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Abstract: Image data remains an important tool for post-event building assessment and
documentation. After each natural hazard event, significant efforts are made by teams of engineers
to visit the affected regions and collect useful image data. In general, a global positioning system
(GPS) can provide useful spatial information for localizing image data. However, it is challenging
to collect such information when images are captured in places where GPS signals are weak or
interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations
hinders the analysis, organization, and documentation of these images as they lack sufficient spatial
context. In this work, we develop a methodology to localize images and link them to locations on
a structural drawing. A stream of images can readily be gathered along the path taken through
a building using a compact camera. These images may be used to compute a relative location of
each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm.
The images may also be used to create local 3D textured models for building-components-of-interest
using a structure-from-motion algorithm. A parallel set of images that are collected for building
assessment is linked to the image stream using time information. By projecting the point cloud model
to the structural drawing, the images can be overlaid onto the drawing, providing clear context
information necessary to make use of those images. Additionally, components- or damage-of-interest
captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient
geospatial context. The technique is demonstrated by emulating post-event building assessment and
data collection in a real building.

Keywords: post-event building assessment; visual odometry; 3D reconstruction

1. Introduction

Engineers often learn from observing the consequences of natural disasters on our physical
infrastructure by studying the real world. A large amount of data is collected after each hazard event.
Among the various types of data being collected, image data offer the most direct and useful way to
record the impact of these events on our physical infrastructure. By utilizing inexpensive cameras
or cell phones, engineers and researchers can rapidly capture and document damage or failures in
a building such as spalling, shear cracks, deformation, etc. Thus, image collection is an indispensable
process to support post-event building assessment.

With the frequency of recent events and the ease with which an increasing number of images
can be collected (e.g., smartphone [1,2], streetview [3,4], and aerial images [5]), the number of images
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being collected to support such research is growing exponentially [6–12]. Accordingly, it is critical
to developing the capabilities associated with automatically and rapidly analyzing and publishing
those data. This task has become a common goal shared across the entire hazard community. In 2016,
the National Science Foundation has established a shared-use facility, the Natural Hazards Engineering
Research Infrastructure (NHERI), dedicated to supporting the broad community of researchers in
hazards and resilience. The RAPID facility in the NHERI network is dedicated to supporting field
data collection using a variety of advanced sensors and sensing platforms [9]. A complementary
component of this research network is a data repository, DesignSafe-CI, hosted at the University
of Texas, United States, to document and store the data collected. Additionally, there are a couple
of existing data repositories having similar purposes and functionalities, for instance through the
Earthquake Engineering Research Institute, DataCenterHub, and the Pacific Earthquake Engineering
Research Center in the United States, and through QuakeCore in New Zealand [10–12].

Despite the investments made in acquiring and storing these data, the current suite of data
repositories may not be adequate for conducting in-depth research with images. Inherently, image data
lack spatial context. When 3D scenes are captured with 2D images, the relative locations between
the scenes on the images are needed to understand spatial relationships from 2D images [13–15].
To capture visual details, field engineers may take photos close to the object being documented within
the scenes-of-interest. However, with such images, one cannot easily infer any of the relevant spatial
contexts to make use of the information extracted. For example, assume that an engineer takes pictures
of a damaged column of the building from a close distance. The images may not contain contextual
information associated with, for instance, the column location on the floor, its relative size, or the
relative conditions of other nearby building components. To obtain such information the engineer will
need to sift through the set of previous or next pictures collected near this region. However, this is
challenging, especially when one considers that a building is likely to have multiple components
that are built with a common style or appearance [16]. In other words, many columns or walls in
a given building do look similar to each other. In this circumstance, using images without contextual
information will inevitably lead to untrustworthy results in practice, and will certainly result in needless
consumption of time and manual labor involved in inferring spatial information. GPS metadata on
images can provide approximate geospatial information, but only for those data captured outside the
building or in open spaces without interference. Additionally, 3D sensors like Light Detection and
Ranging (LiDAR) can be used for reconstructing the scenes in 3D for image localization, but they are
expensive, and at this time require considerable extra time and effort to use [17,18].

