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Abstract: Precise point positioning (PPP) is one of the well-known applications of Global Navigation
Satellite System (GNSS) and provides precise positioning solutions using accurate satellite orbit and
clock products. The tropospheric delay due to the neutral atmosphere for microwave signals is one
of the main sources of measurement error in PPP. As one component of this delay, the hydrostatic
delay is usually compensated by using an empirical correction model. However, how to eliminate
the effects of the wet delay during a weather event is a challenge because current troposphere models
are not capable of considering the complex atmosphere around the receiver during situations such
as typhoons, storms, heavy rainfall, et cetera. Thus, how positioning results can be improved if the
residual wet delays are taken into account needs to be investigated . In this contribution, a real-time
procedure of recursive detection, identification and adaptation (DIA) is applied to detect the model
errors which have the same effects on both phase and code observables; e.g., the model error caused
by the tropospheric delay. Once the model errors are identified, additional parameters are added
to the functional model to account for the measurement residuals. This approach is evaluated with
Global Positioning System (GPS) data during two rainfall events in Darwin, Australia, proving the
usefulness of compensated residual slant wet delay for positioning results. Comparisons with the
standard approach show that the precision of the up component is improved significantly during the
periods of the weather events; for the two case studies, 72.46% and 64.41% improvements of root
mean squared error (RMS) resulted, and the precision of the horizontal component obtained by the
proposed approach is also improved more than 30% compared to the standard approach. The results
also show that the identified model errors are concentrated at the beginning of both heavy rainfall
processes when the front causes significant spatial and temporal gradients of the integrated water
vapor above the receiver.

Keywords: PPP; tropospheric delay; GNSS; DIA

1. Introduction

The troposphere is the lowest portion of the Earth’s atmosphere, and tropospheric delay due to
the neutral atmosphere is one of the main error sources of the Global Navigation Satellite System. This
delay can cause up to 2.5 m at zenith direction of the Global Navigation Satellite System (GNSS) signal
transmission and over 20 m when satellites are at low elevation angles; e.g., below 10 degree [1,2]. The
tropospheric delay is commonly expressed with the following model [3]

T(e, α) = Mh(e) · Zh + Mw(e) · Zw + Mg(e) · cot(e) · (GN · cos(α) + GE · sin(α)) (1)

where e and α are respectively the elevation and the azimuth angle of a specific satellite. The total
tropospheric slant delay T between receiver and satellite at an elevation angle e is the sum of three
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portions: a hydrostatic portion, a wet portion and a gradients portion. Zh and Zw are the zenith
hydrostatic delay and zenith wet delay, respectively. Mh and Mw are the mapping functions for
the zenith hydrostatic and wet delay, respectively. GN and GE are the gradients which account
for the azimuthally inhomogeneous troposphere in north–south and east–west directions with the
corresponding gradient mapping function Mg.

The hydrostatic delay due to the refractivity of the dry gases in the troposphere can be corrected by
the conventional models such as Saastamoinen [1] and Hopfield [4], which can model the hydrostatic
delay at the millimeter level in the zenith direction [5]. Collins and Langley [6] proposed a neutral
atmosphere model designed for Wide Area Augmentation System (WAAS) users, which is the so-called
UNB model series (UNB1 through UNB4) and has been assessed for the use in North America [7,8],
Europe [9] and Japan [10]. Li et al. [11,12] developed a multi-dimensional grid model, IGGtrop, to
provide tropospheric delay corrections for the users of the BeiDou Navigation Satellite System (BDS)
and the area augmentation system based on BDS in China. Although the models mentioned above can
correct the wet delay to some extent, the accuracy varies from centimeter to decimeter level, which
is still insufficient for high precision positioning and navigation. In addition, using the empirical
atmospheric information obtained from the profile of global pressure and temperature may reduce
the accuracy of the troposphere models due to the high spatial and temporal variability of water
vapor [13,14]. Therefore, the zenith wet delay is usually estimated as an unknown parameter at each
epoch or within a certain time span.

