1.

The algorithm for determining the load of information flows is depicted in Figure 18.
Sensors 2020, 20, x FOR PEER REVIEW 27 of 42

Figure 18. Algorithm for determining the load of information flows.

Determining the load of a specific type of traffic can be expressed by the following formula:





n

i
CС

iПП
0

, (12)

where n is the number of flows of the same type, and is the load is created by one flow of a
certain type.

 The total load on one interface is calculated by the formula:





N

i
CС i
0

 , (13)

where N is the number of types of load on one interface, and is the load is generated by one type of
traffic.

This model can function in two modes:
1) Blocking. When used this mode, all traffic that was identified as "harmful" (as an example of

harmful traffic, torrent traffic was selected) is blocked and does not pass through the interface. This
mode should be used when "harmful" traffic occupies a large part of the overall bandwidth and
because of this subscribers who use other services such as video or audio communications do not
receive the appropriate quality of service.

2) Traffic Prioritization. When this mode is used, "malicious" traffic is not blocked completely.
Priority is given to real-time data. That is, "harmful" traffic is blocked only when its passage leads to
the loss of real-time data; otherwise, the traffic is not blocked. This mode is used when the load of
malicious traffic on the interface is insignificant but can lead to deterioration of traffic service quality.

An algorithm of anomaly blocking and traffic prioritization is depicted in Figure 19.

total_pld_type += length;
total_payload += total_pld_type;

Start

total_timestamp = GetTickCount();
scale = 1000 ms;

Reading the parameters of the input packet:
 type, length

total_delta = getTickCount() – total_timestamp;

total_delta ≥ scale;

It's a new package?

No

Yes

YesFurther processing

total_timestamp = getTickCount();
total_pld = 0;
for(i=0; i < n_proto; i++)
{total_pld_type = 0;}

No

iП
C

iC

Figure 18. Algorithm for determining the load of information flows.

Determining the load of a specific type of traffic can be expressed by the following formula:

CP =
n∑

i=0

C
Pi

, (12)

where n is the number of flows of the same type, and C
Pi

is the load is created by one flow of a
certain type.

The total load on one interface is calculated by the formula:

C =
N∑

i=0

Ci, (13)

where N is the number of types of load on one interface, and Ci is the load is generated by one type
of traffic.

This model can function in two modes:
1) Blocking. When used this mode, all traffic that was identified as "harmful" (as an example of

harmful traffic, torrent traffic was selected) is blocked and does not pass through the interface. This
mode should be used when "harmful" traffic occupies a large part of the overall bandwidth and because

Sensors 2020, 20, 1637 27 of 41

of this subscribers who use other services such as video or audio communications do not receive the
appropriate quality of service.

2) Traffic Prioritization. When this mode is used, "malicious" traffic is not blocked completely.
Priority is given to real-time data. That is, "harmful" traffic is blocked only when its passage leads to
the loss of real-time data; otherwise, the traffic is not blocked. This mode is used when the load of
malicious traffic on the interface is insignificant but can lead to deterioration of traffic service quality.

An algorithm of anomaly blocking and traffic prioritization is depicted in Figure 19.
Sensors 2020, 20, x FOR PEER REVIEW 28 of 42

a)
b)

Figure 19. Algorithm of anomaly blocking (a) and traffic prioritization (b) mode.

The choice of the system operation mode allows increasing the flexibility of the transmission
channel and changing its behavior not only depending on its load, but also on the type of data being
transmitted.

5. Experimental Data and Result Analysis

To evaluate the performance of the developed system, we compared the proposed DPI software
system with the existing SolarWinds deep packet inspection system to detect and prevent network
traffic anomalies. SolarWinds Network Performance Monitor (FREE TRIAL) is a network monitoring
tool that includes deep packet inspection to identify the source and destination applications and
endpoints on network traffic. The purpose of DPI in the SolarWinds tool satisfies two aims of network
administrators. The first is to identify the types of traffic that use up most of the system’s resources.
Excessive load on the network makes the working environment difficult for everyone, and it is
important to find out exactly where all of that demand originates.

Deep packet inspection also gives the Network Performance Monitor security functions. DPI
techniques will identify specific users and applications that cause surges in traffic and display erratic
behavior. Those peaks in demand could be caused by hacker attacks; however, they could also be caused
by business requirements, such as end-of-the-month account processing. DPI lets you see whether those
surges are generated by legitimate business activities. Irregular behavior can be blocked.

For this purpose, the authors have developed an experimental stand of a real network to test and
compare the SolarWinds DPI system with the proposed DPI system using the above algorithms and
anomaly detection method based on Hurst parameter estimation.

5.1. Test Bed for Network Traffic Analysis and Anomaly Detection

The scheme of the experimental stand consists of the following basic elements: end devices (IoT
camera, laptop, and computer) that generate legitimate traffic; the generator of non-legitimate traffic
(network attack), which is a conventional computer on the corporate network [84]; network devices on

 Start

Incoming flow:
type, load

Blocking malicious traffic is on? Switch to traffic
prioritization mode

No

Disable prioritization mode

Yes

Block current flow

 Start

Incoming flow:
type, load

Traffic prioritization
 is enabled?

Switch to
blocking mode

No

Disable blocking mode

Yes

The type of this flow belongs
to anomaly

("malicious" type of traffic)?
Skip Flow No

Total load of instantaneous
values of all flows

 will lead to losses?

Yes

No

Block the flow

Figure 19. Algorithm of anomaly blocking (a) and traffic prioritization (b) mode.

The choice of the system operation mode allows increasing the flexibility of the transmission
channel and changing its behavior not only depending on its load, but also on the type of data
being transmitted.

5. Experimental Data and Result Analysis

To evaluate the performance of the developed system, we compared the proposed DPI software
system with the existing SolarWinds deep packet inspection system to detect and prevent network
traffic anomalies. SolarWinds Network Performance Monitor (FREE TRIAL) is a network monitoring
tool that includes deep packet inspection to identify the source and destination applications and
endpoints on network traffic. The purpose of DPI in the SolarWinds tool satisfies two aims of network
administrators. The first is to identify the types of traffic that use up most of the system’s resources.
Excessive load on the network makes the working environment difficult for everyone, and it is
important to find out exactly where all of that demand originates.

Deep packet inspection also gives the Network Performance Monitor security functions. DPI
techniques will identify specific users and applications that cause surges in traffic and display erratic
behavior. Those peaks in demand could be caused by hacker attacks; however, they could also be
caused by business requirements, such as end-of-the-month account processing. DPI lets you see
whether those surges are generated by legitimate business activities. Irregular behavior can be blocked.

Sensors 2020, 20, 1637 28 of 41

For this purpose, the authors have developed an experimental stand of a real network to test and
compare the SolarWinds DPI system with the proposed DPI system using the above algorithms and
anomaly detection method based on Hurst parameter estimation.

5.1. Test Bed for Network Traffic Analysis and Anomaly Detection

The scheme of the experimental stand consists of the following basic elements: end devices (IoT
camera, laptop, and computer) that generate legitimate traffic; the generator of non-legitimate traffic
(network attack), which is a conventional computer on the corporate network [84]; network devices on
the corporate network (switch and router), and the object of attack, which is a standard web server on
the Internet and installed before the router software DPI system.

The network traffic analysis and anomaly detection scheme using the SolarWinds DPI system is
depicted in Figure 20 and the scheme using the proposed DPI system is depicted in Figure 21.

Sensors 2020, 20, x FOR PEER REVIEW 29 of 42

(network attack), which is a conventional computer on the corporate network [84]; network devices on
the corporate network (switch and router), and the object of attack, which is a standard web server on
the Internet and installed before the router software DPI system.

The network traffic analysis and anomaly detection scheme using the SolarWinds DPI system is
depicted in Figure 20 and the scheme using the proposed DPI system is depicted in Figure 21.

Figure 20. Network traffic analysis and anomaly detection scheme using the SolarWinds DPI system.

Figure 21. Network traffic analysis and anomaly detection scheme using the proposed DPI system.

For further analysis and comparison of the systems, the file capture mode (pcap file) is used to
capture the network packets from all subscribers, including non-legitimate traffic and the variety of
protocols they create. By capturing the packets, it is possible to investigate the same aggregated traffic
for the two systems to obtain accurate results. To demonstrate the system in the mode of capturing
packets from a file, set the bandwidth of the router interface at 40 Mbit/s. Most of the legitimate
traffics are created by protocols such as RTP, Torrent, HTTP, TLS, and other types. A variant of the
popular UDP flood attack was chosen as the non-legal verification traffic [80]. The essence of this
attack is to send multiple UDP packets (usually, large ones) to certain or random port numbers of the
remote host, which for each received packet must identify the corresponding application, make sure
that it is not active, and send a response ICMP (Internet Control Message Protocol) message: "the
recipient is unavailable". As a result, the attacked system will become overloaded: the UDP protocol
does not have an overload prevention mechanism, so after the attack starts, the parasitic traffic will

Figure 20. Network traffic analysis and anomaly detection scheme using the SolarWinds DPI system.