To address this challenge, we have developed a technique to localize inspection images onto
the structural drawings and reconstruct a local 3D textured model of scenes-of-interest. A major
opportunity enabled by this technique is to achieve these capabilities without adding extra effort to or
interrupting the existing data collection process in the field or without utilizing an expensive 3D sensor.
In addition to the images collected for inspection (hereafter, InspImgs (inspection images)), engineers
must simply collect a steady stream of images using a compact camera, potentially mounted on their
hard hat or chest (hereafter, PathImgs (path images)). By implementing a visual odometry algorithm
using the PathImgs, the relative locations of PathImgs along the path taken through the building
being inspected are estimated, and a 3D point cloud model of the scenes is reconstructed. Structural
drawings of the building may also be automatically reconstructed from drawing images (hereafter,
DrawImgs (partial drawing images)) using the technique already developed by the coauthors [19].
By transforming the point cloud model to the drawing coordinates, InspImgs, which are taken at
the time when PathImgs are captured, can be mapped and localized on the reconstructed drawing.
Additionally, since we collect a large number of PathImgs along the path, any useful scenes on InspImgs
can be reconstructed in 3D including color surface texture, enabling their detailed inspection with
sufficient spatial context. To demonstrate the capability of the proposed technique, we have conducted
an experiment on a building, assuming that we follow the typical procedures performed during
a post-earthquake reconnaissance mission.
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The remainder of this paper is organized as follows. Section 2 starts with a review of the
state-of-the-art in path reconstruction techniques. In Section 3, the technical approach is described,
including a detailed technical discussion of the image collection, path reconstruction, drawing
reconstruction, and the path overlaid onto the drawing. In Section 4, the technique is demonstrated
using the images collected by a human data collector walking through an actual building. The paper
ends with the conclusion in Section 5.

2. Literature Review of Path Reconstruction Techniques

A main technical challenge of our approach lies in how to recreate the path of an engineer walking
through an indoor environment so that InspImgs can be mapped onto the reconstructed path. The use of
GPS metadata in each image would be a logical solution, but they are extremely limited within an indoor
environment [20]. Another possible technique for localizing image positions where no GPS signal exists
is an indoor positioning system. Such systems adopt beacon-based methods of communicating with
various signals like vision, infrared, ultrasound, Bluetooth, Wi-Fi, and radio-frequency identification
(RFID) [21–27]. They are based on communications or measurements between mobile devices and
fixed beacons that serve as landmarks. However, the preparation needed to place the necessary fixed
devices before using such a system is an obvious limitation [28]. In reality, after significant disasters,
buildings often have no electricity and telecommunication service is not available. Furthermore, time is
tight and engineers want to collect data from several buildings each day. In typical reconnaissance
procedures, it would be extremely unlikely to have the ability to set up the necessary indoor landmarks
before gathering data. Therefore, beacon-based localization is infeasible in the field.

Alternatively, visual odometry (hereafter, VO) provides a potential solution that offers accurate
positional output without having prior information about the environment and without relying on
other sensors installed in the building [29,30]. Originating from visual-based navigation systems for
mobile robots called simultaneous localization and mapping (SLAM), the technique performs the
localization of a camera (including transposition and rotation movement) using a stream of still images
as inputs. The accuracy and speed are improved by incorporating techniques, such as loop closure
detection, map reuse, etc. [31–33]. In general, depending on how many cameras are engaged in the data
collection process, VO can be categorized as either stereo or monocular VO [29,30]. Stereo VO, inspired
by human eyes, constructs 3D depth images [34]. The main advantage of the stereo VO is that scale
information of the scene can be obtained from the known distance between the lens, called, intra-axial
distance. However, users need to purchase a stereo camera or manually calibrate two cameras to
implement the algorithm. In contrast to stereo VO, monocular VO only uses the data from a low-cost
single camera. The main disadvantage of monocular VO is that this method can only provide relative
positions because there is no physical scale information available to the algorithm. In the technique
described herein, the true (physical) scale information is not necessary because we only need to find
the parameters needed for transforming the reference coordinate for the camera path to the coordinate
for the structure drawing. Thus, we selected monocular VO to estimate the position information by
collecting and processing a stream of PathImgs.

Several successful monocular VO have been published by researchers. For instance, parallel
tracking and mapping (PTAM) has improved mapping results using a new feature-based method [35],
and oriented fast and rotated BRIEF SLAM (ORB-SLAM) has achieved accurate reconstruction results
in a fast speed using the key frame notion [36]. Direct methods have been shown to rebuild the path
and the map accurately as well, such as large-scale direct monocular SLAM (LSD-SLAM) [37]. Here,
for path reconstruction, we adopted a state-of-art odometry technique called direct sparse odometry
(DSO). DSO has been recognized as one of the best VO techniques with several advantages, including
accuracy, processing and implementation times, etc. [38].



