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Abstract: This paper introduces a new methodology for reconstructing vehicle densities of freeway
segments by utilizing the limited data collected by traffic-counting sensors and developing a
macroscopic traffic stream model formulated as a switched reduced-order state observer design
problem with unknown or partially known inputs. Specifically, the traffic network is modeled as a
hybrid dynamic system in a state space that incorporates unknown inputs. For freeway segments
with traffic-counting sensors installed, vehicle densities are directly computed using field traffic
count data. A reduced-order state observer is designed to analyze traffic state transitions for freeway
segments without field traffic count data to indirectly estimate the vehicle densities for each freeway
segment. A simulation-based experiment is performed applying the methodology and using data of
a segment of Beijing Jingtong freeway in Beijing, China. The model execution results are compared
with the field data associated with the same freeway segment, and highly consistent results are
achieved. The proposed methodology is expected to be adopted by traffic engineers to evaluate
freeway operations and develop effective management strategies.

Keywords: urban freeway; hybrid dynamic system; state transition; unknown inputs observer;
vehicle density

1. Introduction

The estimation of vehicle densities on highway segments has been of considerable interest in
recent decades. Research has been underway in developing practical methods in the context of
the macroscopic traffic flow dynamic model for vehicle density estimation using different types of
estimators. In particular, the state observer method [1,2] has been rapidly adopted by researchers and
practitioners for traffic state estimation. In a study [3], traffic state was estimated by using an adaptive
observer. Based on the cell transmission model, a centralized observer was considered in another
work [4], and the estimation was further improved in a subsequent study [5]. In reference [6], the
switched distributed observer was studied using the consensus theory. Based on the piecewise affine
(PWA) system model of traffic network, various switched-state observers were also designed, such as
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the centralized observer [7–11], decentralized observer [8], and distributed observer [9,10], to estimate
vehicle densities associated with segments of highways with different functional classifications.

It should be noted that the above-mentioned state observers were designed based on the ideal
traffic flow dynamic model. That is, both the system disturbance and the measurement noise were not
taken into consideration in the modeling procedure, and all the inputs were treated as measurable
signals. Hence, these types of observers are termed as known-inputs state observers. As a practical
matter, disturbances, especially unknown input signals, cannot be ignored in actual traffic networks.
Otherwise, the proposed model could not reflect the real traffic flow transmission rule.

With advancements of sensing and positioning technologies, measurement accuracy and precision
of traffic sensors have significantly improved, leading to the possibility of ignoring measurement noises.
However, unknown inputs must be explicitly accounted for owing to their impacts on the predictability
of the proposed models. The existing literature largely considers dynamic models with unknown inputs,
while measurement noises are ignored. In the context of unknown-input observer models, dynamic
models are classified as linear and nonlinear systems [12–24], continuous and discrete systems [19,21,
25,26], and time-varying and time-invariant systems [27,28]. For instance, the unknown-input observer
was studied based on the optimal data fusion approach [29]. Both full-order and reduced-order
observers for continuous dynamical systems with unknown inputs were investigated [29]. A design
strategy of the nonlinear unknown-input state observer for a nonlinear system was reported [30].
A novel full-order unknown-input observer for the continuous system along with the existence of the
necessary conditions was proposed [31]. Additional unknown-input observers for different types of
systems were also reported [32–35].

In addition, as an effective and practical tool, deep learning methods are also popular in estimating
traffic flows. In a study [36], spatio-temporal factors were considered in traffic prediction, and a
multi-attention network was proposed to predict traffic conditions at different locations on a road
network graph. In order to deeply capture the high-order spatial–temporal correlations among the
road links, Zhang et al. [37] performed a road network-level prediction using a network-scale deep
traffic prediction model, called TrafficGAN, where the generative adversarial nets were utilized to
predict traffic flows under an adversarial learning framework. In another study [38], a deep learning
framework was presented to solve the traffic forecasting problem; the traffic flow was modelled as
a diffusion process on a direct graph, and a diffusion convolutional recurrent neural network was
introduced to predict the traffic flow.

