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Abstract: Searching multiple targets with swarm robots is a realistic and significant problem. The
goal is to search the targets in the minimum time while avoiding collisions with other robots.
In this paper, inspired by pedestrian behavior, swarm robotic pedestrian behavior (SRPB) was
proposed. It considered many realistic constraints in the multi-target search problem, including
limited communication range, limited working time, unknown sources, unknown extrema, the
arbitrary initial location of robots, non-oriented search, and no central coordination. The performance
of different cooperative strategies was evaluated in terms of average time to find the first, the half,
and the last source, the number of located sources and the collision rate. Several experiments with
different target signals, fixed initial location, arbitrary initial location, different population sizes, and
the different number of targets were implemented. It was demonstrated by numerous experiments
that SRPB had excellent stability, quick source seeking, a high number of located sources, and a low
collision rate in various search strategies.

Keywords: distributed strategy; pedestrian behavior; swarm intelligence; swarm robots;
multi-target search

1. Introduction

Steering a group of autonomous robots to search the targets is a well-studied problem due to its
numerous important applications. There are many significant applications for target search, including
searching and rescuing in a hazard environment [1], environmental monitoring [2], perception in
battlefield [3], locating gas leakage, odor source detection, etc. In these scenarios, the robots can
sense the environment, collecting and exchanging measurements of the targets, and to exploit this
information to guide their movements. The goal is to search the targets in the minimum time while
avoiding collisions with other robots.

There are many algorithms to complete the task of a multi-target search. According to the richness
of target information, the algorithms of the target search can be divided into three categories. The first is
information-lack. In this category, the environment is much larger than the range of communication and
sensing, and there is no information about the targets. The goal is to maximize environmental coverage
while minimizing overlaps. Search pattern, random walk, search map, digital pheromone [4], Glasius
bio-inspired neural network (GBNN) [5,6], and optimization algorithms are the typical algorithms.
The search pattern, such as zigzag and spiral [7], can effectively cover a given domain with fewer
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area overlaps, but it lacks the flexibility to work in a changeable environment. GBNN and digital
pheromone are similar to the search map. The search map can improve flexibility and efficiency, but
this algorithm is hard to implement in practical scenarios because too much information is exchanged
in direct communication that communication devices cannot afford, and there is no suitable way to
implement indirect communication [8]. The random walk is the most flexible strategy, but random
actions for exploration are inefficient. There are many random strategies, and they are suitable for
different situations. For example, Lévy flight [9] is suited to the situation that the environment is large,
and the distribution of targets is sparse. Brownian motion is efficient when the targets are abundant,
and the environment is small [10]. The optimization algorithms are usually applied to optimization
problems [11,12]. Some problems, such as routing problems [13], controlling problems [14], can be
converted into optimization problems. The problem of target search can also be converted into an
optimization problem, and it can be solved by optimization algorithms. Particle swarm optimization,
genetic algorithm are used to solve this problem in [15], but this way is offline, and it has central
coordination. The movement of robots is controlled by central coordination. It is time-consuming and
lacks flexibility.

The second is information-rich. In this case, the range of communication and sensing are larger or
slightly smaller than the environment, and robots in the environment can communicate with each other.
There is rich information about the targets, and the goal is to seek the sources quickly. For this task, the
methods can be divided into two categories [16]: behavior-based methods and automatic methods.
Behavior-based methods, including finite state machine (FSM), swarm intelligence, and formation, are
the most concerned methods. Formation methods, including triangular formation [17], rectangular
formation [18], and circular formation [19], can estimate the gradient of source, but these methods need
to maintain a predefined formation, and they lack flexibility. In the FSM methods, the robot behaviors
are abstracted as states and response conditions are used to switch states. Jie Li etc. [20] proposed
probabilistic finite state machine ( PFSM). It applies the random walk strategies to the information-lack
area, and the triangle formation has been introduced for the information-rich area. The essence of
FSM is a combination of different methods. Swarm intelligence is the most common behavior-based
method. The motivation of swarm intelligence applying in source seeking is to imitate the foraging
behavior of biology groups. Different from optimization algorithms, swarm intelligence regards a
solution generated in optimization algorithms as a robot, and the fitness value is the signal strength
measured at the robot’s position. It is an online method, and the robot determines the next movement
by itself. Robots can sense the environment, collecting and exchanging measurements of targets, and
to exploit this information to guide their movements. Ant colony optimization (ACO) [21], particle
swarm optimization (PSO) [22–24] are widely used for source seeking. Zou R etc. [25] established the
equivalence between the particles generated in the PSO algorithm and the seeking robots in the group,
and simple collision-avoidance tactics were introduced to realize the cooperative source seeking.

The third is information-weak. Most signals are weak because of fast decay sources, multiple
sources, and a large environment. The sources fast decay at a certain distance. Beyond the distance,
no signal can be measured. Besides, sometimes there are multiple sources in an environment. The
goal is to find sources as many as possible in a certain time to search the sources quickly with weak
information and to allocate the robots between different sources autonomously. Relevant research
focuses on swarm intelligence because animals can complete this task with limited sensing, limited
communication, and local interaction [26]. The typical algorithms are particle swarm optimization
(PSO), firefly algorithm (FA), glowworm swarm optimization (GSO), bee swarm optimization (BSO),
and firework algorithm [27]. FA and GSO are similar. The robot in the FA is influenced by all of the
neighbors that are superior to its own. The robot in the GSO selects a neighbor that has a fitness value
higher than its own and moves toward it. Besides, when there is no signal strength emitted by the
sources, FA can explore the area, but GSO doesn’t. In [28], based on FA, the levy flight was introduced,
and multiple sources seeking was achieved, but this method is inefficient because of the many overlaps
generated by levy flight. In [29], based on GSO, the practical robots were used to seek the light
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source in an information-rich environment. In [30], the authors proposed the multiple extrema seeking
algorithm (MESA). At first, robots find neighbors and construct groups. Once forming a group, robots
will complete the task of target search based on GSO. Although robots in this strategy can seek multiple
sources, the number of targets is known. Besides, this method loses the distribution information of the
initial robots’ location. Bee swarm optimization [31] has defined the scout, onlooker, and experienced
forager, and different characters undertake different tasks. Particle swarm optimization has also been
applied in multiple sources seeking [32], and some variations of PSO, such as robotic particle swarm
optimization (RPSO) [33], adaptive-RPSO (A-RPSO) [34], have been introduced, but the scene is simple.

Although there have been some achievements about the information-weak or multiple sources
seeking, there are many realistic constraints in a practical environment, and many scenarios, such as
maritime rescue, are to seek multiple weak sources. Firstly, limited perception limits the acquisition
of signals. Since the distance to the targets or obstacles is too far, and the capability of the sensor is
limited, the robots cannot get enough information. Besides, the sources’ fast decay in a certain distance
also limits the perception of robots. Secondly, limited communication influences cooperation among
robots. Exchanging information is essential for cooperation among robots. If there is no information
exchange among robots, the cooperation will not happen. Thirdly, a finite working time of robots
influences the number of located sources. In reality, autonomous robots are always constrained by
fuel consumption. Fourthly, an unknown number of targets makes it impossible to adopt a proper
number of robots, and it requires the robots to keep exploring the environment and autonomously
assign the task among sources. Fifthly, unknown extrema make it hard for robots to determine when
to stop searching. In real life, the initial location of robots is arbitrary. It requires that the seeking
strategy should be stable and universal. Finally, since robots are usually autonomous, and they are
limited by the range of communication, there is no central coordination to instruct the motion of robots.
It requires that the cooperative strategy is distributed and online.