Sensors 2020, 20, 1610 4 of 18

3. Technical Approach

An overview of the technical approach is shown in Figure 1. The technique consists of three
main steps including image collection, data processing, and data visualization, and implements four
algorithms (marked as A–D) into the process to generate two outcomes: a drawing overlaid with
InspImgs and a local 3D textured model in Step 3. In Step 1, as the input for the proposed technique,
engineers collect three types of images from the building including InspImgs, PathImgs, and DrawImgs.
InspImgs are the data being collected in the field, aiming to capture buildings and their components
for the purposes of visual assessment and documentation. Collected concurrently with InspImgs,
PathImgs contain an image sequence recorded continuously in time in order to capture the scene in
front of the engineer as he/she walks through the building and thus document the path taken. Thus,
PathImgs are not selectively captured by focusing on specific objects or damage, like how InspImgs are
captured. PathImgs and InspImgs are synchronized in time, used for later localization. DrawImgs are
part of the metadata captured using images [19]. DrawImgs contain a portion of a physical drawing
while preserving its details. In the proposed technique, in addition to InspImgs and DrawImgs,
which are normally captured in a typical reconnaissance mission, engineers simply collect PathImgs by
mounting an extra camera on a hard hat or body.
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After these images are gathered, in Step 2, the path of the engineer is reconstructed with the
set of PathImgs using the DSO algorithm, which is one of the most popular VO algorithms (B).
The 3D point cloud of the scenes included in PathImgs is also reconstructed. This process is to
estimate relative locations between the PathImgs so that they are overlaid to the drawing, followed by
localizing InspImgs. In this step, the structural drawing is also reconstructed from DrawImgs using the
structure-from-motion algorithm (A). We previously developed the drawing reconstruction technique
in reference [19].

Then, in Step 3, the path and 3D point cloud are overlaid onto the reconstructed drawing using
a coordinate transformation (C). The transformation matrix is computed using an interactive tool
by manually but rapidly finding the correspondence between a few images (around 10 images) in
PathImgs (localized in the 3D point cloud) and their approximate capture locations on the drawing.
Here, the purpose of mapping the path to the drawing is to localize InspImgs. Since the InspImgs
are captured while PathImgs are continuously collected, approximate locations of InspImgs are easily
identified from PathImgs having the closest timestamp (D). Additionally, PathImgs and InspImgs are
used for reconstructing the local 3D textured model using the structure-from-motion algorithm (A).
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In the end, the user selects any InspImg and the proposed technique automatically informs its position
on the reconstructed drawing and if needed, the scene on the selected InspImgs can be reconstructed in
3D. It is worth mentioning that the only manual process required in this technique is to manually match
a select group of PathImgs with their corresponding locations on the drawing using the interactive tool
for obtaining the transformation matrix.

3.1. Reconnaissance Image Collection

3.1.1. Collecting InspImgs and DrawImgs

The procedure for acquiring InspImgs is governed primarily by typical protocols for obtaining
reconnaissance images that are useful for documenting the perishable visual evidence of the hazard
event. To gather high-quality images, InspImgs should be captured without blur. As the engineer
approaches a building scene of interest, he/she aims to capture a few InspImgs of that specific scene
from various perspectives and distances.

DrawImgs are independent of PathImgs and InspImgs and are meant to produce a high-resolution
image of the structural drawing when that is not available in a digital or carriable form. Certain
guidelines do need to be followed for taking DrawImgs, as explained in detail in [19]. In short,
the physical drawing is placed in a flat and non-obstructed position; each DrawImg should have a large
shared region (overlap), with adjacent DrawImgs; all contents of the drawing should be included in the
complete set of DrawImgs; and, each DrawImg should be taken from a position in which the camera is
pointing to the drawing while maintaining a similar distance from the drawing.

3.1.2. Collecting PathImgs

PathImgs are a sequence of images that are taken automatically by a compact and mountable
camera that can be carried during the building walk-through. They record a stream of scenes that the
field engineer observes along this path, and eventually, they are used for reconstructing the entire
of the path using DSO, that the engineer walks through. Engineers do not need to take extra efforts
to collect PathImgs if the camera is mounted on the hard hat or chest. Since PathImgs are collected
mainly for this purpose, there is no need for the engineer to modify his or her motions or directions.
Additionally, PathImgs are not the images that engineers will sift through for inspection or condition
assessment. However, there are some considerations on the selection of the camera and its calibration
before collecting images.

There are three factors to consider when the camera is selected. First, a global shutter camera
is the best option for collecting PathImgs, while a rolling shutter camera would not be a suitable
choice. This choice allows for avoiding the jello effect in PathImgs [39]. Second, motion blur in the
PathImgs must be avoided. The selected camera should support a faster shutter speed with high ISO
without dropping image quality. Third, the camera should support a high frame-per-second (fps)
video or continuous shots. If the absolute motion between two consecutive PathImgs is too large,
the DSO algorithm will produce large modeling errors and they are accumulated in the course of path
reconstruction. These three considerations will guarantee the capture of valid PathImgs that can be
used for accurate path reconstruction.