Estimation of traffic flow density is the basis of many transportation applications, such as route
planning and vehicle routing [39–41]. For example, based on the estimation of the traffic flow density,
the distribution of traffic congestion in a road network was identified, and then, alternative routes
were assigned for selected vehicles to avoid congested roads [39]. Typically, traffic network can be
modeled as a hybrid dynamic system by means of multi-mode switching [11]. However, most of the
existing state observers were designed on the basis of the ideal traffic flow dynamic model, where both
the system disturbance and the measurement noise were not taken into consideration in the modeling
procedure. Especially, the inputs were treated as measurable signals and were known in advance.
Hence, these types of observers are termed known-input state observers. From a practical viewpoint,
system disturbance and measurement noise always exist in the actual traffic flow network, and these
input signals are often unknown but cannot be ignored. In order to estimate vehicle density for
real-world freeway segments, a traffic flow model should include system disturbance and measurement
noise. However, few studies have systematically addressed the vehicle density estimation problem
with unknown inputs. It is crucial to explore a more effective way to solve the design challenge of
the unknown-input state observer on the basis of the hybrid dynamic traffic network model. To this
avail, this paper introduces a switched unknown-input state observer to reconstruct vehicle densities
of segments of a highway system which maintains field data measurements by using traffic sensors
for only a fraction of segments and limited known inputs. Compared with other existing methods,
the proposed dynamic model has the following advantages: (1) it is more realistic in representing
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the actual traffic networks and (2) the actual vehicle densities can be readily reconstructed using the
unknown-input state observer.

The remainder of the paper is organized as follows. Section 2 provides the background information
on the traffic flow dynamic model and elaborates the proposed observer model with unknown inputs
state. Section 3 evaluates the proposed model using real-world traffic data. Section 4 summarizes the
findings of this study.

2. Proposed Method

An overview of the proposed traffic density estimation method is given in Figure 1. The details of
constructing the predictive model are described in the following sub-sections.
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Figure 1. An overview of the proposed method.

2.1. Hybrid Dynamic System

This section first reviews the hybrid dynamic traffic flow model that combines the dynamic graph
hybrid automata with the cell transmission model (CTM) and then briefly describes the problem of
vehicle density estimation. The hybrid dynamic traffic flow model is described by

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t)

y(t) = Cx(t)
(1)

where x = [ρ1, · · · ,ρn]
T
∈ Rn represents the vehicle density vector, u ∈ Rm is the input vector, y ∈ Rq is

the measured output vector, Aσ, Bσ, and C are the system matrix, the input matrix, and the output
matrix, respectively, σ : [0,+∞)→ {1, 2, · · · , s} is the switching function that maps the index time stage
into an index set {1, 2, · · · , s}, and each index corresponds to a different mode of the system.

Based on the dynamic model shown above, different types of state observers can be designed to
estimate the vehicle densities of a traffic stream [7–11]. However, it is difficult to apply this method to a
real-world traffic network. This is because all sources of disturbances associated with unknown-input
signals and measurement errors are ignored in the modeling process, making it difficult to apply the
actual traffic flow transmission rule. Further, the exclusion of measurement errors in the design of
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state observers renders the estimated data incapable of reflecting the real traffic states. Therefore,
disturbances need to be included in the base model, which creates the augmented model

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t) + Dσ(t)v(t)

y(t) = Cx(t)
(2)

where v ∈ Rp is the unknown-input signal, u ∈ Rm is the known-input signal, Dσ ∈ Rp×n is the known
noise matrix with appropriate dimensions. The others are the same as in the model described by (1).

Remark 1. With the development of sensor and positioning technologies, the accuracy and precision of both
mobile and fixed traffic detectors have been improving. The influence of measurement errors can be marginally
neglected in most cases. However, system noise cannot be completely eliminated. As such, the augmented
dynamic model ignores the measurement errors, while it incorporates unknown inputs to capture the system noise.

The augmented model deals with situations where traffic data are partially available for some
highway segments equipped with sensors. For the remaining highway segments without traffic
sensors, a state observer needs to be designed to reconstruct the traffic states. To reduce the structural
complexity of the traffic state observer, it is advantageous to design a reduced-order state observer.

2.2. Unknown-Input State Observer

This section introduces the design of the reduced-order unknown-input state observer for the
augmented dynamic traffic model of vehicle density estimation. The essence of the state observer
design is to accurately reconstruct vehicle densities x̂ and estimate the unknown inputs v̂ for the system{
u, v, y, A, B, C, D

}
, such that the following conditions are satisfied:

e(t) = x(t) − x̂(t)→ 0

ṽ(t) = v(t) − v̂(t)→ 0
(3)

where x is the vehicle density vector, x̂ is the estimated density vector, v is the input vector, v̂ is the
estimated input vector, e is the estimation error between the actual and the estimated vehicle densities,
and ṽ is the estimation error between the real and the estimated inputs.