Considering the above constraints, including a limited range of communication and sensing,
a limited working time, unknown sources, unknown extrema, the arbitrary initial location of robots,
non-oriented search, and no central coordination, a novel cooperative strategy is proposed. It is
inspired by pedestrian behavior in subway/railway stations. The robotic behavior is described as
four rules, including (a) Robot can exploit the information about sources and environment. (b) The
movement of the robot is influenced by other robots. (c) Robots are attracted by other robots. (d) A large
group of robots divides into small groups. Several experiments show that swarm robotic pedestrian
behavior (SRPB) has excellent stability, quick source seeking, a high number of located sources, and a
low collision rate.

The contributions of this paper were as follows. (a) Inspired by pedestrian behavior and
considering many realistic constraints, swarm robotic pedestrian behavior (SRPB) was proposed.
(b) The performances of different cooperative strategies were evaluated in terms of average time to find
the first, the half, and the last source, the number of located sources and the collision rate. Numerous
experiments with different signals, fixed initial position, arbitrary initial location, different population
sizes, and a different number of targets were implemented. Compared with various search strategies,
including PSO, RPSO, A-RPSO, GSO, FA, and Levy flight search (LFS), in several experiments, SRPB
had excellent stability, quick source seeking, a high number of located sources, and a low collision rate.

The rest of the paper is organized as follows. In Section 2, two categories of the searching
algorithms are introduced. In Section 3, the problem description of multiple weak sources seeking and
some assumptions are stated. In Section 4, the proposed strategy is described in detail. In Section 5,
experimental results and discussions are presented. Finally, the work is concluded in Section 6.

2. Related Work

There are two categories of multiple sources seeking algorithms. One is swarm intelligence
algorithms, while the other is random walk strategies. Swarm algorithms focus on seeking sources
in an information-rich environment. Random walk strategies are applied in an information-lack
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environment. When the number of sources is small, and the distribution of targets is sparse, both
information-rich area and information-lack area exist. Meanwhile, when the source sites are abundant,
there is only the information-rich area. In reality, since the number of sources is unknown to robots,
there are not only the information-rich area but the information-lack area.

2.1. Swarm Intelligence Algorithms for Source Seeking

Seeking multiple sources in an unknown environment is difficult for autonomous robots because
there are many constraints, including a limited range of communication and sensing, a limited working
time, unknown sources, unknown extrema, arbitrary initial location of robots, non-oriented search,
and no central coordination. Swarm intelligence, such as PSO, GSO, and BSO, gives a natural idea
to complete the searching task. In the swarm intelligence, a robot is regarded as a solution, and the
signal strength measured at the robot’s location is taken as the fitness. The cooperation of robots is the
solution procedure of the swarm intelligence algorithms. In this part, five strategies inspired by swarm
intelligence are introduced as follows:

Multiple targets PSO: In [32], particle swarm optimization was used in the multi-target search.
The author proposed a dynamically weighted value wRSS. wRSS decreases when the distance to the
target becomes large and increases when the robot approaches the target. In Equation (1), w is the
inertia weight. c1, c2 are the acceleration constants. pbesti is the position with the best fitness value for
robot i in the process. lbesti(t) is the position with the best robot in the local swarm at time t. r1, r2 are
uniformly distributed random numbers within (0, 1). xi(t) is the position of robots i at time t, and vi(t)
represents the velocity of robot i at time t.

vi(t + 1) = (w · vi(t) + c1r1(pbesti − xi(t)) + c2r2(lbesti(t) − xi(t)))·wRSS (1)

RPSO: Robotic particle swarm optimization [33] is an extension of PSO. The obstacle avoidance
has been introduced to the velocity. In Equation (2), c3 is the collision coefficient, r3 is a random number.
In this paper, we regarded the gbest as the location of robots with the best fitness in the local swarm.
In this paper, each robot considered the other robots within its sensing range as moving obstacles.
The equation of velocity is shown in (3).

vi(t + 1) = w · vi(t) + c1r1(pbesti − xi(t)) + c2r2(gbest− xi(t)) + c3r3(pi(t) − xi(t)) (2)

vi(t + 1) = w · vi(t) + c1r1(pbesti − xi(t)) + c2r2(lbesti(t) − xi(t)) + c3r3(pi(t) − xi(t)) (3)

A-RPSO: Adaptive robotic PSO [34]. The velocity equation of A-RPSO, shown in Equation (4),
is the same with the velocity equation of RPSO, except the inertia weight wi(t). The evolutionary speed
factor ht

i and aggregation degree s are introduced to adjust the inertia weight and other parameters.
These factors help to keep diversity between robots. Meanwhile, c2 and c3 are influenced by the group
size and the change of fitness. Each robot in the A-RPSO considers the other robots within its sensing
range as moving obstacles.

vi(t + 1) = wi(t) · vi(t) + c1r1(pbesti − xi(t)) + c2r2(gbest− xi(t)) + c3r3(pi(t) − xi(t)) (4)

GSO: Glowworm swarm optimization [35]. A glowworm considers other glowworms that are
located within its decision radius and those with higher luciferin value than its own as neighbors, and
the glowworm selects a neighbor using a probabilistic mechanism and moves to it. There are three
stages to update the position in the GSO. At first, the luciferin update rule is given by Equation (5). ρ is
the luciferin decay constant (0 < ρ < 1). γ is the luciferin enhancement constant. li(t) represents the
luciferin level associated with glowworm i at time t. J(xi(t)) is the signal strength taken at glowworm
i ‘s location at time t. Each glowworm selects, using a probabilistic mechanism, a neighbor that has
a higher luciferin than its own and moves toward it. The probability of moving to a neighbor j is
presented by Equation (6). Ui(t) = {J:dij(t) < ri

d(t); li(t) < lj(t)} is the set of neighbors of glowworm i at
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time t. ri
d(t) is the decision radius of glowworm i at time t. The update equation of position is shown

in (7). Finally, the decision radius is updated by (8). nt is the maximum size of a group. Ni(t) is the
number of neighbors in Ui(t). In this paper, a random component was introduced to the GSO to help
robots to explore the area when there is no neighbor.

li(t + 1) = (1− ρ)li(t) + γJ(xi(t)) (5)

pi j(t) =
l j(t) − li(t)∑

k∈Ui(t) lk(t) − li(t)
(6)

xi(t + 1) = xi(t) + s · (
x j(t) − xi(t)

‖x j(t) − xi(t)‖
) (7)

ri
d(t + 1) = min

{
rs, max

{
0, ri

d(t) + β(nt −Ni(t)
}}

(8)

FA: Firefly algorithms [36]. It is similar to GSO. The robot in the FA is influenced by all of the
neighbors that are superior to its own. The attractiveness is proportional to fitness, and it decreases as
the distance between robots increases. If no one is higher than its own, the robot will move randomly.
The movement that a firefly i is attracted by firefly j is described as:

xi(t + 1) = xi(t) + β0e−γr2
i j(x j − xi) + α · ξi (9)

where ξi is a random vector. Paper [28] shows that levy flight distribution is more effective than the
Gaussian distribution in global searching. So, in this paper, ξi was a levy flight random vector.