Sensors 2020, 20, x FOR PEER REVIEW 29 of 42

(network attack), which is a conventional computer on the corporate network [84]; network devices on
the corporate network (switch and router), and the object of attack, which is a standard web server on
the Internet and installed before the router software DPI system.

The network traffic analysis and anomaly detection scheme using the SolarWinds DPI system is
depicted in Figure 20 and the scheme using the proposed DPI system is depicted in Figure 21.

Figure 20. Network traffic analysis and anomaly detection scheme using the SolarWinds DPI system.

Figure 21. Network traffic analysis and anomaly detection scheme using the proposed DPI system.

For further analysis and comparison of the systems, the file capture mode (pcap file) is used to
capture the network packets from all subscribers, including non-legitimate traffic and the variety of
protocols they create. By capturing the packets, it is possible to investigate the same aggregated traffic
for the two systems to obtain accurate results. To demonstrate the system in the mode of capturing
packets from a file, set the bandwidth of the router interface at 40 Mbit/s. Most of the legitimate
traffics are created by protocols such as RTP, Torrent, HTTP, TLS, and other types. A variant of the
popular UDP flood attack was chosen as the non-legal verification traffic [80]. The essence of this
attack is to send multiple UDP packets (usually, large ones) to certain or random port numbers of the
remote host, which for each received packet must identify the corresponding application, make sure
that it is not active, and send a response ICMP (Internet Control Message Protocol) message: "the
recipient is unavailable". As a result, the attacked system will become overloaded: the UDP protocol
does not have an overload prevention mechanism, so after the attack starts, the parasitic traffic will

Figure 21. Network traffic analysis and anomaly detection scheme using the proposed DPI system.

Sensors 2020, 20, 1637 29 of 41

For further analysis and comparison of the systems, the file capture mode (pcap file) is used to
capture the network packets from all subscribers, including non-legitimate traffic and the variety of
protocols they create. By capturing the packets, it is possible to investigate the same aggregated traffic
for the two systems to obtain accurate results. To demonstrate the system in the mode of capturing
packets from a file, set the bandwidth of the router interface at 40 Mbit/s. Most of the legitimate traffics
are created by protocols such as RTP, Torrent, HTTP, TLS, and other types. A variant of the popular
UDP flood attack was chosen as the non-legal verification traffic [80]. The essence of this attack is to
send multiple UDP packets (usually, large ones) to certain or random port numbers of the remote
host, which for each received packet must identify the corresponding application, make sure that it is
not active, and send a response ICMP (Internet Control Message Protocol) message: "the recipient is
unavailable". As a result, the attacked system will become overloaded: the UDP protocol does not
have an overload prevention mechanism, so after the attack starts, the parasitic traffic will quickly
become overloaded. It will capture all available throughput, and only a small fraction of the traffic will
remain useful.

In our work, we have generated Non-Spoofed UDP Floods that are difficult to detect. The scheme
of organizing a Non-Spoofed UDP Flood attack is the same as in the case of UDP Flood. The difference
is that UDP packets are generated from real IP addresses by bots, which makes it very difficult to combat
this type of attack, especially if the bots generate traffic due to NAT (Network Address Translation),
behind which there are legitimate users. Just like a regular UDP Flood, this type of attack aims to
exhaust system resources and fill the network channel with "malicious" traffic. This type of attack is
harder to identify because it resembles good traffic [84,85].

Filtering UDP traffic during such an attack is quite a complex task, so most operators offer only
one solution: blocking the victim server to save the rest of the network. In our work, we offer an
approach that can detect an attack and take necessary actions to filter it without blocking the attacking
server. Nothing has changed in the testing scheme. At the first stage, the user’s usual work on the
computer (DNS queries, etc.) is simulated. The second stage starts the packet generator using the
hping3 utility with the following parameters: hping3 -q -n -a 192.168.0.101 –udp -s 53 –keep -p 68
–flood 192.168.0.100.

Before legitimate and non-legitimate traffic arrives at the router’s input port, it is analyzed by the
DPI system, and after analysis, it is forwarded to the router’s output port. At the router output, the
traffic is monitored with the help of the developed program both in the experiment with the proposed
DPI and the existing SolarWinds DPI system.

5.1.1. Traffic Analysis and Anomaly Detection Results Using Solarwinds DPI and Proposed DPI
System (Transmitting Only Legitimate Traffic)

The first stage of the experiment was to evaluate the router’s throughput while transmitting only
legitimate traffic under the existing SolarWinds DPI and proposed DPI systems usage conditions. Both
systems showed the same throughput utilization results (Figure 22).

As you can see from Figure 22, at the initial stage (salad color), the load on the interface is
insignificant and fluctuates at the level of 2 Mbit/s, and the loss level of 0% of the total load. This period
shows the work of the channel at low loads. In this section, most of the load is generated by HTTP,
TLS, and unknown traffic. On further monitoring (shown in yellow), you can see that the load on the
interface is increasing due to the growth of RTP traffic and fluctuates at the level of 38 Mbit/s with a
total loss of 1.8% of the total. This section shows the channel operation under peak loads. It should be
noted that the losses in this segment are caused by burst traffic and are not constant.

Sensors 2020, 20, 1637 30 of 41

Sensors 2020, 20, x FOR PEER REVIEW 30 of 42

quickly become overloaded. It will capture all available throughput, and only a small fraction of the
traffic will remain useful.

In our work, we have generated Non-Spoofed UDP Floods that are difficult to detect. The scheme
of organizing a Non-Spoofed UDP Flood attack is the same as in the case of UDP Flood. The difference
is that UDP packets are generated from real IP addresses by bots, which makes it very difficult to
combat this type of attack, especially if the bots generate traffic due to NAT (Network Address
Translation), behind which there are legitimate users. Just like a regular UDP Flood, this type of attack
aims to exhaust system resources and fill the network channel with "malicious" traffic. This type of
attack is harder to identify because it resembles good traffic [84,85].

Filtering UDP traffic during such an attack is quite a complex task, so most operators offer only
one solution: blocking the victim server to save the rest of the network. In our work, we offer an
approach that can detect an attack and take necessary actions to filter it without blocking the attacking
server. Nothing has changed in the testing scheme. At the first stage, the user's usual work on the
computer (DNS queries, etc.) is simulated. The second stage starts the packet generator using the
hping3 utility with the following parameters: hping3 -q -n -a 192.168.0.101 --udp -s 53 --keep -p 68 --
flood 192.168.0.100.

Before legitimate and non-legitimate traffic arrives at the router's input port, it is analyzed by the
DPI system, and after analysis, it is forwarded to the router's output port. At the router output, the
traffic is monitored with the help of the developed program both in the experiment with the proposed
DPI and the existing SolarWinds DPI system.

5.1.2. Traffic Analysis and Anomaly Detection Results Using Solarwinds DPI and Proposed DPI System
(Transmitting Only Legitimate Traffic)

The first stage of the experiment was to evaluate the router's throughput while transmitting only
legitimate traffic under the existing SolarWinds DPI and proposed DPI systems usage conditions. Both
systems showed the same throughput utilization results (Figure 22).

Figure 22. Throughput monitoring, in the transmission of legitimate traffic using the existing SolarWinds
DPI and the proposed DPI system.

5.1.2. Traffic Analysis and Anomaly Detection Results Using Solarwinds Dpi System (Transmitting
Legitimate and Non-Legitimate Traffic)

The second step of the experiment was to evaluate the router’s throughput when transmitting
legitimate and non-legitimate traffic (Non-Spoofed UDP Floods attack) using the existing SolarWinds
DPI system.

On the output interface of the router when using the SolarWinds DPI system, torrent traffic (uTP)
works over UDP, which appeared in the channel (the figure is highlighted in brown). The SolarWinds
DPI system detection Non-Spoofed UDP Floods attack as an legitimate uTP traffic. Throughput
monitoring in the transmission of legitimate and non-legitimate traffic (Non-Spoofed UDP Floods
attack) using the SolarWinds DPI system is depicted in Figure 23.

As you can see from Figure 21, this leads to significant losses of other types of traffic, such as RTP
and HTTP; the level of total losses rose to 7.2%, and the maximum percentage of current losses was
48%, also, the nature of losses from jumped to constant. This indicates that up to 48% of the payload
is lost every second. Such losses are unacceptable for holding, for example, video conferences, IP
telephony, or comfortable surfing on the Internet.