Definition 1. Unknown-Input State Observer: A state observer is defined as an unknown-input observer if
its estimation error approaches zero asymptotically, regardless of the presence of unknown inputs or disturbances
in a dynamic system.

Definition 2. Switched Unknown-Input State Observer: A state observer is termed a switched
unknown-input observer for a dynamic system if, and only if, its state estimation error system is asymptotically
stable for any switching sequence, regardless of the existence of unknown inputs in the system.

As the preparation for the unknown-input state observer design, the following three assumptions
were made:

(i) rankDσ = p and rankC = q.
(ii) The pair (Aσ, C) is observable or detectable.
(iii) q ≥ p, rank(CDσ) = p.

Remark 2. The above assumptions imply that the matrices C and Dσ are full row rank and full column rank,
respectively. These characteristics can always be met by optimizing the configuration of the matrix C and
redefining the noise matrix Dσ.
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Since rankC = q, R ∈ R(n−q)×n can be arbitrarily chosen, and the following transformation matrix
P ∈ Rn×n is nonsingular.

P ,
[

C
R

]
(4)

The inverse matrix of P is denoted as

Q , P−1 =

[
C
R

]−1

=
[

Q1 Q2
]

(5)

The matrix R is not unique but needs to be chosen to ensure that the matrix P is invertible. By using
linear nonsingular transformation, the corresponding matrices can be rewritten as follows

A = QAQ−1 =

[
A11 A12

A21 A22

]

B = QB =

[
B1

B2

]

C = CQ =
[

Iq 0
]

D = QD =

[
D1

D2

]
(6)

Subsequently, by using the transformation x = Q−1x and y = CQx, the dynamic system (2) can be
re-constructed with the following specification:

[
x1(t + 1)
x2(t + 1)

]
=

[
A11 A12

A21 A22

]
σ(t)

[
x1(t)
x2(t)

]
+

[
B1

B2

]
σ(t)

u(t) +
[

D1

D2

]
σ(t)

v(t)

y(t) =
[

Iq 0
][ x1(t)

x2(t)

] (7)

where x1 = y ∈ Rq, x2 ∈ Rn−q.
The above analysis shows that vehicle densities x1 can be obtained by the measurement output y,

while only partial vehicle densities x2 need an estimate. Hence, the reduced-order state observer needs
to be designed to complete the density reconstruction.

Remark 3. For segments of a highway network with field traffic-counting sensors installed, traffic states can
be directly assessed by traffic data collected by the sensors. Conversely, for highway segments without field
traffic-counting sensors, a state observer needs to be designed to estimate the traffic states. The joint use of field
traffic count data and traffic state estimates by the state observer could help derive highly accurate and precise
values of vehicle densities. As such, vehicle density estimation boils down to the design of an effective state
observer. Practically, designing a reduced-order state observer becomes the key to solving the vehicle density
estimation problem.

Based on Remark 3, the dynamic system (7) can be formulated as the following:
x2(t + 1) = A22σ(t)x2(t) + A21σ(t) y(t) + B2u(t) + D2σ(t)v(t)

y(t + 1) −A11σ(t) y(t) = A12σ(t)x2(t) + B1u(t) + D1σ(t)v(t)
(8)
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Theorem 1. In the presence of an invertible matrixP, such that Equation (8) is satisfied, and the pair(Aσ, C)is
observable or detectable, there must exist a reduced-order state observer in the form (9), such that the vehicle
densities of the system (2) can be estimated.

The reduced-order state observer can be obtained by{
z(t + 1) = Fσz(t) + Gσy(t) + Hσu(t)
x̂(t) = Q1y(t) + Q2(z + Lσy)

(9)

The proof for the state observer begins with (8), which can be further rewritten as
x2(t + 1) = A22σ(t)x2(t) +

[
A21σ(t) y(t) + B2u(t) + D2σ(t)v(t)

]
y(t + 1) −A11σ(t) y(t) − B1u(t) −D1σ(t)v(t) = A12σ(t)x2(t)

(10)