2.2. Random Walk Strategies

In an information-lack environment, random walk is the most flexible strategy. Brownian motion
and Levy flight search are commonly used. Brownian motion is efficient when the area is small, or the
number of robots is large. Levy flight search is used when the distribution of the targets is sparse, and
the area is large. Since the width and length of the environment are larger than the maximum speed,
the Levy flight search is used to compare with other algorithms.

LFS: Levy flight search [9]. In this model, the speed vector of robots obeys the power-law
distribution, and it can get from Equation (10). Where a ~ N(0, σ2), b ~ N(0, 1) are two independent
random variables that have a normal Gaussian distribution.

v =
a

|b|
1
α

(10)

3. Problem Description

Consider Nt (Nt ≥ 1) sources distributed in a W × L environment. These sources can emit some
kind of measurable signals, and they could be the electromagnetic signal, the light signal [37], the
thermal signal, the acoustic signal [38], even the odor signal [39], and so on. The positions of sources,
the spatial distribution of the signal field in the space, and the number of sources are unknown to
robots, but each robot can measure the strength of the signal emitted by the sources. Besides, there
is the maximum strength at the location of sources, and robots can measure the signal strength at
the robots’ position [40]. The goal is that a group of robots consisted of Nr (Nr >> Nt) autonomous
robots seek the sources simultaneously [41]. In this paper, there have been some assumptions about
this problem.
Assumption 1: the boundary of the environment is known. There are Nt (Nt≥1) sources distributed
randomly in the environment. Q =

{
q1, q2 . . . , qn},qi ∈ Rn×2 is the set of position vectors of sources.
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Different sources are represented as τQ = {1, 2, . . . , Nt}. Besides, the distance between two adjacent
sources is more than 2Rc, where Rc is the communication range of robots. It can be described as:

min‖qi − q j‖ > 2Rc,∀i, j ∈ τQ, i! = j (11)

In this paper, there were no other methods to distinguish different sources except the received
signal strength. Combining the maximum strengths of signal and position of sources could help robots
distinguish different sources. If the maximum strengths of sources are known, different sources can be
recognized by the maximum strengths and different locations. In reality, the extrema of sources are
unknown. For example, the power of sources is unknown in the sea rescue and battlefield awareness.
Therefore, robots can only distinguish different sources by the signal strength taken at robots’ positions
and the information of neighborhood robots. Since the robot in swarm intelligence is attracted by
neighbors who have high strengths, the source with low power is ignored when the distance between
two sources is too close. If the maximum signal strength between the two sources is the same, robots
will oscillate between two sources. The communication range of robots is always regarded as the
attractive range in multi-target search. If the distances between the two sources are greater than 2Rc, it
will avoid the above situations, and robots can seek different sources simultaneously.
Assumption 2: in this paper, two signal distributions were considered. One is the isotropic signal (12),
and the other is the anisotropic signal (13).

lix,y = e−
2‖qi−px,y‖

R , i ∈ τQ (12)

where R is the effective range of radiation, lix,y is the signal strength of source i at position (x, y).

lix,y = e−rT
i Si

1ri + e−rT
i ΘT

π/4Si
2Θπ/4ri , i ∈ τQ (13)

Θπ/4 represents the π/4 rotation matrix, and ri is the position vector. The signal distribution in an
environment can be represented by:

lx,y =
∑
i∈τQ

lix,y (14)

Figure 1a,b shows the distribution of four sources in 100 m × 100 m. The locations of the four
sources are at position q1(35,25), q2(25,80), q3(70,80), q4(85,35), respectively. In Figure 1a, R is equal

to 10 m. In Figure 1b, S1
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Assumption 3: there are Nr (Nr�Nt) robots. It can be represented as τR = {1, 2, . . . , Nr}. The position
of robots are P =

{
p1, p2, . . . , pm

}
, p j ∈ Rm×2.

Assumption 4: that the source k is located by the robot i can be defined as:{
∃i ∈ τR,∀k ∈ τQ

∣∣∣ ‖qk − pi‖ ≤ rs
}

Assumption 5: the communication and sensing ranges are smaller than the environment, and there
is no method to far communication. It can be represented as W, L � Rc > Rs > rs. W and L are the
width and length of the environment, respectively.Rc is the radius of communication.Rs is the radius of
sensing. In reality, there are many obstacles, including static, dynamic obstacles. In this paper, each
robot considered the other robots within its sensing range as moving obstacles. The repulsive effect in
Section 4 works in the sensing range. When the sources are within the range of radius rs of robots, the
sources are defined as “located”.

Under these assumptions, the problem is to design a strategy that robots can locate multiple
sources and autonomous construct groups. The goal is to seek the sources in the minimum time while
avoiding collisions with other robots.

4. Proposed Algorithm

Pedestrian behavior is self-organized behavior. It supports an efficient motion in subway/railway
stations. Pedestrians exhibit different behavior in the same environment at the same time: they will
try to reach the desired destination, and they keep a limited distance from the other pedestrians, also
propelled toward their destination by the other pedestrians. Sometimes a large group of pedestrians
divides into small groups [42]. The pedestrian behavior is used in distributed autonomous robotic
systems because there are some similarities between pedestrians and swarm robots. Firstly, swarm
robots and pedestrians decide the next movement with limited observation and calculation. Secondly,
the behavior of pedestrians in subway/railway stations is similar to robot navigation [43] and target
search. For example, in a search scenario, swarm robots don’t know the specific location of the
destination, but they need to reach the destination with limited information. Thirdly, the acquired
information, including limited vision information, partial information of targets, is similar. Therefore,
the pedestrian behavior will provide a great way to solve the problem of multi-target search.

There are many models to depict pedestrian behavior, such as decision-field-theory [44], social
force model [45]. The social force model is similar to swarm intelligence algorithms. It introduces
several forces to describe the effects of pedestrian behavior. Based on the social force model, swarm
robotic pedestrian behavior (SRPB) is presented. In this paper, there were four rules that determined
the movement of robots. (a) The robot can exploit information about sources and the environment.
(b) The movement of the robot is influenced by other robots. (c) Robots are attracted by other robots.
(d) A large group of robots divides into small groups. In the following, the main effects of swarm
robotic pedestrian behavior are introduced in detail.

4.1. Main Effects of Swarm Robotic Pedestrian Behavior

1. The robot can exploit the information about sources and environment.
In multi-source seeking, little information about sources and environment can be used, but there

are two classes of information to exploit. The first is the environmental size. When there is no signal
strength at robots’ position or robot is alone, the boundary of the environment can help robots to visit
the given area. The virtual match points are introduced to help robots explore the environment. The
number of virtual match points is calculated by:

Nm = round(
W

2Rc
)·round(

L
2Rc

) (15)
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where W, L are the width and length of the environment, respectively. Rc is the range of communication.
Nm is the number of virtual match points. round() is the round operator. The set of virtual match points
is represented by:

UV(i) = [Rc + 2(i− 1)Rc, Rc + 2(i− 1)Rc], i ∈ {1, 2, . . . , Nm} (16)

Each robot has a set of virtual match points. When the robot is alone, the position of attractive
effect is the nearest point in the virtual match point set of this robot. If the robot reaches this point
without finding a neighbor, the point will be excluded, and the robot chooses the next virtual match
point and moves to it. Virtual match points can avoid revisiting the already covered area. Besides,
when the repulsion radius is larger than the decision radius, the virtual match points where the distance
to the robot is less than 2Rc are excluded to avoid revisiting the already located sources.