5.1.3. Traffic Analysis and Anomaly Detection Results Using Proposed DPI System (Transmitting
Legitimate and Non-Legitimate Traffic)

The third step of the experiment was to evaluate the router’s throughput when transmitting
legitimate and non-legitimate traffic (Non-Spoofed UDP Floods attack) using the proposed DPI system.
After the procedure of traffic generation and value table construction, calculations were performed
according to the formulas and ideas proposed in the work. The results of these calculations are

Sensors 2020, 20, 1637 31 of 41

presented below. For each group of test data, a range (-3SN;+3SN) was found, and the statistical
significance of differences in mean values was assessed. Tables of subscribers for UDP packets for
"normal" class are showed in Table 3.

Sensors 2020, 20, x FOR PEER REVIEW 31 of 42

Figure 22. Throughput monitoring, in the transmission of legitimate traffic using the existing
SolarWinds DPI and the proposed DPI system.

As you can see from Figure 22, at the initial stage (salad color), the load on the interface is
insignificant and fluctuates at the level of 2 Mbit/s, and the loss level of 0% of the total load. This
period shows the work of the channel at low loads. In this section, most of the load is generated by
HTTP, TLS, and unknown traffic. On further monitoring (shown in yellow), you can see that the load
on the interface is increasing due to the growth of RTP traffic and fluctuates at the level of 38 Mbit/s
with a total loss of 1.8% of the total. This section shows the channel operation under peak loads. It
should be noted that the losses in this segment are caused by burst traffic and are not constant.

5.1.3. Traffic Analysis and Anomaly Detection Results Using Solarwinds Dpi System (Transmitting Legitimate
and Non-Legitimate Traffic)

The second step of the experiment was to evaluate the router’s throughput when transmitting
legitimate and non-legitimate traffic (Non-Spoofed UDP Floods attack) using the existing SolarWinds
DPI system.

On the output interface of the router when using the SolarWinds DPI system, torrent traffic (uTP)
works over UDP, which appeared in the channel (the figure is highlighted in brown). The SolarWinds
DPI system detection Non-Spoofed UDP Floods attack as an legitimate uTP traffic. Throughput
monitoring in the transmission of legitimate and non-legitimate traffic (Non-Spoofed UDP Floods
attack) using the SolarWinds DPI system is depicted in Figure 23.

Figure 23. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-
Spoofed UDP(User Datagram Protocol) Floods attack) using the SolarWinds DPI system.

Figure 23. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic
(Non-Spoofed UDP(User Datagram Protocol) Floods attack) using the SolarWinds DPI system.

Table 3. Tables of subscribers for UDP packets for "normal" class.

Int., s. = 3 H3 Int., s. = 15 H15 Int., s. = 60 H60

1–3 1.355

1–15 0.631

1–60 0.403

4–6 1.355
7–9 –

10–12 –
13–15 –
16–18 1.611

16–30 0.470
19–21 1.611
22–24 1.611
25–27 1.355
28–30 1.355 31–45 0.631

1–60 0.403

31–33 1.355

31–45 0.631
34–36 –
37–39 –
40–42 –
43–45 1.355
46–48 –

46–60 0.438
49–51 –
52–54 1.355
55–57 –
58–60 1.355

Havg(3sec) 1.425 Havg (15sec) 0.543 Havg (60sec) 0.403
SN (3sec) 0.120 SN (15sec) 0.103 – –

Sensors 2020, 20, 1637 32 of 41

It is assumed this table (as in the first experiment) will be the reference one for the UDP object. In
this case, the system will compare data obtained during the detection phase with that from the table.
The "anomaly" class table is given in Table 4. It is given for illustrative purposes only, and the system
does not use such type of tables.

Table 4. Tables of subscriber for UDP packets for the "anomaly" class (Non-Spoofed UDP Floods attack).

Int., s. = 3 H3 Int., s. = 15 H15 Int., s. = 60 H60

1–3 1.681

1–15 0.745 1–60 0.599
4–6 1.709
7–9 1.489
10–12 1.705
13–15 1.437 1–15 0.745 1–60 0.599
16–18 1.539

16–30 0.613

1–60 0.599

19–21 1.706
22–24 1.526
25–27 1.708
28–30 1.607
31–33 1.691

31–45 0.659
34–36 1.392
37–39 1.630
40–42 1.596
43–45 1.507
46–48 1.592

46–60 0.694
49–51 1.703
52–54 1.682
55–57 1.547
58–60 1.647

As before, the table for the "anomaly" class serves as an auxiliary material for clarity, as well
as a basis for charting. Figure 24 shows the range of values (-3SN;+3SN) for normal UDP traffic for
monitoring windows = 3 seconds.

Sensors 2020, 20, x FOR PEER REVIEW 33 of 42

Table 4. Tables of subscriber for UDP packets for the "anomaly" class (Non-Spoofed UDP Floods
attack).

Int., s. = 3 H3 Int., s. = 15 H15 Int., s. = 60 H60
1–3 1.681

1–15

0.745

1–60

0.599
4–6 1.709
7–9 1.489
10–12 1.705
13–15 1.437 1–15 0.745 1–60 0.599
16–18 1.539

16–30

0.613

1–60

0.599

19–21 1.706
22–24 1.526
25–27 1.708
28–30 1.607
31–33 1.691

31–45

0.659

34–36 1.392
37–39 1.630
40–42 1.596
43–45 1.507
46–48 1.592

46–60

0.694

49–51 1.703
52–54 1.682
55–57 1.547
58–60 1.647

As before, the table for the "anomaly" class serves as an auxiliary material for clarity, as well as a
basis for charting. Figure 24 shows the range of values (-3SN;+3SN) for normal UDP traffic for
monitoring windows = 3 seconds.

Figure 24. Range of values (-3SN;+3SN) for normal UDP traffic for monitoring windows = 3 seconds.

Figures 25 shows in which of the monitoring windows the values of anomalous traffic exceeded
the threshold and in which range they fell.

Figure 24. Range of values (-3SN;+3SN) for normal UDP traffic for monitoring windows = 3 seconds.

Figure 25 shows in which of the monitoring windows the values of anomalous traffic exceeded
the threshold and in which range they fell.

Using the proposed system, in the 3-second monitoring window, the generated attack is detected
as a uTP protocol but as a suspicious of anomaly. Since the evaluated Hurst parameter is not within
the range (-1 SN;+1 SN) according to the algorithm proposed in Figure 4, restrictive measures (sending
a message to the administrator and limiting the throughput for this traffic) will be taken. Since it
is not always reasonable to block "malicious" traffic, the operator may refuse to block it completely
and replace it with partial blocking. This is achieved by lowering its priority. In this case, data that

Sensors 2020, 20, 1637 33 of 41

have a higher priority of the operator is transmitted first (in this work, all data that are not torrents
have a higher priority). During the operation of the traffic prioritization mode, "malicious" traffic is
transmitted only when it does not degrade the quality of other services. In Figure 26, the red color
indicates the areas where the load is insignificant. For the operator, this means a simple channel, so to
prevent downtime, these places are "filled" with torrent traffic. In this case, sufficient QoS is provided
for high-priority services, but these torrents are not completely blocked. Using this mode, at 52.52
Mbps, the total loss was 2.27% and the maximum current loss was 19%.

Sensors 2020, 20, x FOR PEER REVIEW 34 of 42

Figure 25. Values in 60 seconds with 3-second monitoring window for "anomaly" class (Non-Spoofed
UDP Floods attack).

Using the proposed system, in the 3-second monitoring window, the generated attack is detected
as a uTP protocol but as a suspicious of anomaly. Since the evaluated Hurst parameter is not within the
range (-1 SN;+1 SN) according to the algorithm proposed in Figure 4, restrictive measures (sending a
message to the administrator and limiting the throughput for this traffic) will be taken. Since it is not
always reasonable to block "malicious" traffic, the operator may refuse to block it completely and replace
it with partial blocking. This is achieved by lowering its priority. In this case, data that have a higher
priority of the operator is transmitted first (in this work, all data that are not torrents have a higher
priority). During the operation of the traffic prioritization mode, "malicious" traffic is transmitted only
when it does not degrade the quality of other services. In Figure 26, the red color indicates the areas
where the load is insignificant. For the operator, this means a simple channel, so to prevent downtime,
these places are "filled" with torrent traffic. In this case, sufficient QoS is provided for high-priority
services, but these torrents are not completely blocked. Using this mode, at 52.52 Mbps, the total loss
was 2.27% and the maximum current loss was 19%.