To use DSO, initial camera calibration is necessary. The intrinsic parameters of the compact
camera must be determined accurately through the camera calibration process when they are not
provided by the manufacturer. There are many ways to calibrate a digital camera, but the chessboard
calibration method is widely used to find all these parameters [40,41]. In this method, a chessboard
pattern having clean borders between black and white cells is placed on a flat table or attached to
a wall, and the camera is used to take images from various angles with the full chessboard in view.
Normally 10 to 30 calibration images are sufficient to perform geometric camera calibration [40,41].
This camera calibration is independent of the PathImg collection and should be done before the actual
data collection.
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3.2. Path Reconstruction

We adopted DSO to generate the path associated with data collection. The path was generated
based on the stream of PathImgs gathered during the mission. Based on the performance evaluation
described in the original DSO-based work and our preliminary tests, DSO has shown superior
performance in terms of accuracy and speed among several monocular VOs. Additionally, DSO offers
an easy-to-implement strategy and does not require special programming libraries and hardware.

To better understand the working principle of DSO, the workflow of the algorithm is summarized
in Figure 2 when a new image is inputted (hereafter, NImg) [38]. Steps (a)–(h) in the procedure were
repeated for each subsequent NImg until all images (PathImgs) were scanned (inputted). Basically,
the point cloud and pose estimation were performed on a subset of images, called the sliding window
(hereafter, SW) and the images in SW are called key frames (hereafter, KeyFrames). The process
in Figure 2 is to determine whether the NImg is eligible for KeyFrame and to perform the joint
optimization over the KeyFrames to update the point cloud and the pose of the KeyFrames once the
NImg is added to the SW.
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In Step (a), a single NImg is fed into the algorithm. Then, an initial pose of that NImg is roughly
estimated by matching the points on the newest existing KeyFrame in SW. With the outcomes from
Step (b), a series of strategies are applied to decide whether or not NImg can serve as a new KeyFrame
in SW. This decision is based on, for example, i) whether or not the field of view has changed since the
most recent KeyFrame, which is measured the mean square optical flow from the newest KeyFrame to
NImg, ii) a camera translation has caused an occlusion or disocclusion, which is measured by the mean
flow without rotation, or iii) the camera exposure time has changed significantly, which is measured by
the relative brightness factor between the newest KeyFrame and NImg [38]. A condition for candidacy
as a new KeyFrame is the image having a large relative movement from previous KeyFrames. In Step
(c), if the NImg is not eligible for a new KeyFrame, the NImg only contributes to update the depth
values of inactive points in SW, which are the points used for the future joint optimization. The NImg
assigned as non-KeyFrame is not involved in the optimization process for point cloud and pose update.
If NImg is qualified as the new KeyFrame, the NImg will be added into SW in Step (d). Subsequently,
a joint optimization is performed, which is the core part of DSO in Step (e). The technical details
of this process are delineated in the following paragraph. In short, the intensity difference between
the points on the newly added KeyFrame and the existing KeyFrames in SW is minimized using
the Gauss-Newton method for parameter optimization. Once the new KeyFrame is added in SW
and successfully registered in the existing model, in Step (f), we deactivated some KeyFrames in SW,
which will not contribute to the upcoming match with NImg. This process is called marginalization
and helps to maintain a consistent number of KeyFrames in the SW, thereby improving the efficiency
of the optimization in DSO. Finally, in Step (g) the operations related to the current NImg ends, and the
same process is then repeated for the next NImg.
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In the optimization in Step (e), a cost function is designed to minimize the difference of intensity
values between points in each KeyFrames with the projected points from all the other KeyFrames
in SW. The formulation of the cost function starts with the difference between one point in the host
KeyFrame and the projected point from a reference KeyFrame in SW, denoted Epij as

Epij:= ‖I j(p′) − Ii(p)‖2 (1)

where the points from the host (i) and reference ( j) KeyFrame are denoted as p and p′, respectively.
I stands for the pixel intensity and I(p) is the intensity value at p. In addition, ‖·‖2 is the l2-norm.
Equation (1) computes the difference of intensity values between the point p and the projected point p′.
The process of projection described in [38] is based on a pinhole camera geometry as

p′ = Πc
(
R·Π−1

c

(
p, dp

)
+ t

)
(2)

where the movement from the position where the camera takes KeyFrame i to KeyFrame j is modeled
as a rotation and translation. R is a rotation matrix, and t is the translation vector. dp is depth value
of point p, which is the perpendicular distance from the principal plane of the camera to the world
point, which p represents in KeyFrame i. Πc() stands for the projection process of the camera from the
corresponding world point to the image point p, and Π−1

c () is the inverse projection process.
The DSO algorithm considers an intensity calibration factor in Equation (1), expanding it to