The second class of information is the already visited position and the corresponding strength.
When there is no neighbor to cooperatively estimate the gradient of the source, the individual history
effect is introduced to help robots move toward the strong signal area. The individual history effect is
defined as:

ei
h(t) =

ppbest
i (t) − pi(t)∣∣∣∣∣∣ppbest
i (t) − pi(t)

∣∣∣∣∣∣ (17)

ppbest
i (t) is the position with the best fitness value for robot i up to time t in the process. It provides a

little gradient information of the target when the group is small. The individual history coefficient is
expressed as (19).

hi(t) = γ0·e
−

li(t)−limin+ε

limax−limin+ε (18)

Ki
h(t) = hi(t)·e−

(Ni
d(t)−1)

2 (19)

hi(t) is the cognitive coefficient of robot i at time t. Ki
h(t) is the individual history coefficient of

robot i at time t. li(t) is the fitness of robot i at time t. limin is the minimum fitness of robot i in
the motion. limax is the maximum fitness of robot i in the motion. γ0 is the maximum cognitive
coefficient. It balances local searching and global searching. Ni

d(t) represents the number of robots
within the robot i’s decision radius at time t. The robots within the robot i’s decision radius are defined
as ψi

d(t) =
{
j : di j(t) < Ri

d(t); j ∈ τR
}
, and di j(t) is the distance between robot i and robot j at time t.

ε is dimensionless.
When there is no signal strength, robots visit the given area with the virtual match points. The

virtual match points help the robot avoid revisiting the already covered area. By the way, the update
of the virtual match point set is distributed and independent. If one robot has visited an area, the
other robots still can visit this area. When the robot is alone, the robot explores the given area with
the virtual match points, and it approaches the strong strength area with the individual history effect.
Besides, the individual history effect can help robots construct a group quickly because all robots will
move towards a strong strength area.

2. The movement of robot is influenced by other robots.
Different from the swarm intelligence algorithm, pedestrian behavior focuses on the repulsive

force. In subway/railway stations, pedestrian keeps a safe distance from other pedestrians when the
crowd flow is small. When the pedestrian flow is big, the pedestrian is propelled forward. It can be
described by the repulsive effect. The robot keeps a safe distance from the other robots, and it can be
propelled towards the destination. The repulsive effect is the combination of all repulsive forces. The
repulsive force is described as follows:

Ki j
c (t) =

di j(t) −Ri
r(t)

di j(t) + 1
, i ∈ τR, j ∈ ψi

r(t){k : 0 < dik(t) ≤ Ri
r(t), k ∈ τR} (20)
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Ki j
c (t) is the influence coefficient between robots i and robot j at time t. di j(t) is the distance between

robot j and robot i at time t. ψi
r(t) is the robots within the repulsion range of robot i at time t. Ri

r(t)
represents the repulsion radius of robot i at time t. The robots within the repulsion range influence the
behavior of the focal robot. The closer a robot gets to the focal robot, the bigger the absolute value of
the influence coefficient is. The repulsive effect is the sum of all repulsive forces. It can be described by
Equation (22):

ri(t) =
∑

j∈ψi
r(t)

Ki j
c (t)·

p j(t) − pi(t)∣∣∣∣∣∣p j(t) − pi(t)
∣∣∣∣∣∣ (21)

ei
r(t) =

ri(t)∣∣∣∣∣∣ri(t)
∣∣∣∣∣∣ (22)

ei
r(t) is the repulsive effect. ri(t) is the weighted sum of all repulsive forces. p j(t) is the position of robot j

at time t. In traditional swarm intelligence algorithms, avoiding collisions can only keep a safe distance
between robots. In this paper, the repulsive effect could help the robot keep a certain distance from
other robots, and it propelled the robot towards the destination. Keeping a safe distance from other
robots or propelling the robot to the destination depends on the priority of the focal robot in a group.
When robots construct a group, robots in the group calculate their priority coefficients. The maximum
value of the priority coefficient of a robot means that there are no neighbors. The minimum value
means that there are many neighbors. In this paper, a robot considered other robots that were located
within its decision radius and those with higher fitness value than its own as neighbors. The repulsive
effect and repulsion radius will elastically change according to the priority coefficient. If the priority
coefficient is large, the repulsive effect and repulsion radius will become big, and the swarm will propel
this robot to the source, and the attractive effect will become small. If the priority coefficient is small,
the attractive effect will become large, and the repulsive effect will become small. In this method, the
priority coefficient is the criterion of change of the repulsion radius. It can improve the efficiency of
source seeking and avoid collisions between robots. The priority coefficient is calculated by:

Ki
r(t) = ρ·e

−
(lgbest(t)−l i(t)+ε)

(lgbest(t)−lgworst(t)+ε) (23)

ρ is the maximum priority coefficient. It helps robots keep a safe distance between robots and propels
robots forward. Ki

r(t) is the collision coefficient of robot i at time t. lgbest(t) is the best fitness within
the local group. lgworst(t) is the worst fitness within the local group, and li(t) is the fitness of robot i at
time t. ε is dimensionless. Finally, the repulsion radius will update as follow:

Ri
r(t) = min(Rmax

r , max(Rmin
r , Ki

r(t)·R
max
r )) (24)

where Rmax
r , Rmin

r are the maximum repulsion radius and the minimum repulsion radius, respectively.
3. Robots are attracted by other robots.
Pedestrian in an unknown environment tends to follow the person who has a specific objective or

has more information about the destination. When a person would like to go to an unknown place, the
best way is to follow the people who know this place. In swarm intelligence algorithms, the attractive
force determines the convergence of an algorithm. The attractive force is influenced by neighbors, and
the decision radius limits the range of neighbors. A robot considers other robots that are located within
its decision radius and those with higher fitness value than its own as neighbors, and the robot selects
a neighbor using a probabilistic mechanism and moves to it. The set of neighbors can be expressed
as ψi

n(t) =
{
j : di j(t) < Ri

d(t); li(t) < l j(t); j ∈ τR
}
. When the robot has higher fitness than robot i and
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the distance to robot i is less than Ri
d(t), the robot is a neighbor of robot i. The probability of moving

toward a neighbor j for robot i is given by:

pci j(t) =
l j(t) − li(t) + ε∑

k∈ψi
d(t)

(lk(t) − li(t)) + ε
(25)

pci j(t) is the probability of moving toward a neighbor j. l j(t) is the fitness of the neighbor robot j. Once
one robot k is selected, the attractive effect is described as:

ei
a(t) =

pk(t) − pi(t)∣∣∣∣∣∣pk(t) − pi(t)
∣∣∣∣∣∣ , k ∈ ψi

n(t) (26)

The attractive coefficient is influenced by the individual history coefficient and the priority
coefficient. It is described as:

Ki
a(t) = (1−Ki

r(t))(1−Ki
h(t)) (27)

When the individual history coefficient is big, the robot is alone, and the attractive effect is small.
When an individual history coefficient becomes small, the attractive effect becomes big because the
robot joins a group, and it is attracted by other robots. When the priority coefficient becomes big, the
repulsive effect becomes big, and the attractive effect becomes small. When the priority coefficient
becomes small, the attractive effect becomes large, and the repulsive effect becomes small.