When the zenith tropospheric delays are estimated or provided, the slant delays to each visible
satellite are obtained by assuming a specific relation between the zenith and slant direction in which
the troposphere is assumed to be symmetrical about the vertical direction of the receiver. The relation
between zenith and slant delay can be modeled by a so-called mapping function, as already shown in
Equation (1), for which a wide range of mapping functions have been developed in the past. The Niell
mapping function (NMF) [15] and the global mapping function (GMF) [16] consist of easy-to-handle
formulae which only need the input parameters of approximate latitude, height and day of year.
On the other hand, the isobaric mapping function (IMF) [17] and the Vienna mapping function 1
(VMF1) [18] provide support for mapping functions derived from numerical weather models (NWM)
by applying the ray-tracing technique and/or climatological data. The crucial variable in mapping
functions is the elevation angle. Most mapping functions are azimuth-independent, which reveals the
underlying assumption that the troposphere is azimuthally homogeneous. A successful application of
an azimuthally inhomogeneous tropospheric delay modeling in GPS geodesy and very long baseline
interferometry (VLBI) was proposed by MacMillan [19] and Chen and Herring [20], in which the
so-called horizontal gradients are considered in addition to a mapping of the zenith to slant delays.
In this way, a linear asymmetry of the troposphere is accounted for by introducing a tilted direction
instead of the zenith direction. For an extensive review of the troposphere model and mapping
function, see Teunissen and Montenbruck [21].

Positioning in severe weather conditions has received more attentions in recent years. Yasyukevich
et al. [22] investigated the influence of solar flares on the GNSS and high-frequency propagation. Luo
et al. [23] analyzed the performance of double and single-frequency base PPP during three typical
geomagnetic storms. As for the tropospheric delay, the standard troposphere model is capable of
estimating the tropospheric delay with centimeter accuracy in normal weather conditions [24,25];
however, it should be investigated how positioning results can be improved if the residuals of the
tropospheric delay caused by weather events are taken into account. The issue is that satellites at
the same elevation angle would be compensated by almost the same tropospheric delay correction
based on the standard mapping function approach. However, the symmetrical troposphere about
the zenith direction of the receiver is not realistic when it suffers from the complex weather situation.
The performance of the horizontal gradients is also limited, because they can only consider a linear
asymmetry of the troposphere around the geodetic site [26]. Kleijer [27] analyzed that significant
biases can be introduced in the estimated ZWD when the atmosphere is not symmetrical. However,
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the suggestion of using an accurate wet mapping function is still limited by the assumption of the
homogeneous troposphere. Li et al. [28] assessed the impacts of the tropospheric biases on the integer
ambiguity resolution and gave the recommendations of under which conditions the tropospheric
biases can be ignored. However, only zenith tropospheric biases are taken into account, without
considering the biases caused by the inhomogeneous troposphere. Hobiger et al [29] proposed a
method to combine the mesoscale and fine-mesh numerical weather model to provide the ray-traced
tropospheric slant delay during a typhoon passage. The result shows that the height repeatability is
improved up to 30% compared to standard data processing. However, this could still be insufficient
for high-precision positioning, and it is not possible to provide the fine-mesh numerical weather model
to worldwide users in (near) real-time.

The detection, identification and adaptation (DIA) procedure was first demonstrated by
Baarda [30] and Teunissen [31,32]. Teunissen [33] introduced this method into GNSS to detect, identify
and adapt the mismodeled errors, and then it was applied in a wide range of GNSS applications; for
example, kinematic GNSS surveying [34], permanent station resolution [35] and observation quality
control [36,37]. In this contribution, a real-time recursive DIA procedure is implemented to detect
the model errors which have the same effects on both phase and code observables, and once the
errors are identified, additional parameters will be added to the functional model to account for the
measurement residuals. One of the applications of this approach is to detect model errors caused
by the tropospheric delay; therefore it was evaluated with GPS data during two different rainfall
events in Darwin, Australia, proving the usefulness of compensated residual slant tropospheric delay
for positioning results. Comparisons with the standard approach show that the precision of the up
component is improved significantly during the period of the weather events, and the precision of the
horizontal component is also improved.