Epij :=
∑
p∈Np

wp‖Iraw
(
I j(p′)

)
− Iraw(Ii(p))‖r =

∑
p∈Np

wp‖
(
I j(p′

)
− b j) −

t jea j

tieai
(Ii(p) − bi)‖r (3)

To compensate for unknown intensity calibration factors involved in the imaging process of a camera,
a function is defined to reflect such a process as

Iraw(I(p)) =
I(p) − b

tea (4)

This equation converts the intensity value of point p in one image to the raw intensity value that the
camera should capture. Here, t is the exposure time of the image, a and b are constants regulating
this converting process. These two parameters are taken as unknown values to be calibrated in the
optimization. Note that if a camera does not record an accurate exposure time, the exposure time
t is simply set to 1. Here, l2-norm is replaced by the Huber norm ‖·‖r [42] to increase resistance to
outliers. In addition, the weight term (wp) in Equation (3) is used to accommodate points with different
gradients. The weight term is defined in [38] as

wp =
c2

c2 +
∣∣∣∣∣∣∇Ii(p)

∣∣∣∣∣∣2
2

(5)

where ∇Ii(p) is the gradient vector at point p in KeyFrame i, and
∣∣∣∣∣∣∇Ii(p)

∣∣∣∣∣∣2
2 is the square of its l2-norm.

A factor c is a constant regulator and is set to 0.75 in our work. To improve the robustness of the
cost function, DSO utilizes eight neighborhood points to compute the intensity difference for point p
including its nearby region. This set of points is denoted as Np.

Epij is summed up over the points in all host-reference KeyFrame combinations. Epij is established
in terms of point p in KeyFrame i, which is observed in KeyFrame j.

∑
j∈obs(p)

is the summation where

j over all the KeyFrames in SW in which p is visible.
∑

p∈Pi

is where point p over all the points Pi in

KeyFrame i.
∑
i∈F

indicates that i becomes all the KeyFrames in SW. Thus, the final cost function is

defined as
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E =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epij (6)

The Gauss-Newton method is used to find the global minimum of this cost function. The unknown
parameters to be computed include the rotation matrix R, the translation vector t, the depth value
dp of point p, parameters of the imaging process a and b, and the camera intrinsic parameters [38].
The camera intrinsic parameters are treated as variables in the optimization for fine-tuning from the
initial estimates found in the camera calibration. Among these parameters, the camera position, R and
t, are the desired output in our study.

3.3. Drawing Reconstruction

Images of structural drawings are often collected as a part of a building reconnaissance dataset to
document the details of the structural system and design. When the digitized version of the drawings
is not available, for example with older buildings, field engineers must take multiple photographs of
the hard copy of the structural drawings to capture this information in a legible and complete form.
To accomplish this task, they capture DrawImgs, because it is often difficult to include the entire view
in one single photograph. A method is available to automatically organize these DrawImgs and restore
a complete high-resolution drawing in a digital form from these DrawImgs by the coauthors. DrawImgs
are first automatically filtered out from the entire building image collection using a convolutional
neural network classifier. Then, the DrawImgs are grouped according to the original drawing that they
belong to. After that, a full reconstruction of each page of the drawings is obtained. More details are
provided in [19].

3.4. Overlaying the Path with the Drawing

The 3D point cloud is projected to a 2D plane in the gravity (height) direction. Thus, we could
use two independent sets of 2D points to represent the path defined by the 3D point cloud and the
reconstructed drawing. Then the path can be overlaid onto the drawing by finding the transformation
matrix between these two sets of data. Based on the correspondence between the locations of some
PathImgs and their locations on the drawing, the transformation matrix for projecting 3D points cloud
and path onto the drawing can be computed. We used the absolute orientation method to find the
optimal transformation matrix between these correspondences [43].

