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Abstract: Clinical treatment of skin lesion is primarily dependent on timely detection and delimitation
of lesion boundaries for accurate cancerous region localization. Prevalence of skin cancer is on the
higher side, especially that of melanoma, which is aggressive in nature due to its high metastasis rate.
Therefore, timely diagnosis is critical for its treatment before the onset of malignancy. To address
this problem, medical imaging is used for the analysis and segmentation of lesion boundaries from
dermoscopic images. Various methods have been used, ranging from visual inspection to the textural
analysis of the images. However, accuracy of these methods is low for proper clinical treatment
because of the sensitivity involved in surgical procedures or drug application. This presents an
opportunity to develop an automated model with good accuracy so that it may be used in a clinical
setting. This paper proposes an automated method for segmenting lesion boundaries that combines
two architectures, the U-Net and the ResNet, collectively called Res-Unet. Moreover, we also used
image inpainting for hair removal, which improved the segmentation results significantly. We trained
our model on the ISIC 2017 dataset and validated it on the ISIC 2017 test set as well as the PH2 dataset.
Our proposed model attained a Jaccard Index of 0.772 on the ISIC 2017 test set and 0.854 on the PH2

dataset, which are comparable results to the current available state-of-the-art techniques.

Keywords: melanoma; dermoscopic images; convolutional neural networks; U-Net; ResNet; image
inpainting; Jaccard Index; ROC curve

1. Introduction

Computer-aided technologies for the diagnostic analysis of medical images have received significant
attention from the research community. These are efficiently designed and modified for the purposes
of inter-alia segmentation and classification of the region of interest (ROI) [1], which in this instance
involves cancerous regions. Needless to mention, the effective treatment of cancer is dependent on
early detection and delimitation of lesion boundaries, particularly during its nascent stages because
cancer generally has the characteristic tendency of delayed clinical onset [2]. Every year, nearly
17 million people are affected by cancer and about 9.6 million people die due to delayed diagnosis
and treatment [3]. This makes cancer the leading causes of death worldwide [4]. In the case of skin
cancer, it is one of the most prevalent types of the disease in both adults and children [5] and occurs or
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originates in the epidermal tissue. Various computer-aided techniques have been proposed for cancer
boundary detection from dermoscopic images [3].

Among the different types of skin cancers, melanoma is not only the most dangerous and
aggressive in nature due to its high metastasis rate, but also has the greatest prevalence [4]. Melanoma
is a malignant type of skin cancer that develops through the irregular growth of pigmented skin cells
called melanocytes [5]. It can develop anywhere on the epidermal layer of the skin and presumably
may also affect the chest and back and propagate from the primary site of the cancer [6]. Its incidence
rate has risen up to 4–6% annually and has the highest mortality rate among all types of skin cancers [4].
Early diagnosis is crucial as it increases the five-year survival rate up to 98% [7,8].

From the above details pertaining to the incidence and mortality rate associated with melanoma,
timely diagnosis becomes all the more necessary for providing effective treatment to the affected. Insofar
as the detection and segmentation of lesion boundaries, there are two streams of methodologies: first,
traditional methods that usually resort to visual inspection by the clinician, and second, semi-automated
and automated methods, which mostly involve point-based pixel intensity operations [9,10],
pixel clustering methods [11–14], level set methods [15], deformable models [16], deep-learning
based methods [17–19], et cetera.

Be that as it may, most of the methods being used today are not semi-automated because the
accuracy associated therewith is generally prone to errors due to the following reasons: the inherent
limitations of the methods [20], and changing character of dermoscopic images induced due to the
florescence and brightness inhomogeneities [10]. For this very reason, the world has shifted toward
more sophisticated methods, inter-alia, the convolutional neural networks (CNNs) [21].

In this paper, we intend to exploit the properties and model architectures based on CNN for
skin lesion boundary delimitation and segmentation. In addition, we propose our own novelty
within the already available techniques which greatly increases the segmentation accuracy, which
is image inpainting. Image inpainting, together with other image preprocessing techniques such as
morphological operations, is used to remove the hair structures contained within the dermoscopic
images that otherwise handicap the architecture because of complexities present in the images.

This research examines the accuracy of the proposed technique together with the adoption of
the proposed preprocessing method. We also benchmark our proposed scheme with other available
methods by way of results through network accuracy, Jaccard Index, Dice score, and other performance
metrics that aid us in comparison.

1.1. Literature Review

This section delineates and chalks-out the relevant work done on the issue of segmentation of
skin lesions. It is done with an added emphasis and focus on the recent studies that have incorporated
deep-learning methods for the aforementioned purpose of lesion segmentation.