Based on the following equivalent substitution
u(t) , A21σ(t) y(t) + B2u(t) + D2σ(t)v(t)

w(t) , y(t + 1) −A11σ(t) y(t) − B1u(t) −D1σ(t)v(t)
(11)

the following normative form is obtained:
x2(t + 1) = A22σ(t)x2(t) + u(t)

w(t) = A12σ(t)x2(t)
(12)

It should be noted that observability or detectability of the pair (Aσ, C) implies that (A22, A12) is
also observable or detectable. Therefore, for state x2, a full-order observer can be designed as:

x̂2(t + 1) =
[
A22σ(t) − Lσ(t)A12σ(t)

]
x2(t) + Lσ(t)w(t) + u(t) (13)

Combining (11) with (13), the following expression is constructed:

x̂2(t + 1) =
[
A22σ(t) − Lσ(t)A12σ(t)

]
x2(t) + Lσ(t)Ψ + A21σ(t) y(t) + B2u(t) + D2σ(t)v(t) (14)

where Ψ = y(t + 1) −A11σ(t) y(t) − B1u(t) −D1σ(t)v(t).

Note that z = x̂2 − Lσy, so we obtain

z(t + 1) = x̂2(t + 1) − Lσ(t)y(t + 1)
=

[
A22σ(t) − Lσ(t)A12σ(t)

]
x2(t) +

(
A21σ(t) − Lσ(t)A11σ(t)

)
y(t)

+
(
B2 − Lσ(t)B1

)
u(t) +

(
D2σ(t) − Lσ(t)D1σ(t)

)
v(t)

= Fσ(t)z(t) + Gσ(t)y(t) + Hu(t) + Jσ(t)v(t)

(15)

where 
Fσ(t) = A22σ(t) − Lσ(t)A12σ(t)
Gσ(t) = Fσ(t)Lσ(t) + A21σ(t) − Lσ(t)A11σ(t)
Hσ(t) = B2σ(t) − Lσ(t)B1σ(t)
Jσ(t) = D2σ(t) − Lσ(t)D1σ(t)
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The traffic states of x̂2 can be reconstructed by

x̂2(t) = z(t) + Lσ(t)y(t) (16)

where Lσ(t) is the feedback matrix of the state observer.
The reconstructed traffic states x1 and x2 can be denoted as

x̂1 = x1 = y

x̂2 = z + Lσy
(17)

Correspondingly, the vehicle density estimates are obtained in the following equation:

x̂ =

[
x̂1

x̂2

]
=

[
y

z + Lσy

]
(18)

With x = Px being held to be true, we obtain x = P−1x = Qx and x̂ = Qx̂. This further leads to

x̂ =
[

Q1 Q2
][ y

z + Lσy

]
= Q1y + Q2(z + Lσy) (19)

Finally, the reduced-order state observer can be derived according to (9). Figure 2 illustrates the
structure of the reduced-order unknown-input state observer.
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2.3. Estimation of Observer Parameters

Further to establishing the structure of the reduced-order unknown-input state observer as (9),
the parameters of its unknown input vector v(t) need to be estimated for real-world implementation.
To initiate this process, the matrix Lσ(t) in (16) can be computed by imposing the following condition:

Jσ(t) = D2σ(t) − Lσ(t)D1σ(t) = 0 (20)

Meanwhile, the matrix Fσ(t) must possess Schur stability, so that the existence of the state observer
as described by Expression (9) is guaranteed. This implies that the matrix A22σ(t) − Lσ(t)A12σ(t) has stable
eigenvalues. Also, it is essential to compute the feedback matrix Lσ(t) in order to determine the matrix
Dσ(t). The procedure for deriving the matrix Lσ(t) is given below.
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First, with the above assumptions in place, the following conditions are satisfied:

rankDσ = rank(CDσ) = rankD1σ = p (21)

Then, the matrix Lσ(t) can be computed by combining (20) and (21):

Lσ = D2σD
+
1σ
+ Kσ(Iq −D1σD

+
1σ
) (22)

where D+
1σ(t)

is the generalized inverse of D1σ(t) .

Because the matrix D1σ is of full column rank, the matrix D+
1σ(t)

can be calculated by:

D+
1σ

= (DT
1σ

D1σ)
−1

DT
1σ

, ∀K ∈ R(n−q)×q (23)

Also, there exists an orthogonal matrix Sσ with the following conditions satisfied:

SσD1σ =

[
D1σ

0

]

SσA12σ =

 A
1
12σ

A
2
12σ


KσST

σ =
[

K1σ K2σ

]
(24)

where D1σ ∈ Rp×p is a nonsingular matrix, A
1
12σ ∈ Rp×1, K1σ ∈ R1×p.