An interactive tool was developed to assist with this task. The objective of this tool is to rapidly
match PathImgs with their locations on the reconstructed drawing. The tool shows a group of PathImgs
to the engineers so that they can select and match PathImgs to the corresponding locations on the
reconstructed drawing. If there is no suitable PathImg in the group, or if the location is hard to
recognize, the engineers can select PathImgs from another group. The tool supports the function of
enlarging the drawing to improve selecting the location. We repeated this process until engineers
have selected a sufficient number of image-location pairs. Around 10 pairings across the drawing are
sufficient for obtaining the transformation matrix. The more pairings are given, the more accurate
the projection result will be. Note that the selected points should be equally distributed over the
entire path rather than gathered in a specific region of the drawing. Once the selection process is
completed, the tool automatically computes the transformation matrix and conducts the coordinate
transformation to overlay the path and 3D point cloud onto the drawing as the outcome. Figure 3 shows
10 PathImg-locations pairs used for experimental demonstration in Section 4. The images on the right
are PathImgs selected and their corresponding locations are marked on the reconstructed drawing.
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Figure 3. Path transformation: 10 images are matched with the corresponding locations on the
reconstructed drawing.

4. Experimental Verification

4.1. Description of the Test Site

Experimental verification was performed on an actual building. We chose the basement floor of
Armstrong Hall on the Purdue University campus as a test site, shown in Figure 4a. The area of the
basement floor was about 175 m × 60 m and its digital drawing including sample images of key places
is presented in Figure 4b. A long corridor of 175 m (long) by 3 m (wide) was located along the centerline
of the floor, marked as solid blue in Figure 4b. Since the corridor was sufficiently long and had
several turns to walk through, and the structural columns were exposed in the corridor (see Figure 4b),
the scenes in the test site do represent the actual building environment that engineers would visit after
earthquake events. We collected necessary images including InspImgs and PathImgs by emulating
inspection and data collection steps taken in a typical post-earthquake field reconnaissance mission.
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Figure 4. Experimental test site (Armstrong Hall at Purdue University, United States): (a) building
overview and (b) basement floor plan: InspImgs and PathImgs are collected along the corridor
highlighted as solid blue. Sample images corresponding to key spots in the corridor are provided.

4.2. Collection of the Image Data

We manually collected PathImgs using a compact camera (Canon 350HS), InspImgs and DrawImgs
using a DSLR camera (Nikon D90). The size of the Canon 350HS was 3.92 inches × 0.9 inches × 2.28
inches, and the weight was 5.19 ounces. Overall, 3687 PathImgs, 232 InspImgs, and 44 DrawImgs were
collected, and their resolutions were 2595 pixels × 1944 pixels, 4288 pixels × 2848 pixels, and 4288
pixels × 2848 pixels, respectively. Their sample images are shown in Figure 5. The compact camera
was set to burst mode, which continuously took PathImgs at 7.8 fps. The focal length was fixed
throughout the entire experiment because the initial calibration parameters remained unchanged.
We avoided the jelly effect in this experiment by simply walking slowly, at about 1/3 of the normal
walking speed of a human. By doing this, we did not notice an obvious jelly effect, and if there were,
the errors did not influence the quality of the result. Additionally, the Canon 350HS is just one sample
of a suitable camera to collect PathImgs and a baseline for choosing the camera device. By using
cameras with faster shutter speeds with high ISO, one can avoid the need to walk slower. In this
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experiment, two people collect InspImgs and PathImgs at the same time. However, the actual collection
of PathImgs is devised to be automated with a mountable camera (e.g., action camera) by a single
engineer. The DSLR camera was used to collect InspImgs and DrawImgs. A major distinction between
InspImgs and PathImgs is that PathImgs represent a stream of image sequence without gazing at any
specific objects or regions that the engineers would be interested in, while InspImgs are non-periodic
image shots targeting objects-of-interest at various viewpoints and distances. For instance, assume that
the engineer gazes at interesting objects (e.g., columns and walls) or certain evidence of damage (e.g.,
crack and spalling), PathImgs and InspImgs capture different information: PathImgs, as in Figure 5a,
captures the views in front of the engineer, regardless of whether the compact camera is directly
facing any particular building components of interest. The scenes in these images will turn upwards
or downwards following the gaze of the engineer. On the other hand, InspImgs, as in Figure 5b,
were aimed at the objects and regions that the engineer found interesting and chose to document.
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Figure 5. Sample images collected during the test: (a) PathImgs, (b) InspImgs, and (c) DrawImgs

The image data collected was intended to cover the entire corridor area highlighted in Figure 4b.
We followed the image collection guideline introduced in Section 3.1. The compact and DSLR cameras
were set to have the same timestamp before conducting the experiment. We spent 11 min and 45 s to
collect both InspImgs and PathImgs by walking through the entire corridor and performing inspection
actions, such as observing structural conditions and taking more photos of structural elements, which is
to emulate an actual post-earthquake reconnaissance mission.