This article is organized as follows. Section 2 reviews the standard functional model for PPP data
processing and the theory of DIA and the construction of the improved functional model, which takes
into account the model errors. Section 3 analyzes the performance of the proposed procedure via two
case studies during a weather event. Section 4 contains the summary and conclusions.

2. PPP Data Processing

2.1. Modeling and Filtering

The undifferenced, ionosphere-free (IF), linear combinations of phase and code are used as the
basic observables [38]

∆φs
r,IF = −(us

r)
T∆rr + dtr + Mw · Zw + Mg,N · GN + Mg,E · GE + λIF Ns

r,IF + εs
r

∆ps
r,IF = −(us

r)
T∆rr + dtr + Mw · Zw + Mg,N · GN + Mg,E · GE + es

r
(2)

where ∆φs
r,IF and ∆ps

r,IF represent the so-called observed-minus-computed IF combinations for phase
and code observable in meters, respectively. Notice that the a priori hydrostatic delay has been
corrected for these observations; us

r denotes a unit line of sight vector from satellite s to receiver r;
∆rr contains the increments of geodetic coordinate; dtr refers to the receiver clock offset. The satellite
clock offset has been corrected by a priori precise products. The wet tropospheric delay Zw is the main
interest in this study. The notations of two horizontal gradients are Mg,N := Mg(e) · cot(e) · cos(α),
Mg,E := Mg(e) · cot(e) · sin(α), and the definitions of e, α, GN and GE have been illustrated in Equation
(1). λIF denotes the wavelength of the IF combination and Ns

r,IF the IF ambiguity. Note that both
receiver and satellite hardware delays have been ignored because they are not the main parameters of
interest. εs

r and es
r are phase and code measurement errors, respectively. It is worth noting that this

research only applies the traditional IF combination, and for a more rigorous model, one needs to
consider a third observable; that is, the difference between the wide lane phase and the narrow lane
pseudorange [39].
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After collecting the observed-minus-computed observables ∆φs
r,j and ∆ps

r,j at epoch k, the IF
combination vector of the phase and code yk can be formed from dual-frequency observations. One
can symbolize a linear model of the compact formula of Equation (2) as

yk = Akxk + ek, k = 1, 2, · · · , n (3)

where Ak is the so-called design matrix and xk the n−dimensional state vector containing the unknown
estimable parameters; ek refers to the measurement noise vector with ek ∼ N(0, Rk). The linear dynamic
model describing the time evolution of the unknown parameters is given as

xk = Φk,k−1xk−1 + dk, k = 2, 3, · · · , n (4)

where xk and xk−1 refer to the state vectors of the system at epochs k and k− 1, respectively; Φk,k−1
represents the transition matrix between two epochs. This matrix is regarded as the identity matrix,
because the dynamic system is described by the differential equations of a first-order linearized
system, and the identity matrix is obtained by solving the first-order vectorial differential equations. dk
represents the system noise at epoch k with dk ∼ N(0, Qk) and is assumed to be uncorrelated in time.

The initial state of the system and its variance matrix can be given as

x̂0|0 = (AT
0 R−1

0 A0)
−1 AT

0 R−1
0 y0

P0|0 = (AT
0 R−1

0 A0)
−1

(5)

The time update state vector and its variance matrix are given as

x̂k|k−1 = Φk,k−1 x̂k−1|k−1

Pk|k−1 = Φk,k−1Pk−1|k−1ΦT
k,k−1 + Qk, k = 2, 3, · · · , n

(6)

where x̂k|k−1 is the predication of the unknown parameters at epoch k, and Pk|k−1 its corresponding
predicted variance matrix.