Figure 26. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-
Spoofed UDP Floods attack) using the proposed DPI system.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

0.4

1
1.2

2

Hu
rs

t p
ar

am
et

er
 H

+1SN
+2SN

Havg

+3SN

-1SN
-2SN
-3SN

Monitoring window

0.2

0.6
0.8

1.4

1.6
1.8

Anomalous traffic

105 120 135 150 165 180 195
Time [s]

105 120 135 150 165 180 195
Time [s]

105 120 135 150 165 180 195
Time [s]

Total
Throughput
Total

Throughput

Losses

27

22.5

18

13.5

9

4.5

0

Th
ro

ug
hp

ut
 [

m
bi

t/
s]

42
36
30
24
18
12

6
0Th

ro
ug

hp
ut

 [
m

bi
t/

s]

15

12.5

10

7.5

5

2.5

0

Th
ro

ug
hp

ut
 [

m
bi

t/
s]

Unknown

uTP

HTTP

TLS

RTP

DNS

Figure 25. Values in 60 seconds with 3-second monitoring window for "anomaly" class (Non-Spoofed
UDP Floods attack).

Sensors 2020, 20, x FOR PEER REVIEW 34 of 42

Figure 25. Values in 60 seconds with 3-second monitoring window for "anomaly" class (Non-Spoofed
UDP Floods attack).

Using the proposed system, in the 3-second monitoring window, the generated attack is detected
as a uTP protocol but as a suspicious of anomaly. Since the evaluated Hurst parameter is not within
the range (-1 SN;+1 SN) according to the algorithm proposed in Figure 4, restrictive measures (sending a
message to the administrator and limiting the throughput for this traffic) will be taken. Since it is not
always reasonable to block "malicious" traffic, the operator may refuse to block it completely and
replace it with partial blocking. This is achieved by lowering its priority. In this case, data that have a
higher priority of the operator is transmitted first (in this work, all data that are not torrents have a
higher priority). During the operation of the traffic prioritization mode, "malicious" traffic is
transmitted only when it does not degrade the quality of other services. In Figure 26, the red color
indicates the areas where the load is insignificant. For the operator, this means a simple channel, so to
prevent downtime, these places are "filled" with torrent traffic. In this case, sufficient QoS is provided
for high-priority services, but these torrents are not completely blocked. Using this mode, at 52.52
Mbps, the total loss was 2.27% and the maximum current loss was 19%.

Figure 26. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-
Spoofed UDP Floods attack) using the proposed DPI system.

Figure 26. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic
(Non-Spoofed UDP Floods attack) using the proposed DPI system.

However, according to the proposed anomaly detection algorithm after the 3-second monitoring
window, the system will wait for the value of the 15-second monitoring window and compare the
Hurst parameter with the tables calculated in the training phase. The range of values (-3SN;+3SN) for
the normal UDP traffic for monitoring windows = 15 seconds is depicted in Figure 27.

Sensors 2020, 20, 1637 34 of 41

Sensors 2020, 20, x FOR PEER REVIEW 35 of 42

However, according to the proposed anomaly detection algorithm after the 3-second monitoring
window, the system will wait for the value of the 15-second monitoring window and compare the
Hurst parameter with the tables calculated in the training phase. The range of values (-3SN;+3SN) for
the normal UDP traffic for monitoring windows = 15 seconds is depicted in Figure 27.

Figure 27. Range of values (-3SN;+3SN) for normal UDP traffic for monitoring windows = 15 seconds.

The evaluated Hurst parameter for monitoring windows = 15 seconds is within the range
(+1SN;+2SN). According to the algorithm, if the deviation range lies in (+1SN; +2 SN), restrictive
measures will be taken, and the system will continue to wait for the minute window values. Plotting
for the minute monitoring window makes no sense, because the value exists in a single copy and a
simple comparison of H values of the Havg1-60 ⩽ H will be used as a criterion of anomalies. It can also be
seen from Tables 3 and Tables 4 that for this experiment, Havg1-60 = 0.403 and H = 0.599, at which it is
possible to consider that the traffic is anomalous, relative to the reference values 0.403 < 0.599. Then,
the system automatically blocked the anomaly traffic, which allowed releasing the system throughput
and improving quality of service parameters, namely to reduce losses. Figures 28 shows for which of
the monitoring windows the H values of anomalous traffic exceeded the threshold and for which
range they fell in using the proposed algorithm (see Figure 4).

Figure 28. Values in 60 seconds with a 15-second monitoring window for the "anomaly" class (Non-
Spoofed UDP Floods attack).

Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-
Spoofed UDP Floods attack) using the proposed DPI system after anomaly blocking is depicted in
Figure 29. After blocking the anomaly traffic, the maximum current loss is 16% and the level of total
loss, at a total interface input load of 53.736 Mbit/s, decreased in ID 7.2% to 2% compared to the
SolarWinds DPI system.

Figure 27. Range of values (-3SN;+3SN) for normal UDP traffic for monitoring windows = 15 seconds.

The evaluated Hurst parameter for monitoring windows = 15 seconds is within the range
(+1SN;+2SN). According to the algorithm, if the deviation range lies in (+1SN; +2 SN), restrictive
measures will be taken, and the system will continue to wait for the minute window values. Plotting
for the minute monitoring window makes no sense, because the value exists in a single copy and a
simple comparison of H values of the Havg1-60 6 H will be used as a criterion of anomalies. It can also
be seen from Tables 3 and 4 that for this experiment, Havg1-60 = 0.403 and H = 0.599, at which it is
possible to consider that the traffic is anomalous, relative to the reference values 0.403 < 0.599. Then,
the system automatically blocked the anomaly traffic, which allowed releasing the system throughput
and improving quality of service parameters, namely to reduce losses. Figure 28 shows for which of
the monitoring windows the H values of anomalous traffic exceeded the threshold and for which range
they fell in using the proposed algorithm (see Figure 4).

Sensors 2020, 20, x FOR PEER REVIEW 35 of 42

However, according to the proposed anomaly detection algorithm after the 3-second monitoring
window, the system will wait for the value of the 15-second monitoring window and compare the Hurst
parameter with the tables calculated in the training phase. The range of values (-3SN;+3SN) for the normal
UDP traffic for monitoring windows = 15 seconds is depicted in Figure 27.

0.543 0.646 0.749 0.8520.4440.3370.234
0.0

0.2

0.1

0.3

0.4

0.1% 2.1%
13.6% 13.6%

34.1% 34.1%

0.1%2.1%

Figure 27. Range of values (-3SN;+3SN) for normal UDP traffic for monitoring windows = 15 seconds.

The evaluated Hurst parameter for monitoring windows = 15 seconds is within the range
(+1SN;+2SN). According to the algorithm, if the deviation range lies in (+1SN; +2 SN), restrictive measures
will be taken, and the system will continue to wait for the minute window values. Plotting for the minute
monitoring window makes no sense, because the value exists in a single copy and a simple comparison
of H values of the Havg1-60 ⩽ H will be used as a criterion of anomalies. It can also be seen from Tables 3
and 4 that for this experiment, Havg1-60 = 0.403 and H = 0.599, at which it is possible to consider that the
traffic is anomalous, relative to the reference values 0.403 < 0.599. Then, the system automatically
blocked the anomaly traffic, which allowed releasing the system throughput and improving quality of
service parameters, namely to reduce losses. Figure 28 shows for which of the monitoring windows the
H values of anomalous traffic exceeded the threshold and for which range they fell in using the
proposed algorithm (see Figure 4).

Figure 28. Values in 60 seconds with a 15-second monitoring window for the "anomaly" class (Non-
Spoofed UDP Floods attack).

Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-Spoofed
UDP Floods attack) using the proposed DPI system after anomaly blocking is depicted in Figure 29.
After blocking the anomaly traffic, the maximum current loss is 16% and the level of total loss, at a total
interface input load of 53.736 Mbit/s, decreased in ID 7.2% to 2% compared to the SolarWinds DPI
system.

1 2 3 4
0

0.1
0.2

0.3

0.4

0.5

Hu
rs

t p
ar

am
et

er
 H

+1SN

+2SN

Havg

+3SN

-1SN

-2SN

-3SN

Monitoring window

0.6

0.7

0.8

0.9

Anomalous traffic

Figure 28. Values in 60 seconds with a 15-second monitoring window for the "anomaly" class
(Non-Spoofed UDP Floods attack).

Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-Spoofed
UDP Floods attack) using the proposed DPI system after anomaly blocking is depicted in Figure 29.
After blocking the anomaly traffic, the maximum current loss is 16% and the level of total loss, at a
total interface input load of 53.736 Mbit/s, decreased in ID 7.2% to 2% compared to the SolarWinds
DPI system.