Regarding DrawImgs, we assumed the situation where only a paper copy of the drawing was
available to the engineers (although in this case we did have a digital drawing shown in Figure 4b).
The digital drawing was printed on a large engineering paper (A1) and DrawImgs captured the
drawing, following the image collection guideline provided in the coauthor’s paper [19]. The paper
copy of the drawing was placed on a large flat table and images were taken at a suitable distance from
the drawing in such a way that details of the drawing (e.g., line and number) were visible. The total
number of images depends on the size and details of the drawings. In this work, we collected 44
DrawImgs from a single drawing of the basement to capture all the details and some sample images
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are in Figure 5c. Note that the original technique proposed by the coauthor also performs image
classification and drawing matching techniques so that DrawImgs are automatically extracted from
a set of images collected and individual drawing images are created from DrawImgs captured from
multiple drawings. However, in this work, we only implemented the drawing image generation
(stitching) technique using a set of DrawImgs collected from a single drawing.

We used a workstation with an Intel i9-7920x CPU, 32 Gb memory, and a NVIDIA GeForce RTX
2080Ti video card. The path reconstruction with 3687 PathImgs and drawing reconstruction with 44
DrawImgs took less than 20 min. Generating the local 3D surface model for one scene took about 2.5 h
using 402 images, although the actual time would vary for each case depending on the number of
images. All these processes were fully automated. The only manual task was to match PathImgs to the
corresponding locations in the reconstructed drawing in order to compute the transformation matrix
between the 3D point cloud and the reconstructed drawing image. However, this task took less than
five minutes to match 10 PathImgs, shown in Figure 3.

4.3. Results

4.3.1. Path Reconstruction

The path was reconstructed using a stream of PathImgs. Video footage was also applicable after
transferring video footage to images. We used the compliable source code [44], published by the DSO
creators, to generate the DSO software. It is written in C++, run in Linux 14.04, and operated with Linux
bash command lines. When DSO was applied to PathImgs, KeyFrames were automatically extracted
and used to estimate the positional information. Here, 1428 images were identified as KeyFrames
and their relative positions in the reference coordinate were estimated. We linearly interpolated
between every two consecutive KeyFrames, each PathImg was assigned with a relative position for
both KeyFrames and non-KeyFrames, excluding PathImgs that were dropped in the initialization
process. The reconstructed path consisted of a set of 3607 discrete points associated with PathImgs,
and each discrete point had a 7-dimensional positional vector including a three dimensional translation
and a four dimensional quaternion to represent a 3D rotation with respect to the reference coordinate
system (as mentioned in Section 3.2). Moreover, the 3D point cloud was also generated from the scenes
including wall, doors, columns, of which scenes were contained in KeyFrames.

Figure 6 shows the reconstructed path and 3D point cloud, which were viewed (or projected) in
the gravity (height) direction. Most PathImgs were normally captured while the gravity direction was
aligned with the image height. Thus, we could easily compute the gravity direction of the reconstructed
model for projection. In Figure 6, each red point indicates each PathImg location (although they look
as if they were connected) and blue points were the point cloud (for a black and white figure, the line
passing through the middle of the encompassed region was the set of red points.) A majority of points
(blue points) were likely generated from the perpendicular features adjacent to the corridors like walls
or doors. Thus, the blue points formed a layout of the walls along the corridor.

As mentioned in Sections 2 and 3.2, DSO was based on image collection using a monocular
camera, which could not determine a real-world scale. Thus, the points in Figure 6 are represented
in hypothetical units, which have no physical scale information. However, they are proportional to
real-world units, facilitating mapping the path to the drawing image. Note that we manually rotated
the reconstructed model in Figure 6 to be horizontal for better visualization.
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Figure 6. Reconstructed image collection path and a point cloud of the scenes on PathImgs: The points
in blue represent the reconstructed point cloud and form a layout of the walls in the corridor. A set of
red points passing through the corridor is the locations of PathImgs. The values are represented using
a hypothetical unit in the initial reference coordinate system and have no physical scale information.

4.3.2. Drawing Reconstruction

The drawing reconstruction method is implemented to the collected DrawImgs and the resulting
reconstructed image of the structural drawing is present in Figure 7. The overall quality of the drawing
was quite satisfactory, and as was clear from the enlarged areas next to the full drawing. All detailed
were preserved, even small texts and thin lines. The color and orientation of the reconstructed drawing
in Figure 7 were manually tuned for better visualization. It should be emphasized that this method
possessed the ability to automatically restore multiple drawings from a mixed set of DrawImgs that
included images of more than one drawing. However, in this experiment, we only reconstructed
a drawing for a single basement floor using the corresponding DrawImgs. Additionally, if the digital
drawing is available, such a drawing reconstruction step can be skipped. This digital drawing was
used directly for the overlay step as in the next section, replacing the reconstructed drawing image.
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areas corresponding to the boxes on the drawing on the left.