At the outset, it is contended that accurate segmentation and delimitation of skin lesion boundaries
can aid and assist the clinician in the detection and diagnosis process, and may later also help toward
classification of the lesion type. There has been a gamut of studies done for the purposes of segmentation
and classification of skin lesions, and for a general survey of these, the reader can refer the following
two papers authored by Oliveira et al. [3], and Rafael et al. [22].

We hereinafter present a review of the literature vis-à-vis two aspects (i.e., preprocessing and
segmentation techniques, respectively). Both aspects have a direct effect on the outcome of the results
(the prediction) and therefore, both are catered into the broader scheme of methodology presented in
this paper. Additionally, since dermoscopic images have varying complexities and contain different
textural, intensity, and feature inhomogeneity, it becomes necessary to apply prior preprocessing
techniques so that inhomogeneous sections can be smoothened out.
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1.1.1. Preprocessing Techniques

Researchers encounter complications while segmenting skin lesions due to low brightness and
the noise present in the images. These artifacts affect the accuracy of segmentation. For better results,
Celebi et al. [23] proposed a technique that enhances image contrast by searching for idyllic weights
for converting RGB images into grayscale by maximizing Otsu’s histogram bimodality measure.
Optimization resulted in a better adaptive ability to distinguish between tumor and skin and allowed
for accurate resolution of the regions, whereas Beuren et al. [24] described the morphological operation
that can be applied on the image for contrast enhancement. The lesion is highlighted through the
color morphological filter and simply segmented through binarization. Lee et al. [25] proposed a
method to remove hair artifacts from dermoscopic images. An algorithm based on morphological
operations was designed to remove hair like artifacts from skin images. Removing hair, characterized
as noise, from skin images has a noteworthy effect on segmentation results. A median filter was
found to be effective on noisy images. A nonlinear filter was applied to images to smooth them [26].
Celebi et al. [27] established a concept where the size of the filter to be applied must be proportional to
the size of the image for effective smoothing.

Image inpainting is a preprocessing technique used for both removing parts from an image and
for restoration purposes, so that the missing and damaged information in images is restored. It is of
vital importance in the field of medical imaging and through its application, unnecessary structures or
artifacts from the images (i.e., hair artifacts in skin lesions images) can be removed [28–30].

1.1.2. Segmentation Techniques

Most image segmentation tasks use traditional machine learning processes for feature extraction. The
literature explains some of the important techniques used for accurate segmentation. Jaisakthi et al. [31]
summarizes a semi-supervised method for segmenting skin lesions. Grab-cut techniques and K-means
clustering are employed conjunctively for segmentation. After the former segments the melanoma
through graph cuts, the latter fine-tunes the boundaries of the lesion. Preprocessing techniques such as
image normalization and noise removal measures are used on the input images before feeding them
to the pixel classifier. Mohanad Aljanabi et al. [32] proposed an artificial bee colony (ABC) method
to segment skin lesions. Utilizing fewer parameters, the model is a swarm-based scheme involving
preprocessing of the digital images, followed by determining the optimum threshold value of the
melanoma through which the lesion is segmented, as done by Otsu thresholding. High specificity and
Jaccard Index are achieved by this algorithm.

Pennisi et al. [33] introduced a technique that segments images using the Delaunay triangulation
method (DTM). The approach involves parallel segmentation techniques that generate two varying
images that are then merged to obtain the final lesion mask. Artifacts are removed from the images
after which one process filters out the skin from the images to provide a binary mask of the lesion,
and similarly, the other technique utilizes Delaunay triangulation to produce the mask. Both of
these are combined to obtain the extracted lesion. The DTM technique is automated and does not
require a training process, which is why it is faster than other methods. M Emre Celebi et al. [34]
provides a brief overview of the border detection techniques (i.e., edge based, region based, histogram
thresholding, active contours and clustering, etc.) and especially pays attention to evaluation aspects
and computational issues. Lei Bi et al. [35] suggested a new automated method that performed image
segmentation using image-wise supervised learning (ISL) and multiscale super pixel based cellular
automata (MSCA). The authors used probabilistic mapping for automatic seed selection that removes
user-defined seed selection; afterward, the MSCA model was employed for segmenting skin lesions.
Ashnil Kumar et al. [36] introduced a fully convolutional network (FCN) based method for segmenting
dermoscopic images. Image features were learned from embedded multi-stages of the FCN and
achieved an improved segmentation accuracy (than previous works) of skin lesion without employing
any preprocessing part (i.e., hair removal, contrast improvement, etc.). Yading Yuan et al. [37] proposed
a convolution deconvolutional neural network (CDNN) to automate the process of the segmentation of
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skin lesions. This paper focused on training strategies that makes the model more efficient, as opposed
to the use of various pre- and post-processing techniques. The model generates probability maps where
the elements correspond to the probability of pixels belonging to the melanoma. Berseth et al. [38]
developed a U-Net architecture for segmenting skin lesions based on the probability map of the image
dimension where the ten-fold cross validation technique was used for training the model. Mishra [17]
presented a deep learning technique for extracting the lesion region from dermoscopic images.