Based on the results of the method testing on real network traffic, we can conclude that the
ideas proposed by the authors work well. The method of calculation of reference values presented in
Section 3 has partially confirmed the ability to reflect the traffic state. It can also be seen from the data
obtained in the course of testing (graphs and tables) that the anomaly quite clearly stands out against
the conditionally normal graph.

Sensors 2020, 20, 1637 35 of 41Sensors 2020, 20, x FOR PEER REVIEW 36 of 42

Figure 29. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic (Non-
Spoofed UDP Floods attack) using the proposed DPI system after anomaly blocking.

Based on the results of the method testing on real network traffic, we can conclude that the ideas
proposed by the authors work well. The method of calculation of reference values presented in Section
3 has partially confirmed the ability to reflect the traffic state. It can also be seen from the data
obtained in the course of testing (graphs and tables) that the anomaly quite clearly stands out against
the conditionally normal graph.

6. Discussion

The proposed method uses uncontrolled detection techniques. It is worth considering the nature
of detection systems that use uncontrolled detection techniques (when the system knows nothing
about the norm and anomalies before starting).

This leads to the conclusion that there is a high probability of false alarms; however, this is typical
for all behavioral intrusion detection systems. The situation could be corrected by further
improvement of the method and shifting toward a semi-controlled detection technique where the
values for the "norm" class are known in advance. However, this entails more preparatory work at the
stage of practical implementation of the system based on the proposed method.

The proposed system has knowledge of the ”norm” class by most of the existing protocols, such
as DNS, HTTP, RTP, Torrent, and TLS. The development software DPI system can detect attacks such
as SYN Flood, HTTP Fragmentation, UDP Flood, DNS Flood, Media Data Flood, and Non-Spoofed
UDP Flood. The proposed DPI system has been tested and implemented in the corporate network
Lviv Polytechnic National University infrastructure. It allowed to configure the first line of defense
against network attacks, taking into account the identified incidents and sources of threats not
previously considered in the standard protection means, which increases the speed of response to
emerging threats and the level of cyber security of the organization as a whole. By installing the DPI

Figure 29. Throughput monitoring, in the transmission of legitimate and non-legitimate traffic
(Non-Spoofed UDP Floods attack) using the proposed DPI system after anomaly blocking.

6. Discussion

The proposed method uses uncontrolled detection techniques. It is worth considering the nature
of detection systems that use uncontrolled detection techniques (when the system knows nothing
about the norm and anomalies before starting).

This leads to the conclusion that there is a high probability of false alarms; however, this is typical
for all behavioral intrusion detection systems. The situation could be corrected by further improvement
of the method and shifting toward a semi-controlled detection technique where the values for the
"norm" class are known in advance. However, this entails more preparatory work at the stage of
practical implementation of the system based on the proposed method.

The proposed system has knowledge of the ”norm” class by most of the existing protocols, such
as DNS, HTTP, RTP, Torrent, and TLS. The development software DPI system can detect attacks such as
SYN Flood, HTTP Fragmentation, UDP Flood, DNS Flood, Media Data Flood, and Non-Spoofed UDP
Flood. The proposed DPI system has been tested and implemented in the corporate network Lviv
Polytechnic National University infrastructure. It allowed to configure the first line of defense against
network attacks, taking into account the identified incidents and sources of threats not previously
considered in the standard protection means, which increases the speed of response to emerging threats
and the level of cyber security of the organization as a whole. By installing the DPI systems at key
points in the network, network administrators are able to detect and restrict employees who consume
large amounts of personal traffic and users who violate corporate network and Internet access policies.
This level of monitoring enables the efficient management of traffic prioritization, providing load
reduction and increased channel availability, and ensuring the reliable operation of critical services.
Depending on the tasks, the proposed DPI system allows to solve problems related to:

Sensors 2020, 20, 1637 36 of 41

- collection and processing of statistics on network load, providing administrators with detailed
information on channel utilization;

- dynamic traffic prioritization and bandwidth management for specific applications, providing
optimized channel utilization;

- network traffic management, using the capabilities of DPI solutions to redirect selected traffic to
other traffic-handling devices;

- scan traffic for viruses and network anomaly;

The limitation of the proposed solution is that for the effective functioning of the method
implemented in the DPI system to detect anomalies, it is necessary to know in advance the dataset,
which shows the assessment of the Hurst parameter of normal traffic without anomalies.

The proposed software DPI system is a significant innovation in network technology, which forms
the basis for many modern and next-generation services.

In the future, we want to expand the proposed DPI system to detect other attacks. However, the
implementation of such a system based on the author’s method is beyond the scope of this work and
will be the subject of further research.

7. Conclusions

The main requirement for modern Deep Packet Inspection (DPI) systems is the ability to detect
anomalies in information processes to identify unknown types of attacks. We have reviewed the
existing methods and software products for analyzing network anomalies. We considered the main
disadvantages of existing anomaly detection methods, such as a high level of false positives and
omissions of cyber attacks, weak capabilities to detect new attacks, the lack of ability to detect an attack
in its initial stages, the difficulty of detecting intrusions in real time, and significant loading of the
system due to complex calculations.

The statistical research of network traffic shows the presence of self-similarity properties, as well
as the variability of these characteristics when anomalies occur in the network, which allows using
fractal analysis methods to detect attacks. We proposed a method of forming a set of informative
features formalizing normal and anomalous behavior of the network traffic on the basis of evaluating
the Hurst (H) parameter. A rescaled range (RS) method to evaluate the Hurst parameter has been
chosen. In spite of the fact that RS analysis gives only an approximate value of the Hurst index, the
decisive factor was the simplicity of calculations.

Schemes describing the detection algorithm are presented, as well as a detailed description of
the logical components and stages of the anomaly detection system operation. System actions at the
detection step are described in detail. An example of a table of subscriber traffic values is given.

A new software DPI system for network traffic analysis and anomaly detection based on Hurst
parameter estimation has been proposed. We compared the proposed software DPI system with
existing SolarWinds DPI for the possibility of network traffic anomaly detection and prevention. A test
bed for simulating anomalous activity and capturing data is described. As a result of the experiment,
we proved that the existing system was unable to detect non-legitimate traffic (Non-Spoofed UDP
Floods attack). The system detected this anomaly as legitimate uTP traffic. As a result, the attack
led to quality-of-service degradation (the total loss rate rose to 7.2%, while the maximum percentage
of current loss was 48%) of legitimate traffic due to the significant use of throughput. Unlike the
existing high cost of SolarWinds DPI, the proposed software system detected this anomaly as an attack
and applied the necessary actions. Namely, it was found that by automatically blocking the detected
malicious traffic, the loss rate was reduced by 5% of the total compared to the SolarWinds DPI system.

The proposed solutions may be ideal for analyzing traffic in backbone networks for security and
the detection of attacks. They can be ideal for protecting critical data and maintaining the continuity of
Internet services, including the IoT and WSN communication infrastructure.

Sensors 2020, 20, 1637 37 of 41

Author Contributions: All authors contributed to the study conception and design; methodology: W.S., M.B.,
K.P., H.B., O.K., A.P., D.P., J.S.; formal analysis and investigation: W.S., M.B., K.P., H.B., O.K., A.P., D.P., J.S.;
writing—original draft preparation: W.S., M.B., K.P., H.B., O.K., A.P., D.P., J.S.; writing—review and editing: W.S.,
M.B., K.P., H.B., O.K., A.P., D.P., J.S.; funding acquisition: D.P., K.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the project№ 0120U100674 “Development of the novel decentralized
mobile network based on blockchain-architecture and artificial intelligence for 5G/6G development in Ukraine”.
This work was supported by PetroChina Innovation Foundation (2017D-5007-0304) and Hubei Science and
Technology Demonstration Project, Oilfield Data Intelligent Analysis and Research Center (2019ZYYD016). This
work was supported by Lublin University of Technology (contract no. FN-31/E/EE/2019). The research was
financed from the university-wide grant of the University of Economics and Innovation in Lublin (WSEI) entitled
"Three-axis machine for the simulation of occlusive biomechanical loads”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zikria, Y.B.; Kim, S.W.; Hahm, O.; Afzal, M.K.; Aalsalem, M.Y. Internet of Things (IoT) Operating Systems
Management: Opportunities, Challenges, and Solution. Sensors 2019, 19, 1793. [CrossRef] [PubMed]

2. Meyer, T.; Arroyo, P.; Herrero, J.L.; Suárez, J.I.; Lozano, J. Wireless Sensor Network Combined with Cloud
Computing for Air Quality Monitoring. Sensors 2019, 19, 691.