4.3.3. Path Overlay

Following the steps explained in Section 3.4, we selected 10 PathImgs and their corresponding
positions in the reconstructed drawing for computing the transformation matrix. The transformation
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matrix was used to map the point cloud and PathImg locations (in Figure 6) to the reconstructed
drawing (in Figure 7). The reconstructed drawing overlaid with the point cloud is shown in Figure 8.
The overall result was quite accurate. A majority of blue points were well aligned with the corridor
wall boundary on the drawing. Note that we did not conduct a quantitative evaluation of the mapping
result because it was sufficient to identify approximate locations of PathImgs for the purpose of
documenting the path of the engineer and associating specific images with that reconstructed path
and the structural drawing. Here, the reconstructed drawing image in Figure 8 was the binary image
converted from the drawing image in Figure 7 so that the line and text in black were clearly legible.

In Figure 8, five regions on the drawing were enlarged. The walking (inspection) path (a set
of red points) was not straight because we mimicked the actual inspection procedure, such as
wandering around to see components-of-interest for close-up inspection. This type of walking is
likely application-specific and certainly challenges our technique. Additionally, more blue points
were generated near the scenes-of-interest because the inspector spent more time near those regions,
collecting more PathImgs.
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Figure 8. The reconstructed drawing in Figure 7 overlaid with the 3D point cloud and PathImgs
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4.4. Image Localization and Local 3D Textured Model Reconstruction

We made an in-house tool for reviewing InspImgs and their localization results using MATLAB.
When the user selects a particular InspImg, the tool searches for the PathImg that is captured
around the same time when the selected InspImg was taken. Then, the location of the selected
InspImg is automatically marked on the drawing. For example, Figure 9a shows a selected InspImg,
which contains a reinforced concrete structural column. Figure 9b is the location of the corresponding
image automatically marked as a circle on the reconstructed drawing.

In the method, we did not combine the tool with an SfM-based 3D texture modeler. Herein,
we simply show the capability for generating a 3D textured model using SfM software. As mentioned
in Section 4.2, the clocks of both the compact and DSLR cameras were synchronized. Thus, the selected
InspImg could be readily paired with the PathImgs and InspImgs that have a nearby timestamp.
We roughly set 30 s for PathImgs and 5 s for InspImgs, both before and after, to extract views containing
the same scene on the selected InspImg. This set of extracted images became an input for the SfM
software. Here, for this task only, we used the commercial software, Pix4D mapper 4.4.4. In Figure 9c,
samples of identified PathImgs and InspImgs are shown. These samples were captured during a time
range around the selected image in Figure 9a. The local 3D textured model generated using the images
in Figure 9c is shown in Figure 9d. Once a user selects any InspImg, the full process, including its
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localization and local 3D textured model construction, is automated. Then, engineers can review the
scenes on the selected InspImg with sufficient spatial context.
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5. Conclusions

In post-event building reconnaissance, the collection of hundreds of images from a single building
to preserve valuable evidence and document its condition is becoming a common process. However,
when such images are taken in an indoor environment, it is difficult to recall and document where
each image was taken. Without spatial information, engineers are not able to conduct in-depth studies
needed to understand the consequences of natural hazard events on our buildings and improve our
building codes. To address this issue, we developed a technique to automatically localize inspection
images on a drawing image and generate a local 3D textured model of a scene-of-interest. The technique
does not require extra effort as compared to the existing data collection procedures. Data collection
does not require the use of expensive cameras or special 3D sensors. An engineer can simply carry
an extra compact camera, potentially mounted on one’s hard hat or body, to gather the additional
images needed for localizing the inspection image. If using a camera with low fps (~7.8 fps in this
work), the engineer needs to reduce the walking speed to about 1/3 of the normal speed. Additionally,
if the camera possesses a faster fps with high ISO without dropping the image quality, this limitation
can be lifted. Direct sparse odometry is used to reconstruct the path of data collection and the 3D point
cloud of the scenes. The reconstructed path and point cloud are then projected onto the structural
drawing images so that inspection images can be localized. Once these images are collected, the process
is fully automated except for manually matching a few images to compute the transformation matrix
between the reconstructed path and the drawing image. Moreover, using the images collected for path
reconstruction and inspection, a local 3D textured model of the scene-of-interest can be reconstructed
using the structure-from-motion algorithm. The capability of the technique was fully demonstrated
using the experimental study conducted on the actual building. This technique provides comprehensive
and detailed spatial information of the images collected in the field, thus facilitating a much broader
range of studies using image data.
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