Next, the matrices Fσ, Gσ, and Hσ can be computed by:

Fσ = A22σ − LσA12σ
= A22σ −D2σD

+
1σ

A12σ + Kσ(Iq −D1σD
+
1σ
)A12σ

= A22σ −D2σD
−1
1σ A

1
12σ −K2σA

2
12σ

= F1σ −K2σA
2
12σ

(25)

Gσ(t) = Fσ(t)Lσ(t) + A21σ(t) − Lσ(t)A11σ(t) (26)

Hσ(t) = B2 − Lσ(t)B1 (27)

2.4. Design of the State Observer

After developing the procedure for estimating the parameters for the reduced-order
unknown-input state observer, the subsequent effort is centered on proposing a design procedure of the
state observer for switched systems. The design comprises a generic process with the following steps:

Step 1: Compute matrices Aσ(t), B, and Dσ(t) and construct output matrix C using data collected
by traffic-counting sensors for the preparation of traffic flow modeling;

Step 2: Verify the validity of the conditions rankC = q, rankDσ = rank(CDσ) = q, q ≥ p and
iteratively reconfigure the matrices C and Dσ until the above conditions are satisfied;

Step 3: Estimate the state transformation matrix P ,
[

C
R

]
; let x = P−1x and calculate the values

of (6);
Step 4: Determine the feedback matrix Lσ = D2σD

+
1σ
+ K

(
Iq −D1σD

+
1σ

)
;

Step 5: Develop an (n× n) orthogonal matrix Sσ that satisfies the conditions in (24);
Step 6: Generate the matrix K2σ to satisfy Schur stability for Fσ;
Step 7: Derive the matrices Gσ and Hσ;
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Step 8: Establish the reduced-order unknown-input state observer for switched systems in
accordance with (9).

3. Case Study: Beijing Jingtong Freeway

In this section, an experiment example will be presented to demonstrate the validity and the
practicability of the proposed approach by applying the designed state-jump observer to the Beijing
Jingtong freeway. The selected road section is approximately 3.5 km long and is comprises three
lanes. In accordance with the segment partition rules mentioned in reference [17], the road section was
divided into 10 cells, as shown in Table 1.

Table 1. Cell length.

Cell Number Length (m) Cell Number Length (m)

1 300 6 275
2 160 7 435
3 460 8 400
4 430 9 450
5 400 10 406

3.1. Data Collection and Processing

Figure 3 presents the segment of Jingtong Freeway, Beijing, China used for methodology
application, particularly the design of an unknown-input state observer for analyzing traffic states
to reconstruct vehicle densities essential to traffic flow modeling. The west–east directional freeway
segment is labeled as segment AB and encompasses four on-ramps and four off-ramps, respectively
labeled in ascending order from 1 to 4. The directional segment AB is partitioned into 10 cells marked
from 1 to 10 correspondingly. Tables 1 and 2 list the details of the cell lengths and pertinent parameters
of vehicles’ operational characteristics.
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Figure 3. Illustration of the Jingtong freeway segment for the methodology application.

Table 2. Cell-specific parameters of vehicles’ operational characteristics.

Cell Number V (km/h) W (km/h) C (veh/h) ρ0 (veh/km) ρm (veh/km)

1–10 65 20 2800 46 185

3.2. Analysis Results

Figure 4 depicts a VISSIM-based simulation model developed for the directional segment AB
to generate simulated traffic stream data [42]. The simulation execution period was 3 h in a typical
weekday from noon to 3:00 p.m., with a data reporting interval of 5 s. Virtual traffic-counting sensors
were placed in each cell to collect data on vehicle densities used to verify the accuracy and precision
of traffic state estimates from the reduced-order unknown-input state observer. In addition, virtual
traffic-counting sensors were installed in the on-ramp Sections 2 and 3 to collect traffic data as known
inputs. Conversely, on-ramp Sections 1 and 4 were not equipped with traffic-counting sensors and
could be treated as roadway sections with unknown inputs.
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Remark 4. Although many traffic simulation software have been developed for traffic system modelling, VISSIM
is one of the most practical traffic simulation software to model urban traffic and public transit operations.
Compared with other traffic simulation software, such as SParamics, VISSIM reserves many data interfaces,
which enables users to easily redevelop the model of interest in accordance with their own needs by incorporating
some new algorithms. As a result, a VISSIM model can be modified to continue previous research, which provides
significant opportunities for sustainable and comprehensive traffic simulation research.