The predicted residual vector and its variance matrix can be given as

vk = yk − Ak x̂k|k−1

Qvkvk = Rk + AkPk|k−1 AT
k

(7)

Using the predicted residual vector, the updated state and its variance matrix are given as

x̂k|k = x̂k|k−1 + Kkvk

Pk|k = (In − Kk Ak)Pk|k−1
(8)

With the gain matrix

Kk = Pk|k−1 AT
k Q−1

vkvk
(9)

2.2. Detection, Identification and Adaptation

2.2.1. Detection

The objective of the detection step is to detect the mismodeling errors of the mathematical model.
The functional model of Equation (2) will be tested at each epoch k to detect the presence of model
errors; e.g., unmodeled outliers in one or more observations. The distributional property of the
predicted error of the unbiased functional model can be expressed as Equation (10) [40,41], which is
the so-called null hypothesis model.

H0 : vk ∼ N(0, Qvkvk ) (10)
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Otherwise, if the functional model is biased, the distributional property then turns to

Ha : vk ∼ N(Cvk∇, Qvkvk ) (11)

where Cvk is an m× p matrix with p additional unknown parameters and p−vector ∇ is assumed to
be unknown. Equation (11) is the so-called alternative hypothesis model.

The test statistic for detecting model errors reads as

Tk =
vT

k Q−1
vkvk

vk

rk
(12)

where rk is the redundancy at epoch k. Equation (12) is also referred to as the local overall model
(LOM) test, and model errors are considered to be present at epoch k if

Tk ≥ Fα(rk, ∞, 0) (13)

where Fα(rk, ∞, 0) is the critical value based on the central F−distribution with the level of significance
α and two degrees of freedom rk, ∞.

2.2.2. Identification

This step is to identify the most likely model error to account for the unexpected effects. For
simplification, the case of one single model error at an epoch is considered for each recursion of the
DIA process, so the matrix Cvk of Equation (11) reduces to a vector, and the test statistic reads as

ti =
cT

i Q−1
vkvk

vk√
cT

i Q−1
vkvk ci

(14)

Commonly, this test is applied to test for outliers in a single observation only. In order to test
for an outlier in the ith observation, the ci-vector should be a 1 as its ith element, and zero otherwise.
In this study, the goal is to also consider a model error associated with a residual tropospheric
delay for one of the satellites due to asymmetry of the troposphere, which implies that the model
error has the same influence on both phase and code observables. Thereby, the vector cT

i turns to
cT

i = [0, ..., 1, ..., 0, ..., 1, ..., 0] which denotes all the elements in this vector are 0 except for the two 1s
corresponding to the ionosphere free combined phase and code observation for one particular satellite.
As for the uncombined dual-frequency observable, the c vector can extend to four 1s to account for the
same model error on two phase observations and two code observations. vk is the predicted residual
vector and Qvkvk its corresponding variance matrix; see Equation (7). After computing all the test
statistics of the alternative functional models, i.e., for each of the visible satellites, the likelihood of
the most likely model error can be determined by comparing the ti with the critical value Nα/2(0, 1).
For each DIA recursion, among all the satellites with |ti| ≥ Nα/2(0, 1), the one with the maximum
absolute value |ti| is then considered to be the most likely satellite affected by the model errors. After
the adaptation step, the DIA process is repeated to test whether additional satellites are affected by
model errors.

2.2.3. Adaptation

In case of an outlier, adaption implies disregarding the affected observation. However, in case the
model error is affecting both the phase and code observation, it is better to adapt for the error in the
functional model as

ya
k = Akxk + bjτj + ek (15)

where bT
j = [0, ..., 1, ..., 0, ..., 1, ..., 0]T ; all the elements in this vector are 0 except for the elements of

phase and code observation of jth satellite is 1, which implies a single additional parameter τj is added
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to account for the unexpected model error of jth satellite. In terms of redundancy, this is better than
disregarding both observations. However, as explained above, several outliers may occur or several
satellites may be affected by a weather event at the same time, and in this case, more than one model
error might be identified in a recursive DIA process. Then, the vector bj extends to a matrix B and the
unknown parameter τj extends to an unknown parameter vector τ. The adapted model at k epoch
then reads as

ya
k = Akxk + Bτ + ek

BT =


0 · · · 1 · · · 0 · · · 0 · · · 0 · · · 1 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 1 · · · 0 · · · 0 · · · 0 · · · 1 · · · 0 · · · 0