4. A large group of pedestrians divides into small groups.
At the exit of a subway/railway station, pedestrian tends to move towards the exits where there

are fewer persons. But in a distributed system, robots can’t recognize the right size of a group because
of the limited communication and sensing ranges. Even if the group size is clear, robots can’t decide
who will drop out of the current group because the movement of robots is independent. In this part,
the self-tuning decision radius is introduced. Combining the decision radius and the repulsion radius
can adjust the group size. The decision radius is updated by:

Ri
d(t) = min(Rc, max(Rs, Ri

d(t) + β·(Nmax −Ni
n(t))·e

−(Nmax−Ni
n(t))·Rc)) (28)

where Ri
d(t) is the decision radius of robot i at time t, and Ni

n(t) is the number of neighbors of robot i at
time t.Nmax is the maximum number of neighbors. The change rate of the decision radius is influenced
by β. When the Ni

n(t) is less than Nmax, robot i is alone or the fitness of robot i is the best in the group,
so the decision radius will increase. When the Ni

n(t) is more than Nmax, robot i has the lowest fitness
value in the group, so the decision radius decreases sharply. Once the repulsion radius is larger than the
decision radius, the virtual match points where the distance to the robot is less than 2Rc are excluded.
Then, the robot i will become alone, and the decision radius will increase slowly. In this way, the worst
robot will drop out of the group, and the chain effect between robots will help the group to keep a
suitable size.

4.2. The Equation of Velocity and Position

The equation of velocity is updated by Equation (29), and the equation of position is (30).

vi(t + 1) = w·vi(t) + Ki
h(t)·vm·ei

h(t) + Ki
a(t)·vm·ei

a(t) + Ki
r(t)·vm·ei

r(t) (29)

pi(t + 1) = pi(t) + vi(t + 1) (30)

w is the inertia coefficient. Inertia provides the reference information for the velocity and smoothes
the trajectories of robots.vi(t) is the velocity of robot i at time t, and it is not more than vm. pi(t) is the
position of robot i at the time t. vm is the maximum velocity.
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In Figure 2, we gave some illustrations about the velocity updating process of a robot in SRPB
to explain the four rules. The little solid line circles in Figure 2 represent the robots. The red dotted
circle is the repulsion radius. The green dotted circle is the decision radius. The purple crosses are the
virtual match points. The sources are represented by the green asterisk. Different color arrows indicate
different effects. By the way, the attractive effect has two forms.Sensors 2020, 20, x FOR PEER REVIEW 11 of 28 
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Figure 2. The velocity updating process of a robot in swarm robotic pedestrian behavior (SRPB).
(a) robot is alone; (b) repulsive effect acts as the thrust; (c) attractive effect; (d) separation.

In Figure 2a,d, the attractive effect is influenced by the virtual match points, and it is also influenced
by neighbors, as shown in Figure 2b,c. Different attractive effects are depicted by different colors in
Figure 2. In Figure 2a, when the robot is alone, three effects, including inertia, the attractive effect, and
the history effect, determine the motion of the robot. The robot selects the nearest point in the virtual
match point set as an attractive point. The history effect helps the robot approach the strong signal area.
There is no repulsive effect because no robots are within the sensing range of the focal robot, and the
velocity is determined by inertia, history effect, and attractive effect. When robots construct a group,
the robots calculate the priority coefficient according to the fitness in the group. The repulsion radius
is proportional to the priority coefficient. As shown in Figure 2b, the robot is influenced by four effects.
Since the robot shown in Figure 2b has the maximum fitness value in the group, the priority coefficient
is big, and the repulsion radius becomes large. The attractive effect becomes small. The history effect is
small because there are many robots within the sensing range. Other robots in the group propel the
robot toward the destination. As shown in Figure 2c, there is no repulsive effect because the repulsion
radius is small, and there are no robots within the repulsion radius. The robot is attracted by one of the
neighbors. In Figure 2d, the decision radius is tuned by the number of neighbors. When the repulsion
radius is larger than the decision radius, the robot drops out of the group and searches other sources.
In addition, when robots leave one source, the virtual match points where the distance to the robot is
less than 2Rc are excluded. It can help robots avoid revisiting already located sources.
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4.3. The Pseudo-Code of SRPB

In this part, the proposed SRPB algorithm was shown in Algorithm 1. All rules of SRPB were
implemented according to the pseudo-code of SRPB.

Algorithm 1: The SRPB search strategy

initialize population with random positions and velocities
generate and initialize virtual match point set to each robot
do for each time in given time

do for each robot in swarm
Generate decision set ψi

d(t), neighbor set ψi
n(t), repulsion set ψi

r(t)
If the robots number of ψi

n(t) is greater than 0
Calculate probabilities of moving to neighbors
Select one robot and update pk(t)

end
If the robots number of ψi

d(t) is equal to 0
Choose the nearest point in robot’s virtual match point set
update pk(t)

end
Calculate repulsive effect according to Equations (20)–(22)
Calculate the history coefficient, the priority coefficient and the attractive coefficient
Update repulsion radius and decision radius
If repulsion radius is greater than decision radius

Exclude points where the distance to the robot is less than 2Rc

Choose the nearest point in the robot’s virtual match point set
update pk(t)

end
Calculate the history effect and the attractive effect
Update velocity Equation (29)

end

do for each robot in swarm
Update position Equation (30)
Update robot’s received signal strength at its position
Update limax and limin
If robot reach to the chosen point

Exclude the chosen point
end

end
end

5. Simulations and Analysis

In this section, there are several parts to discuss the proposed algorithm. At first, we analyzed
the effect of parameters and performed some experiments. Those parameters were taken to complete
the experiments of comparison. Secondly, swarm exploration behavior with different signals was
shown. Thirdly, several groups of experiments were implemented with different population sizes,
different numbers of sources, and different distribution of initial position. The performances of different
cooperative strategies, including SRPB, PSO, RPSO, A-RPSO, GSO, FA, and LFS, were evaluated in
terms of average time to find the first, the half, and the last source, the number of located sources, and
the collision rate. Finally, the analysis of how to implement this strategy, in reality, was given. Besides,
different criteria were evaluated by the mean and standard deviation of many experiments, and these
were denoted by mI and dI, respectively. mI indicates the searching efficiency of strategies, while dI
reflects stability. All experiments were implemented with MATLAB R2017a in windows 10.
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Moreover, a collision is defined as: at one moment, the distance between any two robots is less
than half of the minimum repulsion radius. The collision rate is equal to the ratio of the collision
number to the given time. The average discovery number rate is the ratio of the located sources to the
total sources.

5.1. Parameter Analysis for the SRPB Strategy

There are four parameters that influence the search efficiency of the SRPB strategy, including w, γ0,
ρ, and β. Each parameter was analyzed separately and sequentially, with the other three parameters
fixed. The experiments were implemented in a fixed scenario, as shown in Figure 1a, with 20 robots
and 4 sources. Firstly, the parameter of the inertia weight w was analyzed with γ0 = 0.48, ρ = 0.8, and
β = 0.3. Inertia provides the reference information for the velocity, and it can smooth the trajectories of
robots. In most swarm intelligence algorithms, inertia weight is usually within (0, 1), and it needs
a large value, so different values within (0.5, 0.98) are used to analyze the algorithm. By the way,
before the effect of inertia weight was analyzed, we had already taken other parameters with a proper
value. In this paper, γ0 was to balance local searching and global searching. Exploring sources as many
as possible is better for the environment with an unknown number of sources, but the efficiency of
source seeking is related to local searching. To balance it, γ0 = 0.48 was taken. ρ is used to provide a
repulsive force to propel a robot forward and keep a safe distance. It must take a large value. When
the repulsive effect acts as a thrust, the attractive effect is small because there are no neighbors, and the
attractive effect plays a little role in velocity. So, ρ = 0.8 was taken. Finally, β is related to the tuning
of the decision radius. In this paper, the self-tuning decision radius was used to determine which
robot should drop out of the group. β is the change rate of the decision radius. When the number of
neighbors exceeds a value, the decision radius will decrease sharply and then slowly increases. If β is
large, the decision radius will increase quickly. It cannot drop out of the group because the robots are
attracted by the neighbors within the decision radius. Besides, β cannot be a small value. It makes
robots move far away from the neighbor sources because the robot cannot cooperate with other robots.
So, β = 0.3 was taken.