3. Li, S.; Kim, J.G.; Han, D.H.; Lee, K.S. A Survey of Energy-Efficient Communication Protocols with QoS
Guarantees in Wireless Multimedia Sensor Networks. Sensors 2019, 19, 199. [CrossRef] [PubMed]

4. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M.M.A. Attack and Anomaly Detection in IoT Sensors in IoT
Sites Using Machine Learning Approaches. Internet Things 2019, 7, 100059. [CrossRef]

5. Seliuchenko, M.; Beshley, M.; Kyryk, M.; Zhovtonoh, M. Automated Recovery of Server Applications for
SDN-Based Internet of Things. In Proceedings of the 2019 3rd International Conference on Advanced
Information and Communications Technologies (AICT), Lviv, Ukraine, 2–6 July 2019; pp. 149–152.

6. Fernández Maimó, L.; Perales Gómez, Á.L.; García Clemente, F.J.; Gil Pérez, M.; Martínez Pérez, G. A
Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks. IEEE Access 2018, 6,
7700–7712. [CrossRef]

7. Ten, C.-W.; Hong, J.; Liu, C.-C. Anomaly Detection for Cybersecurity of the Substations. IEEE Trans. Smart
Grid 2011, 2, 865–873. [CrossRef]

8. Pahl, M.-O.; Aubet, F.-X. All Eyes on You: Distributed Multi-Dimensional IoT Microservice Anomaly
Detection. In Proceedings of the 2018 14th International Conference on Network and Service Management
(CNSM), Rome, Italy, 5–9 November 2018; pp. 72–80.

9. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of Intrusion Detection Systems: Techniques,
Datasets and Challenges. Cybersecur 2019, 2, 20. [CrossRef]

10. YES! Encrypted Traffic Can Be Classified. Available online: https://www.thefastmode.com/expert-opinion/

8510-yes-encrypted-traffic-can-be-classified (accessed on 25 February 2020).
11. Beshley, M.; Romanchuk, V.; Chervenets, V.; Masiuk, A. Ensuring the Quality of Service Flows in Multiservice

Infrastructure Based on Network Node Virtualization. In Proceedings of the 2016 International Conference
Radio Electronics Info Communications (UkrMiCo), Kiev, Ukraine, 11–16 September 2016; pp. 1–3.

12. Klymash, M.; Beshley, H.; Panchenko, O.; Beshley, M. Method for Optimal Use of 4G/5G Heterogeneous
Network Resourses under M2M/IoT Traffic Growth Conditions. In Proceedings of the 2017 International
Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa,
Ukraine, 11–15 September 2017; pp. 1–5.

13. Michałowska, J.; Jozwik, J. Prediction of the parameters of magnetic field of CNC machine tools. Przeglad
Elektrotechniczny 2019, 95, 134–136. [CrossRef]

14. Reddy, J.M.; Hota, C. Heuristic-Based Real-Time P2P Traffic Identification. In Proceedings of the 2015
International Conference on Emerging Information Technology and Engineering Solutions, Pune, India,
20–21 February. 2015; pp. 38–43.

15. Agarwal, B.; Mittal, N. Hybrid Approach for Detection of Anomaly Network Traffic Using Data Mining
Techniques. Procedia Technol. 2012, 6, 996–1003. [CrossRef]

http://dx.doi.org/10.3390/s19081793
http://www.ncbi.nlm.nih.gov/pubmed/30991658
http://dx.doi.org/10.3390/s19010199
http://www.ncbi.nlm.nih.gov/pubmed/30621117
http://dx.doi.org/10.1016/j.iot.2019.100059
http://dx.doi.org/10.1109/ACCESS.2018.2803446
http://dx.doi.org/10.1109/TSG.2011.2159406
http://dx.doi.org/10.1186/s42400-019-0038-7
https://www.thefastmode.com/expert-opinion/8510-yes-encrypted-traffic-can-be-classified
https://www.thefastmode.com/expert-opinion/8510-yes-encrypted-traffic-can-be-classified
http://dx.doi.org/10.15199/48.2019.01.34
http://dx.doi.org/10.1016/j.protcy.2012.10.121

Sensors 2020, 20, 1637 38 of 41

16. Romanchuk, V.; Beshley, M.; Polishuk, A.; Seliuchenko, M. Method for Processing Multiservice Traffic
in Network Node Based on Adaptive Management of Buffer Resource. In Proceedings of the 2018 14th
International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer
Engineering (TCSET), Slavske, Ukraine, 20–24 February 2018; pp. 1118–1122.

17. Klymash, M.; Romanchuk, V.; Beshley, M.; Arthur, P. Investigation and Simulation of System for Data Flow
Processing in Multiservice Nodes Using Virtualization Mechanisms. In Proceedings of the 2017 IEEE First
Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kiev, Ukraine, 29 May–2 June
2017; pp. 989–992.

18. Garcia-Font, V.; Garrigues, C.; Rifà-Pous, H. A Comparative Study of Anomaly Detection Techniques for
Smart City Wireless Sensor Networks. Sensors 2016, 16, 868. [CrossRef]

19. Barsukov, I.S.; Bobreshov, A.M.; Riapolov, M.P. Fractal Analysis Based Detection of DoS/LDoS Network
Attacks. In Proceedings of the 2019 International Russian Automation Conference (RusAutoCon), Sochi,
Russia, 8–14 September 2019; pp. 1–5.

20. Deka, R.K.; Bhattacharyya, D.K. Self-Similarity Based DDoS Attack Detection Using Hurst Parameter. Secur.
Commun. Netw. 2016, 9, 4468–4481. [CrossRef]

21. Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for
Multivariate Data. PLoS ONE 2016, 11, e0152173. [CrossRef] [PubMed]

22. Baek, S.; Kwon, D.; Kim, J.; Suh, S.C.; Kim, H.; Kim, I. Unsupervised Labeling for Supervised Anomaly
Detection in Enterprise and Cloud Networks. In Proceedings of the 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 26–28 June 2017; pp. 205–210.

23. Hussain, B.; Du, Q.; Ren, P. Semi-Supervised Learning Based Big Data-Driven Anomaly Detection in Mobile
Wireless Networks. China Commun. 2018, 15, 41–57. [CrossRef]

24. Feng, C.; Li, T.; Chana, D. Multi-Level Anomaly Detection in Industrial Control Systems via Package
Signatures and LSTM Networks. In Proceedings of the 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Denver, CO, USA, 26–29 June 2017; pp. 261–272.

25. Ergen, T.; Kerpiççi, M. A Novel Anomaly Detection Approach Based on Neural Networks. In Proceedings of
the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May
2018; pp. 1–4.

26. Tabatabaefar, M.; Miriestahbanati, M.; Grégoire, J.-C. Network Intrusion Detection through Artificial Immune
System. In Proceedings of the 2017 Annual IEEE International Systems Conference (SysCon), Montreal, QC,
Canada, 24–27 April 2017; pp. 1–6.

27. Liu, Y.; Chen, Y.; Yu, H.; Fang, X.; Gong, C. Real Time Expert System for Anomaly Detection of Aerators
Based on Computer Vision Technology and Existing Surveillance Cameras. arXiv 2018, arXiv:1810.04108.

28. Nikolova, E.; Jecheva, V. Applications of Clustering Methods to Anomaly-Based Intrusion Detection Systems.
In Proceedings of the 2015 8th International Conference on Database Theory and Application (DTA), Jeju,
Korea, 25–28 November 2015; pp. 37–41.

29. Solaimani, M.; Iftekhar, M.; Khan, L.; Thuraisingham, B. Statistical Technique for Online Anomaly Detection
Using Spark over Heterogeneous Data from Multi-Source VMware Performance Data. In Proceedings of
the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014;
pp. 1086–1094.

30. Klymash, M.; Beshley, H.; Seliuchenko, M.; Beshley, M. Algorithm for Clusterization, Aggregation and
Prioritization of M2M Devices in Heterogeneous 4G/5G Network. In Proceedings of the 2017 4th International
Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PICST), Kharkov,
Ukraine, 10–13 October 2017; pp. 182–186.

31. Chae, Y. Representing Statistical Network-Based Anomaly Detection by Using Trust. Ph.D. Thesis, University
of Rhode Island, South Kingstown, Rhode Island, 2017.

32. Andrysiak, T.; Saganowski, Ł. Network Anomaly Detection Based on Statistical Models with Long-Memory
Dependence. Theory and Engineering of Complex Systems and DependabilityZamojski, W., Mazurkiewicz, J.,
Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Advances in Intelligent Systems and ComputingSpringer
International Publishing: Cham, Switzerland, 2015; pp. 1–10.