...
0 · · · 0 · · · 0 · · · 1 · · · 0 · · · 0 · · · 0 · · · 1 · · · 0


τT =

[
τ1 τ2 · · · τq

]
(16)

where B is an m × q matrix, for which m is the dimension of the observation vector and q is the
number of additional parameters. In each column of B, all the elements are 0. except for two 1s,
which correspond to the phase and code observation of one satellite. as identified in the recursive
DIA procedure.

The main procedure of this detection, identification and adaptation can be seen in Figure 1

Figure 1. Procedure of detection, identification and adaptation.
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3. Case Studies and Results

Two case studies will be presented in which we know there was severe weather during the
observation period, so as to evaluate the capability of the proposed approach to account for associated
model errors due to the asymmetrical behavior of the tropospheric delays during such events. The data
of the first event is from the Australian Continuous Operational Reference Station 00NA in Darwin on
14 November 2017. In the sequence, it is referred to as Event 1. The second data set is from 24 March
2018 of an IGS permanent station DARW which is also located in the same region; in the sequence it is
referred to as Event 2. In both cases there was heavy rainfall with thunderstorms on the specific days.
Temperature and humidity for both days were obtained from https://www.wunderground.com/ and
are shown in Figures 2 and 3, respectively. The GPS data and IGS products are used to ensure highly
precise orbit and clock corrections. Since this study focuses on the model error detection, the final
orbit and clock products are applied in the data processing to eliminate associated errors as much as
possible. Configuration of the data processing for the real-time PPP can be seen in Table 1, in which the
significance level defines the critical region where the value for test statistic lies in the null hypothesis
is rejected.

Table 1. Configuration of the data processing for the real-time PPP.

Items Values

STD of the zenith wet delay 0.2 m [42]
Process noise of the zenith wet delay 0.02 m/

√
h

STD of the gradients 0.01 m
Process noise of the gradients 0.001 m/

√
h

Interval 30 s
STD of phase 0.005 m [43]
STD of code 0.5 m
Significance level 0.005
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Figure 2. (a) Temperature and (b) humidity of the corresponding time period of Event 1.

As for Event 1 of Figure 2, the sun rises at UTC 21:30 (6:00 local time) and then temperature
increases while humidity decreases; rainfall appears from 5:00 to 8:00 (UTC) with the temperature
dropping 10 degrees within 1 h. A similar effect can also be seen in the change of humidity of that
day. For Event 2 of Figure 3, the weather event appears from 2:00 to 5:00 (UTC). The area between
the red lines shows the period of the weather event during which a significant influence on the
positioning is present. The shadow highlights the period of the dramatic change of temperature
and humidity. The hydrostatic delay depends only on the total density of the air, and the change of
temperature and humidity would somehow affect the density; thus, with a high probability, the rapid
shift in temperature and humidity will impact the hydrostatic delay. However, the inaccuracy of the

https://www.wunderground.com/
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zenith hydrostatic delay would not be a problem for the proposed model because the residuals of the
hydrostatic delay will be lumped into the wet delay. In this case, DIA is to identify the model errors
caused by the combined wet delay and residuals of the hydrostatic delay.
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Figure 3. (a) Temperature and (b) humidity of the corresponding time period of Event 2.

Figure 4 shows the statistics of the LOM test exceeding the threshold are mostly concentrated at
the beginning of the event when the front is passing through, which causes significant spatial and
temporal gradients in the integrated water vapor above the receiver. The number of subsequently
identified model errors is shown as well, and here, at most two model errors are identified at one
epoch, which means only one or two satellites are affected by the event at the same time. Besides, it can
be seen that the statistics of the LOM test are below the threshold after the DIA procedure, indicating
that there is no indication for remaining undetected model errors.