As can be seen from Figure 3, with the increase of w, the average number of located sources
increases. The collision rate becomes small, and the average time to located sources decreases. It shows
that inertia weight needs to be a large value, and inertia plays an important role in the motion. Inertia
provides the reference information for the velocity, especially when there is no information about the
environment. Besides, when w is greater than 0.9, the collision rate, the average number of located
sources, and the average time to located sources remain unchanged. It concludes that the parameter w
should be big.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 28 

 

Moreover, a collision is defined as: at one moment, the distance between any two robots is less 

than half of the minimum repulsion radius. The collision rate is equal to the ratio of the collision 

number to the given time. The average discovery number rate is the ratio of the located sources to 

the total sources. 

5.1. Parameter Analysis for the SRPB Strategy 

There are four parameters that influence the search efficiency of the SRPB strategy, including w, 

0 ,  , and  . Each parameter was analyzed separately and sequentially, with the other three 

parameters fixed. The experiments were implemented in a fixed scenario, as shown in Figure 1a, with 

20 robots and 4 sources. Firstly, the parameter of the inertia weight w was analyzed with
0 0.48  , 

0.8  , and  =0.3. Inertia provides the reference information for the velocity, and it can smooth the 

trajectories of robots. In most swarm intelligence algorithms, inertia weight is usually within (0,1), 

and it needs a large value, so different values within (0.5,0.98) are used to analyze the algorithm. By 

the way, before the effect of inertia weight was analyzed, we had already taken other parameters 

with a proper value. In this paper, 
0  was to balance local searching and global searching. Exploring 

sources as many as possible is better for the environment with an unknown number of sources, but 

the efficiency of source seeking is related to local searching. To balance it, 
0 0.48   was taken.   is 

used to provide a repulsive force to propel a robot forward and keep a safe distance. It must take a 

large value. When the repulsive effect acts as a thrust, the attractive effect is small because there are 

no neighbors, and the attractive effect plays a little role in velocity. So, 0.8   was taken. Finally,   
is related to the tuning of the decision radius. In this paper, the self-tuning decision radius was used 

to determine which robot should drop out of the group.   is the change rate of the decision radius. 

When the number of neighbors exceeds a value, the decision radius will decrease sharply and then 

slowly increases. If   is large, the decision radius will increase quickly. It cannot drop out of the 

group because the robots are attracted by the neighbors within the decision radius. Besides,   cannot 

be a small value. It makes robots move far away from the neighbor sources because the robot cannot 

cooperate with other robots. So,   = 0.3 was taken. 

 
(a) 

 
(b) 

Figure 3. Cont.



Sensors 2020, 20, 1606 14 of 28

Sensors 2020, 20, x FOR PEER REVIEW 14 of 28 

 

   
(c) 

Figure 3. mI of SRPB at different w, which varies within (0.5,0.98). (a) the average number of located 

sources; (b) collision rate; (c) average time to find different sources. 

As can be seen from Figure 3, with the increase of w, the average number of located sources 

increases. The collision rate becomes small, and the average time to located sources decreases. It 

shows that inertia weight needs to be a large value, and inertia plays an important role in the motion. 

Inertia provides the reference information for the velocity, especially when there is no information 

about the environment. Besides, when w is greater than 0.9, the collision rate, the average number of 

located sources, and the average time to located sources remain unchanged. It concludes that the 

parameter w should be big. 

Secondly, parameter  , which varies within (0.1,0.9), was analyzed with 
0 0.48  , 0.8  , and 

w=0.95 in the same scenario. The performance with different   is shown in Figure 4. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. mI of SRPB at different w, which varies within (0.5, 0.98). (a) the average number of located
sources; (b) collision rate; (c) average time to find different sources.

Secondly, parameter β, which varies within (0.1, 0.9), was analyzed with γ0 = 0.48, ρ = 0.8, and
w = 0.95 in the same scenario. The performance with different β is shown in Figure 4.
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The change rate of decision radius is influenced by β. When the number of neighbors exceeds
a value, the decision radius decreases sharply. Once the repulsion radius is larger than the decision
radius, the robot will become alone and then move to other areas. If β is too big, the robots within the
decision radius of the focal robot attract the focal robot all the time, and the group size can’t be adjusted
effectively. It can be seen from Figure 4 that the average number of located sources, the collision rate,
and the average time to find different sources are poor with the increase of β.

Thirdly, the parameter γ0 was analyzed with β = 0.3, ρ = 0.8, and w = 0.95. γ0 is to balance
local searching and global searching. When the value of γ0 is greater than 0.5, robots perform global
searching first. Local searching is a priority when γ0 is less than 0.5.

Figure 5 shows that a large γ0 performs well because the history effect can help robots approach
the strong signal area. The history effect plays an important role in seeking the source, especially
when the robot is alone. Nevertheless, there are two situations that robots become alone. In the initial
location, some robots may be alone because of arbitrary location, and they would like to approach
the source quickly. It requires a big history effect. When the robot drops out of the group, it tends to
explore the other sources. The small history effect helps the robot drop out of the group; otherwise, the
robot will always stay at this group. A small history coefficient will help robots divide into several
small groups. It also makes robots seek sources as many as possible because the number of located
sources is related to the number of groups of robots. In reality, since the number of sources is unknown,
γ0 is smaller than 0.5 to explore more sources.
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Finally, parameter ρ was analyzed with β = 0.3, γ0 = 0.48, and w = 0.95. ρ is related to the role of
the repulsive effect.

There are two roles that the repulsive effect plays. One is to keep a safe distance from other robots,
and the other is acting as a thrust. As shown in Figure 6b, when the value of ρ is small, robots can’t
avoid collisions between robots. When the repulsive effect acts as a thrust, the repulsive effect should
be greater than the attractive effect because sometimes the attractive effect and the repulsive effect are
contradictory. Therefore, in this paper, ρ was greater than 0.5. When the repulsive effect has a great
effect on robots, the attractive effect is small, and the repulsive effect will propel the robot forwards.
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5.2. Algorithms for Comparison

In this part, all parameters of comparison algorithms are given. Considering fuel consumption,
robots can only work in a limited time. It can be determined by the maximum speed and the width
and length of the environment. For example, if the environment is 100 m × 100 m, and the maximum
speed of robots is 2 m/s, each robot can work for 100 s. In this way, a single robot can’t visit a complete
environment. The goal is to minimize the average time to find sources and to maximize the number of
located sources. In all experiments, the radius of communication is 10 m. The minimum repulsion
radius is 2 m. The maximum repulsion radius is half of the communication radius. The maximum
speed is 2 m/s. All algorithms and their corresponding parameter configurations are shown as follows:

PSO: multiple target particle swarm optimization. In [32], multi-target search was considered.
Therefore, all parameters are shown as: Inertia weight w = 0.9, cognition coefficient c1 = 1.0, social
coefficient c2 = 1.0.
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RPSO: Robotic particle swarm optimization. This method has been used in one target search,
and it can be applied in a multi-target search when the gbest in the RPSO is regarded as the location
of the best robots within the local swarm. In this paper, all parameters were tuned under the same
experimental conditions, shown in part 5.1. Inertia weight w = 0.95, cognition coefficient c1 = 1.0, social
coefficient c2 = 2.0, obstacle avoidance coefficient c3 = 2.0.