As sufficient and necessary conditions for the existence of the unknown-input state observer,
the pair (Aσ, C) must be observable or detectable. In this respect, traffic-counting sensors were
installed in cells 2, 3, 4, 5, 6, 8, 9, and 10, which facilitated collecting data on vehicle densities that
were subsequently used to design the observer. Therefore, the output matrix C = [ci,j] was a 7 × 10
matrix, and c1,2 = c2,3 = c3,4 = c4,6 = c5,8 = c6,9 = c7,10 = 1, with all other entries of the matrix set to
zero. With virtual traffic-counting sensors installed in cells 2, 3, 4, 5, 6, 8, 9, and 10, data on vehicle
densities of those cells could be directly collected. For the remaining cells including cells 1, 5, 7 without
virtual sensors, vehicle densities associated with them needed to be derived based on traffic states
estimated by the reduced-order unknown-input state observer. Figures 5 and 6 show the simulated
and estimated vehicle densities for multiple cells evolving over different time points of the analysis.
Using a color-coding mechanism of green, yellowand red, vehicle densities would increase from green
to yellow and then to red, representing free-flow to capacity and then to congested traffic stream
conditions. As the red color becomes darker, it shows more severe traffic congestion.

Further, vehicle densities for cells 1, 5, and 7 were reconstructed using traffic state estimates by
the reduced-order unknown-input state observer, as shown in Figure 7.
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Figure 5. Simulated data for vehicle densities.

Vehicle densities could be reconstructed by the designed reduced-order unknown-input state
observer withmodest accuracy. Compared with the results of the known-input observer [11], the
estimation needs to be more precise. Once this issue gets resolved, the proposed methodology will
become highly practical for deployment to a large traffic network.
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Congested road segments could be further identified from the estimation results. Thus,
driving-route planning could be optimized effectively for GPS systems, greatly enhancing
travel efficiency.Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 
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Figure 7. Comparison of simulated and estimated vehicle densities for (a) Cell 1, (b) Cell 5, and
(c) Cell 7.

Remark 5. It is well known that for the most reliable validation, the proposed model should be evaluated using
real-world traffic data. However, it is always difficult to obtain real-world data. We have tried our best to measure
traffic data from the real world and will present the analysis result in our future work. Nevertheless, computer
simulation has already been recognized as an effective tool to verify various theoretical models; in this study, the
effectiveness of the proposed method was verified using simulated data.

Remark 6. In this study, only one street was considered in the method validation. It is very important to
consider the influence of adjunction streets to analyze the effects of other cells and streets on the traffic network.
To this end, as a first step, this study introduced on-ramp traffic into the analyzed street to investigate its effect
on the main road.

In our case, on-ramp traffic flowed into cell 1. The on-ramp traffic volume was 10% of the cell 1
traffic. The prediction results for cell re ias shown in Figure 8. As can be seen, the proposed model
was still effective for traffic density prediction. However, compared to Figure 7a, because the traffic
flow on the main road was affected by the on-ramp vehicles, the estimated accuracy of vehicle density
determination was reduced by 15%. As a result, it was crucial to consider the influence of other streets
on traffic flow and develop related observer functions to reduce it and improve the accuracy of the
prediction model. This coupled-street issue will be addressed in our next work.
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4. Conclusions

Based on the hybrid dynamic traffic system with unknown inputs, a switched unknown-input
state observer was designed, and the issues of vehicle density estimation and congestion identification
were investigated. We showed that the unknown-inputsobserver was able to reconstruct the vehicle
densities of road sections which were not equipped with traffic sensors. This strategy for vehicle
density estimation was applied to The Beijing Jingtong freeway. Experimental results demonstrated
that the estimated densities matched the actual densities reasonably well, and thus congestion can be
identified effectively using ths model.

However, in this study, only simulation data obtained by VISSIM were used to verify the
performance of the observer, thus the results have some limitations. Meanwhile, the design of the
model parameters did not consider the coupled-street effect. In future work, we will choose a practical
road network and collect real data to evaluate and optimize the model parameters. The coupled-street
issue will also be addressed.
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