Similar behavior of the LOM test and identified model errors can also be seen in Figure 5 for
Event 2; the rejected LOM test and identified model errors are mostly concentrated at the beginning of
the weather event. However, outside the period of this event, there is one satellite detected to be biased
at 12 : 00 UTC. Although it is difficult to prove that these model errors are caused by the tropospheric
delay, the results of the up component around 12 : 00 UTC are also significantly improved, which
means the proposed approach is suitable to adapt for model errors which have the same effects on
both phase and code measurement.
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Figure 4. (a) Statistics of the Local Overall Model test with the threshold before and after adaptation
and (b) the model errors identified at each epoch during Event 1.
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Figure 5. (a) Statistics of the Local Overall Model test with the threshold before and after adaptation
and (b) the model errors identified at each epoch during Event 2.

With the proposed adapted model of Equation (16) during the weather event, the additional
parameters which represent the residuals of the slant wet delay are considered to account for the model
errors due to the tropospheric delay.

Tables 2 and 3 are the mean and root mean squared error (RMS) of the phase and code residuals
of satellites being identified with the model error during the weather events of Event 1 and Event 2,
respectively. As can be seen in these two tables, residuals of the phase observations of the affected
satellites are mostly reduced because the adjusted functional model is more reliable with the additional
parameters accounting for the model errors. As for the residuals, the improvement of the phase
observation is more significant than that of the code observation, because the value of the additional
parameter mainly depends on the phase observation due to its much higher weight compared to the
code observation.

Table 2. Means and RMSs of the phase and code residuals of the satellites being identified with model
error during Event 1. The unit is mm. The abbreviations Sta and Pro represent the standard and
proposed PPP approaches, respectively, and Ipv represents the improvement of the proposed approach
compared to the standard approach.

PRN
Phase Code

Mean RMS Mean RMS
Sta Pro Ipv(%) Sta Pro Ipv(%) Sta Pro Ipv(%) Sta Pro Ipv(%)

2 −5.44 −3.40 37.50 13.11 11.09 15.41 −334.78 −324.93 2.94 729.88 724.16 0.78
5 7.10 1.33 81.27 21.22 12.73 40.01 −109.28 −72.45 33.70 568.05 574.76 −1.18
6 −5.26 −0.31 94.11 33.89 7.30 78.46 11.78 8.22 30.22 418.58 404.25 3.42
12 6.21 3.43 44.77 21.88 9.73 55.53 −117.01 97.61 16.58 346.31 339.23 2.04
19 2.43 −0.01 99.59 16.72 0.04 99.76 74.60 71.33 4.38 362.67 360.11 0.71
20 −3.37 2.17 35.61 24.62 11.69 52.52 −334.59 −312.85 6.50 627.26 615.74 1.84

Figure 6 illustrates the results of the up component and the horizontal component within the time
span from 5:00 to 8:00 UTC of Event 1. The pattern of the up component positioning error with the
standard approach represented as a blue line shows a typical trend affected by the tropospheric delay.
On the contrary, the vertical positioning errors with the proposed method are reduced because the
residual slant wet delays have been compensated by the additional parameters. Although there is
still a systematic error in the east direction, the performance of the proposed method in horizontal
displacement is better than that with the standard approach during the weather event. As can be seen
in the skyplot of Figure 7, most of the affected satellites are located in the east part of the skyplot,
which leads to a partially biased horizontal component after adjusting.
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Table 3. Means and RMSs of the phase and code residuals of the satellites being identified with model
error during Event 2.