A-RPSO: Adaptive robotic particle swarm optimization [34]. Although the experiments of A-RPSO
is to seek one source, the A-RPSO is also suited to the multi-target search. All parameters are shown as:
Inertia weight w = 1, cognition coefficient c1 = 2.0, α = 0.4, β = 0.6, ρ = 0.4, U = 2, L = 0.5.

GSO: Glowworm swarm optimization. This algorithm was used for a multi-target search in
paper [29]. The parameters are: the luciferin enhancement constant γ = 0.6, the maximum size of a
group nt = 4, and β = 0.08.

FA: Firefly algorithm. In this paper, all parameters were tuned under the same experimental
conditions, shown in part 5.1. Attractiveness β = 0.8, light absorption coefficient γ = 0.01, random
coefficient α = 1.

LFS: Levy flight search. In [20], LFS was applied in a multi-target search, and its parameters are:
α = 1.5, b = 1.001.

SRPB: Swarm robotic pedestrian behavior. Inertia weight w = 0.95, maximum cognitive coefficient
γ0 = 0.48, maximum priority coefficient ρ = 0.8, the change rate of decision radiusβ = 0.3, the
maximum number of neighbors Nmax= 3.

5.3. Swarm Exploration Behavior with Different Signals

In this part, the swarm exploration behavior with different signals is shown. These experiments
implement with four sources and 20 robots in an 100 m × 100 m environment. The four sources are
at position q1(35,25), q2(25,80), q3(70,80), q4(85,35), respectively. The distribution of the four sources
is shown in Figure 1. We gave the robots’ trajectories from initial locations to the extrema, initial
arbitrary distribution of the robots, and final location. Besides, the robots’ trajectories from initial
locations to different sources are shown, respectively. The limited work time is 100 s, and the initial
locations of the robots are arbitrary. In Figures 7 and 8, the purple crosses are virtual match points. The
sources are represented by the green asterisk. The little circle represents the final location of a robot.
The pentagram represents the initial location of a robot. The dotted line is the robot’s trajectory, and
different colors represent different robots.

Firstly, the isotropic signals shown in Figure 1a are used. The time to find the first, the half, and
the last sources are 10 s, 23 s, 23 s, respectively. The collision rate is equal to 0.26, and the number of
located sources is equal to 4. The robots’ trajectories are shown in Figure 7a.

The anisotropic signals shown in Figure 1b are used. The time to find the first, the half, and the
last source are 7 s, 20 s, 26 s, respectively. The collision rate is equal to 0.29, and the number of located
sources is equal to 4. The robots’ trajectories are shown in Figure 8a.
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5.4. Stability between Different Algorithms

In source seeking, different population sizes, different number of sources, and the size of the
environment influence the performance of the swarm intelligence algorithms. A different initial position
distribution of robots and the random effect of swarm intelligence algorithms also have an impact on
the stability of source seeking. Some random parameters in a swarm intelligence algorithm can keep a
diversity of solutions, but the algorithm with too many random effects is inefficient and unstable in
source seeking. In reality, the stability of source seeking requires that the strategy can work in arbitrary
initial locations and seek the targets with approximate numbers in a fixed initial location. In this part,
the experiments of source seeking with the fixed initial location and the same sources are implemented
in the environment, shown in Figure 1. At first, 20 robots are randomly placed in the environment,
and then experiments with the same initial location are implemented 400 times. The mean (mI) and
standard deviation (dI) of many experiments in different criteria are used to evaluate the stability of
different algorithms.

Figure 9 gives the error histograms of different criteria. In Figure 9, an algorithm with a high
standard deviation means that the same algorithm in many experiments shows different performances
in the same condition. As shown in Figure 9b, the average number of located sources (mI) is approximate
in SRPB, PSO, RPSO, A-RPSO, and FA, but the SRPB has a slight advantage than other algorithms.
Besides, SRPB has the lowest standard deviation (dI) between all algorithms. PSO, RPSO, A-RPSO,
FA, GSO, and LFS have a high standard deviation (dI). It means that these algorithms, including PSO,
RPSO, A-RPSO, FA, GSO, and LFS, are unstable. These algorithms are influenced by the random
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effect. According to the stability and an average number of located sources, shown in Figure 9a, these
strategies can be sorted as SRPB>RPSO>PSO≈FA>A-RPSO>LFS>GSO. SRPB is more stable than other
algorithms. In Figure 9b, according to the collision rate, SRPB is better than all strategies except the
LFS, and it can be sorted as LFS>SRPB>A-RPSO≈RPSO>PSO≈FA>GSO. In Figure 9c, the performance
of SRPB, PSO, RPSO, A-RPSO in terms of the time to find the first and the half sources are approximate.
SRPB is better than other strategies in terms of the time to find the last source, and it shows great
stability. The other strategies have a high standard deviation, so these algorithms can be sorted as
SRPB>RPSO>PSO>A-RPSO>FA>GSO>LFS.Sensors 2020, 20, x FOR PEER REVIEW 21 of 28 
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In conclusion, SRPB is more stable than other algorithms in the same condition, and it performs
great stability and has a better performance than other algorithms.

5.5. Different Population Sizes

In this part, experiments with different population sizes and different initial position distribution
of robots are implemented in the environment, shown in Figure 1a. Eight tests are carried out with
12, 15, 18, 20, 25, 30, 40, 50 robots, in turn, and the working time of robots is 200 s. Each test is
implemented 400 times, and the initial position of robots is updated every time. The performance
of SRPB is compared with PSO, RPSO, A-RPSO, GSO, FA, and LFS. By the way, dI is the standard
deviation of many experiments.

There is a contrast curve of the collision rate of search strategies in Figure 10. Figure 10a shows
that the collision rate of different algorithms grows large with the increase of population sizes. When
the population size of robots exceeds 20, the collision rate of PSO, RPSO, A-RPSO, FA, and GSO
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is greater than 80%. SRPB shows an obvious growth, but its collision rate is lower than the other
strategies, including PSO, RPSO, A-RPSO, FA, and GSO. The collision rate of LFS is the lowest due to a
lack of cooperation. Besides, PSO, RPSO, A-RPSO, FA, GSO have a large standard deviation when the
population sizes of robots are less than 30, and the standard deviation of the collision rate of SRPB
remains unchanged. Therefore, SRPB is more stable than other strategies. According to the collision
rate, these strategies can be sorted as LFS>SRPB>GSO>A-RPSO≈RPSO>FA>PSO.
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As we can see from Figure 11, SRPB is superior to other algorithms when the population size of
robots is lower to 30. When the population size of robots exceeds 30, robots in these algorithms can find
the approximate number of sources. Besides, Figure 11b shows that SRPB is slightly influenced by the
different initial positions of robots, and it is more stable than other strategies. Hence, it can be sorted
as SRPB>RPSO>FA>PSO≈A-RPSO. By the way, LFS is superior to GSO when the population size of
robots is less than 30. Once the population size of robots exceeds 30, GSO outperforms LFS because
GSO cannot move without neighbors, and it suits to work in the large population size of robots.
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According to the time to find the last source, shown in Figure 12, SRPB is superior to other
algorithms, and these algorithms can be sorted as SRPB>RPSO>PSO≈A-RPSO>FA>GSO>LFS.
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positions of robots.