33. Zomaya, D. 7 Best Network Intrusion Detection Tools—What to Look for & Reviews. Comput. Perform. 2018.
34. Larue-Langlois, R. Network-Based Intrusion Detection Systems: 5 Best NIDS Tools to Use. AddictiveTips

2019.

http://dx.doi.org/10.3390/s16060868
http://dx.doi.org/10.1002/sec.1639
http://dx.doi.org/10.1371/journal.pone.0152173
http://www.ncbi.nlm.nih.gov/pubmed/27093601
http://dx.doi.org/10.1109/CC.2018.8357700

Sensors 2020, 20, 1637 39 of 41

35. Open Source IDS Tools: Comparing Suricata, Snort, Bro (Zeek), Linux. Available online: https://cybersecurity.
att.com/blogs/security-essentials/open-source-intrusion-detection-tools-a-quick-overview (accessed on 3
February 2020).

36. Nadiammai, G.V.; Hemalatha, M. Snort Based Network Traffic Anomaly Detector to Improve the Performance
of Intrusion Detection System. Int. J. Adv. Res. Comput. Sci. 2012, 3, 9–13.

37. Jakimoski, K.; Singhai, N.V. Improvement of Hardware Firewall’s Data Rates by Optimizing Suricata
Performances. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27
November 2019; pp. 1–4.

38. Nam, K.; Kim, K. A Study on SDN Security Enhancement Using Open Source IDS/IPS Suricata. In Proceedings
of the 2018 International Conference on Information and Communication Technology Convergence (ICTC),
Jeju, South Korea, 17–19 October 2018; pp. 1124–1126.

39. Deri, L.; Martinelli, M.; Bujlow, T.; Cardigliano, A. NDPI: Open-Source High-Speed Deep Packet Inspection.
In Proceedings of the 2014 International Wireless Communications and Mobile Computing Conference
(IWCMC), Nicosia, Cyprus, 4–8 August 2014; pp. 617–622.

40. Doroud, H.; Aceto, G.; de Donato, W.; Jarchlo, E.A.; Lopez, A.M.; Guerrero, C.D.; Pescape, A. Speeding-Up
DPI Traffic Classification with Chaining. In Proceedings of the 2018 IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

41. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. Mobile Encrypted Traffic Classification Using Deep Learning:
Experimental Evaluation, Lessons Learned, and Challenges. IEEE Trans. Netw. Serv. Manag. 2019, 16,
445–458. [CrossRef]

42. Przystupa, K. Reliability Assessment Method of Device under Incomplete Monitoring of Failure. In
Proceedings of the 2018 18th International Conference on Mechatronics—Mechatronika (ME), Brno, Czech
Republic, 5–7 December 2018; pp. 1–6.

43. Jun, S.; Kochan, O. Common mode noise rejection in measuring channels. Instrum. Exp. Tech. 2015, 58, 86–89.
[CrossRef]

44. Wojciechowski, S.; Wiackiewicz, M.; Krolczyk, G.M. Study on Metrological Relations between Instant Tool
Displacements and Surface Roughness during Precise Ball End Milling. Measurement 2018, 129, 686–694.
[CrossRef]

45. Jun, S.; Kochan, O.; Kochan, R. Thermocouples with Built-In Self-Testing. Int. J. Thermophys. 2016, 37, 37.
[CrossRef]

46. Jun, S.; Kochan, O.; Chunzhi, W.; Kochan, R. Theoretical and Experimental Research of Error of Method of
Thermocouple with Controlled Profile of Temperature Field. Meas. Sci. Rev. 2015, 15, 304–312. [CrossRef]

47. Glowacz, A.; Glowacz, W.; Kozik, J.; Piech, K.; Gutten, M.; Caesarendra, W.; Liu, H.; Brumercik, F.; Irfan, M.;
Khan, Z.F. Detection of Deterioration of Three-Phase Induction Motor Using Vibration Signals. Meas. Sci.
Rev. 2019, 19, 241–249. [CrossRef]

48. Wang, J.; Kochan, O.; Przystupa, K.; Su, J. Information-Measuring System to Study the Thermocouple with
Controlled Temperature Field. Meas. Sci. Rev. 2019, 19, 161–169. [CrossRef]

49. Rahman, M.A.; Asyhari, A.T. The Emergence of Internet of Things (IoT): Connecting Anything, Anywhere.
Computers 2019, 8, 40. [CrossRef]

50. Dudhe, P.V.; Kadam, N.V.; Hushangabade, R.M.; Deshmukh, M.S. Internet of Things (IOT): An Overview
and Its Applications. In Proceedings of the 2017 International Conference on Energy, Communication, Data
Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2650–2653.

51. Pieniak, D.; Przystupa, K.; Walczak, A.; Niewczas, A.M.; Krzyzak, A.; Bartnik, G.; Gil, L.; Lonkwic, P.
Hydro-Thermal Fatigue of Polymer Matrix Composite Biomaterials. Materials 2019, 12, 3650. [CrossRef]
[PubMed]

52. Pieniak, D.; Walczak, A.; Niewczas, A.M.; Przystupa, K. The Effect of Thermocycling on Surface Layer
Properties of Light Cured Polymer Matrix Ceramic Composites (PMCCs) Used in Sliding Friction Pair.
Materials 2019, 12, 2776. [CrossRef]

53. Przystupa, K. The methods analysis of hazards and product defects in food processing. Czech J. Food Sci.
2019, 37, 44–50. [CrossRef]

54. Yang, X.; Chen, P.; Gao, S.; Niu, Q. CSI-Based Low-Duty-Cycle Wireless Multimedia Sensor Network for
Security Monitoring. Electron. Lett. 2018, 54, 323–324. [CrossRef]

https://cybersecurity.att.com/blogs/security-essentials/open-source-intrusion-detection-tools-a-quick-overview
https://cybersecurity.att.com/blogs/security-essentials/open-source-intrusion-detection-tools-a-quick-overview
http://dx.doi.org/10.1109/TNSM.2019.2899085
http://dx.doi.org/10.1134/S0020441215010091
http://dx.doi.org/10.1016/j.measurement.2018.07.058
http://dx.doi.org/10.1007/s10765-016-2044-2
http://dx.doi.org/10.1515/msr-2015-0041
http://dx.doi.org/10.2478/msr-2019-0031
http://dx.doi.org/10.2478/msr-2019-0022
http://dx.doi.org/10.3390/computers8020040
http://dx.doi.org/10.3390/ma12223650
http://www.ncbi.nlm.nih.gov/pubmed/31698746
http://dx.doi.org/10.3390/ma12172776
http://dx.doi.org/10.17221/44/2018-CJFS
http://dx.doi.org/10.1049/el.2017.2515

Sensors 2020, 20, 1637 40 of 41

55. Leppänen, R.F.; Hämäläinen, T. Network Anomaly Detection in Wireless Sensor Networks: A Review.
In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Galinina, O., Andreev, S.,
Balandin, S., Koucheryavy, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzerland, 2019; pp. 196–207.

56. Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Liotta, A.; Mocanu, D.C.; Perra, C.; Terracina, G.; Torres
Vega, M. Short-Long Term Anomaly Detection in Wireless Sensor Networks Based on Machine Learning and
Multi-Parameterized Edit Distance. Inf. Fusion 2019, 52, 13–30. [CrossRef]

57. Ramotsoela, D.; Abu-Mahfouz, A.; Hancke, G. A Survey of Anomaly Detection in Industrial Wireless Sensor
Networks with Critical Water System Infrastructure as a Case Study. Sensors 2018, 18, 2491. [CrossRef]
[PubMed]

58. Dymora, P.; Mazurek, M. Anomaly Detection in IoT Communication Network Based on Spectral Analysis
and Hurst Exponent. Appl. Sci. 2019, 9, 5319. [CrossRef]

59. Ramapatruni, S.; Narayanan, S.N.; Mittal, S.; Joshi, A.; Joshi, K. Anomaly Detection Models for Smart Home
Security. In Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity),
IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019; pp. 19–24.

60. El-Maghraby, R.T.; Elazim, N.M.A.; Bahaa-Eldin, A.M. A Survey on Deep Packet Inspection. In Proceedings
of the 2017 12th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt,
19–20 December 2017; pp. 188–197.

61. Parvat, T.J.; Chandra, P. Performance Improvement of Deep Packet Inspection for Intrusion Detection. In
Proceedings of the 2014 IEEE Global Conference on Wireless Computing Networking (GCWCN), Lonavala,
India, 22–24 December 2014; pp. 224–228.

62. Shankar, S.S.; PinXing, L.; Herkersdorf, A. Deep Packet Inspection in Residential Gateways and Routers:
Issues and Challenges. In Proceedings of the 2014 International Symposium on Integrated Circuits (ISIC),
Singapore, 10–12 December 2014; pp. 560–563.