PRN
Phase Code

Mean RMS Mean RMS
Sta Pro Ipv(%) Sta Pro Ipv(%) Sta Pro Ipv(%) Sta Pro Ipv(%)

13 5.93 5.11 13.83 19.82 15.72 20.69 −166.57 −167.91 −0.80 416.06 418.79 −0.66
14 5.16 5.18 −0.39 22.79 20.30 10.93 133.27 131.68 1.19 467.72 467.22 0.11
15 −7.63 −2.24 70.64 32.50 14.73 54.68 −615.33 −618.36 −0.49 719.20 721.64 −0.34
19 −2.69 −2.45 8.92 13.30 15.40 −15.79 −41.41 −41.47 −0.14 331.28 330.85 0.13
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Figure 6. (a) Position errors of the up component and (b) the horizontal component of Event 1.

Table 4 summarizes the improvement of the results obtained from the proposed method compared
to the standard approach. Significant improvement can be seen in the up component, since it is known
that the tropospheric delay is one of the main error sources in the vertical direction due to high
correlation. The horizontal precision of the proposed method is also improved by about 30%. For
Event 2, most of the satellites affected by the weather event are located in the east part of the skyplot
(Figure 9).

The distribution of the influenced satellites is shown in the skyplot of Figure 7.

Table 4. Statistics of the mean and RMS residuals for PPP with and without DIA during Event 1. The
unit is m.

Mean RMS
Sta Pro Improve Sta Pro Improve

Up 0.046 0.021 54.35% 0.207 0.057 72.46%
East −0.054 −0.035 35.19% 0.071 0.048 32.39%

North −0.006 −0.006 0% 0.034 0.023 32.35%

3D 0.198 0.063 68.18 0.222 0.079 64.41%

Similarly, the positioning errors of the up component of Event 2 in Figure 8 are also reduced,
since the effects of the weather event have been removed. This approach also works well for the
aforementioned model errors identified outside the period of the weather event at around 12 : 00 UTC,
indicating that the model errors can be compensated if they have the same influence on the phase and
code observables. Table 5 shows a significant improvement of the up component, which is the same
as Event 1. Meanwhile, a system error still exists in the east component, though the precision of the
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horizontal component is also improved. From the skyplot of Figure 9, one can see that most of the
influenced satellites are concentrated in the west part of the site, which partly causes the east-west bias
of the horizontal component.

Table 5. Statistics of the mean and RMS residuals for standard approach and proposed method during
Event 2. The unit is m.

Mean RMS
Sta Pro Improve Sta Pro Improve

Up −0.053 −0.010 81.13% 0.161 0.062 61.49%
East −0.038 −0.021 44.74% 0.059 0.037 37.29%

North −0.027 −0.007 74.07% 0.056 0.020 64.29%

3D 0.159 0.057 64.15 0.181 0.075 58.56%
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Figure 7. Occurrences of model errors (indicated in red) during Event 1 as function of (a) time and
azimuth and (b) elevation and azimuth (skyplot). The blue lines represent the trajectories of the
satellites, and the red points indicate that model errors are identified at those epochs.

Occurrences of the model’s errors during Event 1 are shown in Figure 7 as functions of time and
azimuth, and elevation and azimuth, respectively. The blue lines show the trajectories of the satellites,
and the red points indicate at which epochs a model error was identified.Most of the identified model
errors are concentrated within the azimuth angle range 60 ∼ 150 degrees; i.e., the east part of the
skyplot. At the beginning of the weather event, two satellites, PRN19 and PRN6 at around 150 degrees,
were affected by the event. Both of them are at low elevation angles, as shown in the skyplot of Figure
7. When PRN2 and PRN12 approached this area, they also identified with model errors, which means
signals are affected by an extra tropospheric delay in this direction compared to any other azimuth
angles. Then, the front moved from 150 degrees to 60 degrees, and thus satellite PRN5 and PRN20
were affected, after which it dissipated. It is worth noting that wrong identification might be present;
e.g., PRN6 is affected by the weather event for a long period of time and among which PRN2 at almost
the same azimuth angle as PRN6 is identified with the model error for several epochs.
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Figure 8. (a) Residuals of the up component and (b) the horizontal component during Event 2.