In conclusion, the proposed algorithm SRPB performs well than other algorithms, and it has
excellent stability. For all algorithms, with the number of robots increasing, the time to find the last
source decreases, and the number of located sources and the collision rate gradually increases.

5.6. Different Numbers of Targets

In this part, the search efficiency of comparison algorithms with various numbers of targets
is investigated. Six tests are carried out with 4, 6, 8, 10, 12, 15 targets, in turn, and the size of the
environment is 300 m × 300 m. There are 50 robots in the environment, and each robot can work 300 s.
Experiments with the different initial positions of robots are implemented 400 times in every test.

In Figure 13, the collision rate of different algorithms remains basically unchanged in a different
number of targets. The results in part 5.5 show the collision rate of SRPB is 83% for 50 robots when the
environment is 100 m × 100 m. In part 5.6, the collision rate of SRPB is 56% for 50 robots when the
environment is 300 m × 300 m. We could infer that the collision rate is influenced by the environment
and the population sizes. Once the environment and the population size are determined, the collision
rate of algorithms does not vary with the number of targets. According to the collision rate, these
strategies are sorted as LFS>SRPB>GSO>RPSO≈A-RPSO≈FA>PSO.
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The contrast curves of the discovery rate of the strategies are given in Figure 14. In the same
environment, the average discovery rate of SRPB is greater than other strategies, and PSO is the
suboptimum strategy. With the increase of targets, the average discovery rate decreases gradually.
PSO, RPSO, A-RPSO, FA, GSO, FA, and LFS decline more sharply than SRPB. We could infer that the
number of located sources is related to the number of robots. There are some speculations. In the ideal
case, fifty robots could simultaneously find fifty targets in oriented search. Of course, it just suits the
situation that a robot has found a target, and it cannot search the other targets. In the non-oriented
search, the number of located sources is less than the number of robots because a source is located
by a group of robots. In this paper, the maximum size of a group was four. It means that fifty robots
can form twelve groups, at least. When the targets in the environment are in abundance, and the
distribution of targets is not sparse, fifty robots in SRPB can find twelve targets, at least. As shown in
Figure 14, fifty robots in SRPB find an average of 12.5 targets. Finally, according to the discovery rate,
these algorithms can be sorted as SRPB>PSO>RPSO≈A-RPSO≈FA>LFS>GSO.
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According to the time to find the first target, these algorithms can be sorted as SRPB≈PSO>RPSO
A-RPSO>FA>LFS>GSO, and Figure 15c shows SRPB>PSO>RPSO>A-RPSO>FA>LFS≈GSO.
Furthermore, Figure 15b,d show that SRPB is more stable than other algorithms because it has
a low standard deviation. With the number of targets increasing, SRPB has more advantages than other
algorithms in terms of the time to find the half targets. In Table 1, when the number of targets exceeds
a certain value, robots in some algorithms can’t find the last target. It concludes that the number of
located sources is related to the population size of robots.
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Table 1. mI and dI of the time to find the last target.

Number
of Target

SRPB A-RPSO FA GSO LFS PSO RPSO

mI dI mI dI mI dI mI dI mI dI mI dI mI dI

4 68.69 28.79 258.8 77.79 288.4 29.58 301 0 300.9 1.5 123.4 82.86 230.9 89.6

6 114.9 68.9 295.9 29.27 297.8 13.79 301 0 301 0 214.5 96.65 286.8 47.1

8 197.9 91.9 301 0 300 3.16 301 0 301 0 286.8 46.17 300 9.49

10 244 80.1 301 0 301 0 301 0 301 0 300 14.7 301 0

12 278 53.7 301 0 301 0 301 0 301 0 301 0 301 0

15 297.9 19.6 301 0 301 0 301 0 301 0 301 0 301 0

All in all, the proposed algorithm can find targets as many as possible, and it has excellent stability,
quick source seeking, and low collision rate. The overall performance of SRPB is better than PSO,
RPSO, A-RPSO, GSO, FA, and LFS.

5.7. Practical Application Analysis

As mentioned before, the comparison reveals that the SRPB strategy has better performance than
other algorithms. Some analyses are given to illustrate and analyze how to implement the strategy in a
real robot.

Multi-source seeking is a significant problem. In reality, there are many applications about
source seeking. For example, consider in the maritime rescue, there are several people with wireless
transmitters for help. The autonomous unmanned aerial vehicle and unmanned surface vehicles can
be used in this scenario to locate the positions of people. Since the radio signal is non-oriented, robots
can locate the person with received signal strength taken at the robots’ position. Besides, the limited
communication range will influence the cooperation, and the robot cannot be remotely controlled.
Fuel consumption limits the working time. An unknown number of sources and unknown extrema
make this task difficult. The method in this paper could be implemented in this situation. Each robot
updates its velocity and position by Equations (29), (30), and stores a set of virtual match points. There
are some assumptions. The width and length of the environment are W, L, respectively. The working
time is T, and the number of robots is Nr. In this simulation, the computation complexity of the SRPB is
O(T ·Nr ·W · L), and the space complexity is O(Nr ·W · L). In reality, each robot determines the motion
by itself, and the computation complexity of a robot implementing the SRPB is O(W · L), and the space
complexity is O(W · L). In a general control processor, such as ARM, the SRPB can be implemented.
There is enough storage space to store the information of the environment because the number of
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virtual match points is small. Every robot equips with receiving antenna to receive the strength of the
signal. In other types of sources, corresponding sensors are equipped in robots to receive the strength
of signals. Besides, only the position and the corresponding signal strength are required to exchange
with each other, so the information of communication is also small.

In conclusion, the strategy can be implemented in reality because all required aspects, including
processor, communication, sensor, and scene, are met.

6. Conclusions

In this paper, we reviewed the target search algorithms and gave a classification. Aiming at the
multiple weak sources seeking problem for swarm robots in an unknown environment, a model of the
multi-target with different signals was given. Inspired from pedestrian behavior in subway/railway
stations, a novel cooperative strategy, swarm robotic pedestrian behavior (SRPB), was proposed.
It considered many realistic constraints, including limited communication range, limited working
time, unknown sources, unknown extrema, the arbitrary initial location of robots, non-oriented search,
and no central coordination. The robots’ trajectories from initial locations to the extrema showed that
SRPB could effectively complete the task of multiple source seeking. The performance of the SRPB was
evaluated in terms of average time to find the first, the half, and the last source, the number of located
sources and the collision rate. Several experiments showed that SRPB had the highest efficiency and
the best stability in all comparison strategies, and it had a low collision rate and a high number of
located sources. Besides, numerous experiments demonstrated that the collision rate was related to
the environment size and the number of robots, and the number of located sources was related to
the number of robots. Finally, the analysis of how to implement this strategy, in reality, was given to
support further research.
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