63. Klymash, M.; Beshley, M.; Koval, V. The Model of Prioritization of Services for Efficient Usage of
Multiservice Network Resources. Proceedings of International Conference on Modern Problem of Radio
Engineering, Telecommunications and Computer Science (TCSET), Lviv-Slavske, Ukraine, 21–24 February
2012; pp. 320–321.

64. Chakrabarty, N. A Gaussian Approach to the Detection of Anomalous Behavior in Server Computers.
Available online: https://medium.com/towards-artificial-intelligence/a-gaussian-approach-to-detection-of-
anomalous-behavior-in-server-computers-c70f7c3c1d94 (accessed on 3 February 2020).

65. Wang, S.; Xu, D.; Yan, S. Analysis and Application of Wireshark in TCP/IP Protocol Teaching. In Proceedings
of the 2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT),
Shenzhen, China, 17–18 April 2010; pp. 269–272.

66. WinDivert: Windows Packet Divert. Available online: https://www.reqrypt.org/windivert.html (accessed on
3 February 2020).

67. Xiaoguang, A.; Xiaofan, L. Packet Capture and Protocol Analysis Based on Winpcap. In Proceedings of the
2016 International Conference on Robots Intelligent System (ICRIS), Zhangjiajie, China, 27–28 August 2016;
pp. 272–275.

68. Romanchuk, V.; Beshley, M.; Panchenko, O.; Arthur, P. Design of Software Router with a Modular Structure
and Automatic Deployment at Virtual Nodes. In Proceedings of the 2017 2nd International Conference on
Advanced Information and Communication Technologies (AICT), Lviv, Ukraine, 4–7 July 2017; pp. 295–298.

69. Seliuchenko, M.; Beshley, M.; Panchenko, O.; Klymash, M. Development of Monitoring System for End-to-End
Packet Delay Measurement in Software-Defined Networks. In Proceedings of the 2016 13th International
Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET),
Lviv, Ukraine, 23–26 February 2016; pp. 667–670.

70. Beshley, M.; Seliuchenko, M.; Panchenko, O.; Polishuk, A. Adaptive Flow Routing Model in SDN. In
Proceedings of the 2017 14th International Conference The Experience of Designing and Application of CAD
Systems in Microelectronics (CADSM), Lviv, Ukraine, 21–25 February 2017; pp. 298–302.

71. Sousa, F.R.M.; Cordeiro, L.C.; de Lima Filho, E.B. Bounded Model Checking of C++ Programs Based on the
Qt Framework. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE),
Osaka, Japan, 27–30 October 2015; pp. 179–180.

http://dx.doi.org/10.1016/j.inffus.2018.11.010
http://dx.doi.org/10.3390/s18082491
http://www.ncbi.nlm.nih.gov/pubmed/30071595
http://dx.doi.org/10.3390/app9245319
https://medium.com/towards-artificial-intelligence/a-gaussian-approach-to-detection-of-anomalous-behavior-in-server-computers-c70f7c3c1d94
https://medium.com/towards-artificial-intelligence/a-gaussian-approach-to-detection-of-anomalous-behavior-in-server-computers-c70f7c3c1d94
https://www.reqrypt.org/windivert.html

Sensors 2020, 20, 1637 41 of 41

72. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study.
Future Internet 2019, 11, 66. [CrossRef]

73. Beshley, H.; Beshley, M.; Maksymyuk, T.; Strykhalyuk, I. Method of Centralized Resource Allocation in
Virtualized Small Cells Network with IoT Overlay. In Proceedings of the 2018 14th International Conference
on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Slavske,
Ukraine, 20–24 February 2018; pp. 1147–1151.

74. Klymash, M.; Savchuk, R.; Pozdnyakov, P.; Beshley, M. The Researching and Modeling of Structures of Mobile
Networks for Providing of Multiservice Radio Access. In Proceedings of the International Conference on
Modern Problem of Radio Engineering, Telecommunications and Computer Science(TCSET), Lviv-Slavske,
Ukraine, 21–24 February 2012; pp. 281–282.

75. Demydov, I.; Seliuchenko, M.; Beshley, M.; Brych, M. Mobility Management and Vertical Handover Decision
in an Always Best Connected Heterogeneous Network. In Proceedings of the Experience of Designing and
Application of CAD Systems in Microelectronics (CADSM), Lviv, Ukraine, 24–27 February 2015; pp. 103–105.

76. Ma, G.; Wang, C.; Liu, P.; Zhu, S. Sequential Similarity Detection Algorithm Based on Image Edge Feature. J.
Shanghai Jiaotong Univ. (Sci.) 2014, 19, 79–83. [CrossRef]

77. Lai, C.-M.; Huang, B.-C.; Huang, S.-Y.; Mao, C.-H.; Lee, H.-M. Detection of DNS Tunneling by Feature-Free
Mechanism. In Proceedings of the 2018 IEEE Conference on Dependable and Secure Computing (DSC),
Kaohsiung, Taiwan, 10–13 December 2018; pp. 1–2.

78. Chapter 11. Name Resolution and the Domain Name System (DNS)—Shichao’s Notes. Available online:
https://notes.shichao.io/tcpv1/ch11/ (accessed on 3 February 2020).

79. Ahmed, I.; Badia, L.; Hussain, K. Evaluation of Deficit Round Robin Queue Discipline for Real-Time Traffic
Management in an RTP/RTCP Environment. In Proceedings of the 2010 Fourth UKSim European Symposium
on Computer Modeling and Simulation, Pisa, Italy, 17–19 November 2010; pp. 484–489.

80. Huang, Z.; Xia, C.; Sun, B.; Xue, H. Analyzing and Summarizing the Web Server Detection Technology Based
on HTTP. In Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, China, 23–25 September 2015; pp. 1042–1045.

81. Han, S.; Kwon, H.; Hahn, C.; Koo, D.; Hur, J. A Survey on MITM and Its Countermeasures in the TLS
Handshake Protocol. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future
Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 724–729.

82. Testa, C.; Rossi, D. On the Impact of UTP on BitTorrent Completion Time. In Proceedings of the 2011
IEEE International Conference on Peer-to-Peer Computing, Kyoto, Japan, 31 August–2 September 2011;
pp. 314–317.

83. Galeano-Brajones, J.; Carmona-Murillo, J.; Valenzuela-Valdés, J.F.; Luna-Valero, F. Detection and Mitigation
of DoS and DDoS Attacks in IoT-Based Stateful SDN: An Experimental Approach. Sensors 2020, 20, 816.
[CrossRef]

84. Jun, S.; Przystupa, K.; Beshley, M.; Kochan, O.; Beshley, H.; Klymash, M.; Wang, J.; Pieniak, D. A Cost-Efficient
Software Based Router and Traffic Generator for Simulation and Testing of IP Network. Electronics 2020, 9,
40. [CrossRef]

85. Glossary: Common DDoS Attack Types. Corero. 2019. Available online: https://www.corero.com/blog/

glossary/ (accessed on 3 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fi11030066
http://dx.doi.org/10.1007/s12204-013-1465-3
https://notes.shichao.io/tcpv1/ch11/
http://dx.doi.org/10.3390/s20030816
http://dx.doi.org/10.3390/electronics9010040
https://www.corero.com/blog/glossary/
https://www.corero.com/blog/glossary/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background on Network Anomaly Detection Methods
	Background on DPI System
	Related Research on Network Traffic Analysis and Anomaly Detection in IoT and WSN

	Description of the Proposed Method for Network Traffic Anomaly Detection and Prevention
	Block Diagram of the Network Anomaly Detection Algorithm Based On Hurst Parameter Estimation by R/S Method
	Demonstration of the Anomaly Criterion H Calculation on the Example of Web Traffic

	Development of Software DPI System for Network Traffic Analysis and Anomaly Detection
	Algorithms for Network Traffic Capturing, Analyzing, and Detecting
	Algorithms for Capturing Data from the Input Interface
	Development of Protocols Detector
	Statistics Collection Algorithm

	Algorithms for Network Traffic Capturing, Analyzing, and Detecting

	Experimental Data and Result Analysis
	Test Bed for Network Traffic Analysis and Anomaly Detection
	Traffic Analysis and Anomaly Detection Results Using Solarwinds DPI and Proposed DPI System (Transmitting Only Legitimate Traffic)
	Traffic Analysis and Anomaly Detection Results Using Solarwinds Dpi System (Transmitting Legitimate and Non-Legitimate Traffic)
	Traffic Analysis and Anomaly Detection Results Using Proposed DPI System (Transmitting Legitimate and Non-Legitimate Traffic)

	Discussion
	Conclusions
	References