Figure 9 shows the distribution of the identified model errors in Event 2, which resembles the
distribution of Event 1 in which the model errors are concentrated within a certain range of azimuth
angle; i.e., ≈ 210–300 degrees. This property may indicate the heading direction of the front. The event
keeps affecting PRN15 for a long time, which is not at a low elevation angle. Satellites close to this
range of azimuth angle are also detected with model errors at some epochs.
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Figure 9. Occurrences of the model errors (indicated in red) during Event 2 as function of (a) time
and azimuth and (b) elevation and azimuth (skyplot). The blue lines represent the trajectories of the
satellites, and the red points indicate that model errors are identified at those epochs.

Figure 10 shows values of the estimated additional parameters which are due to the unmodeled
slant wet delays caused by the weather events for this specific case. For Event 1 on the left side, the
model error of PRN19 reaches up to more than 40 cm, as this satellite goes down to a low elevation
angle. It seems reasonable, since the wet delay may lead to a delay of up to several meters at a low
elevation angle. The mean and RMS phase residuals of PRN19 shown in Table 2 reduce, respectively,
to −0.01 mm and 0.04 mm when compensated by the estimated additional parameters. The negative
values of the additional parameters are because of the mismodeled hydrostatic delay. The mean and
RMS phase residual of PRN6 also drop to 0.31 mm and 7.3 mm, respectively.

As for Event 2, values of PRN15 change rapidly from +20 cm to –10 cm, and they are stable for
a long time span; even these additional parameters are considered to be epoch independent. This
implies a further implementation of the global overall model test which takes into account the test
statistics over a period of time rather than a single epoch. As can be seen in Table 3, the mean and RMS
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phase residuals of PRN15 reduce to –2.24 mm and 14.73 mm, respectively, which still show significant
improvements compared to the standard PPP without the DIA procedure.
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Figure 10. Values of the estimated additional parameters of (a) Event 1 and (b) Event 2.

4. Conclusion

In this contribution, a DIA procedure was implemented to identify the model errors which have
the same impact on both the phase and code observables; one of the applications is to account for model
errors caused by tropospheric delays. An improved functional model was proposed with the additional
parameters to account for the model errors. Although precise orbit and clock products were applied in
the data testing to avoid any other model errors, this troposphere identification model can be easily
implemented in real-time PPP, and the DIA procedure can be processed in real-time. This procedure
was evaluated by two case studies of weather events, during which the tropospheric delay might
be azimuthal asymmetric around the receiver, and thus the model errors due to the inhomogeneous
troposphere can be detected by this procedure. The phase residuals of the satellites identified with
model errors are compared to the standard approach during the weather events, since the unmodeled
wet delay can at least be partly absorbed in the additional parameters. The positioning results are also
improved during the events, and the improvement is most significant for the up component (72.46%
and 64.41% improvement of RMS for two weather events) since the tropospheric delay is one of the
main error sources in the vertical direction. The positioning performance of the horizontal component
obtained from the proposed method is also improved (more than 30% improvement of RMS) compared
to the standard PPP. The values of the additional parameters indicate the model errors due to the
tropospheric delay can reach 40 cm when the satellite is at a low elevation angle.

At most two model errors are identified at one epoch in the two case studies, which indicates
that not too many satellites are affected by the asymmetrical troposphere, even during the weather
events. Despite the complexity of extreme weather, the identified model errors are concentrated at
the beginning of both heavy rainfall processes when the front causes significant spatial and temporal
gradients of the integrated water vapor above the receiver. Besides, the satellites affected by the events
are concentrated within a certain range of azimuth angle, which is related to the path of the front. This
proposed procedure can also be used in monitoring severe weather. If the outliers detected by this
method increase dramatically, it may indicate the front line of weather event is passing through. More
testing shows that the proposed procedure may not always bring a very large improvement, but as
least it does not deteriorate the positioning solutions; meanwhile, it does prevent severe impacts in
some cases.
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