This paper combines Otsu’s thresholding and CNN for better results. U-Net based architecture
was used to extract more complex features. Chengyao Qian et al. [39] proposed an encoder decoder
architecture for segmentation inspired by DeepLab [40] and ResNet 101 was adapted for feature
extraction. Frederico Guth et al. [41] introduced a U-Net 34 architecture that merged insights from
U-Net and ResNet. The optimized learning rate was used for fine tuning the network and the slanted
triangular learning rate strategy (STLR) was employed.

2. Materials and Methods

2.1. Dataset Modalities

We trained and tested our CNN model on dermoscopic skin images acquired from two publicly
accessible datasets (i.e., PH2 [42] and ISIC 2017 [43]), the latter provided by the “International Skin
Imaging Collaboration” (ISIC). Example images from both datasets are shown in Figure 1.
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Figure 1. Examples of the ISIC-17 dataset (a) and PH2 dataset (b).

We compared our model in the task of Lesion Segmentation, part 1 of the 2017 ISBI Skin Lesion
Analysis Toward Melanoma Detection challenge. We evaluated our model on the ISIC-17 test data
consisting of 600 images to compare its performance with state-of-the-art pipelines. Additionally,
our model was also tested on the PH2 dataset with its 200 dermoscopic images including 40 melanoma,
80 common nevi, and 80 atypical nevi images.

2.2. Proposed Methodology

In this section, we introduce our devised methodology, which was trained and tested on the
datasets (details presented later), and the subsequent results are reported and discussed. At the outset,
it is pertinent to mention that we proposed a method that out-performed other similar available
methods, both in terms of model accuracy and in pixel-by-pixel similarity measure, also called the
intersection over union overlap (sometimes also referred to as the Jaccard Index). We herein proceed to
describe, point by point, the various subsections of the proposed method.
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2.2.1. Image Preprocessing

Images are preprocessed using resizing, scaling, hair removal and data centering techniques
before being given as input to the CNN model. For noise removal, morphological operations are
applied. We obtained promising results by applying preprocessing practices, which are as follows.

Image Resizing: It is good practice to resize images before they are fed into the neural network.
It allows the model to convolve faster, thereby saving computational power and dealing with memory
constraints. Dermoscopic images vary in size and to overcome such individual differences, the images
and their corresponding ground truths are down sampled to 256 × 256 resolution. All the RBG images
are in the JPEG file format while the respective labels are in the PNG format.

Image Normalization and Standardization: Images are normalized before training to remove
poor contrast issues. Normalization changes the range of pixel values, rescaling the image between
0 and 1 so that the input data is centered around zero in all dimensions. Normalization is obtained
by subtracting the image from its mean value, which is then divided by the standard deviation of
the image.

Hair Removal: Dermoscopic images contain hair-like artifacts that cause issues while segmenting
lesion regions. A series of morphological operations are applied to the image to remove these hair-like
structures. The inpainting algorithm [44] is then applied to replace the pixel values with the neighboring
pixels, explained as follows:

• Conversion of RGB (Figure 2a) to grayscale image (Figure 2b);
• Black top-hat filter [45,46] is applied to the grayscale image;
• Inpainting algorithm is implemented on the generated binary mask; and
• Inpainting of the hair occupied regions with neighboring pixels.
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Figure 2. Representation of a single image as it is passed through the hair removal algorithm. Left to 
right: (a) Input image; (b) Grayscale image; (c) Cross shaped structuring element employed during 
morphological operations; (d) Image obtained after applying black top-hat filter; (e) Image after 
thresholding; (f). Final image obtained as output. 

The image based on the fast marching method was employed [47]. The inpainting algorithm 
replaces the hair structures with the bordering pixels of the image to restore the original image. This 

Figure 2. Representation of a single image as it is passed through the hair removal algorithm. Left to
right: (a) Input image; (b) Grayscale image; (c) Cross shaped structuring element employed during
morphological operations; (d) Image obtained after applying black top-hat filter; (e) Image after
thresholding; (f). Final image obtained as output.

A 17 × 17 cross shaped structuring element is defined, as shown in Figure 2c. Black top-hat
(or black hat filter) filtering is obtained by subtracting closing of image from original image. If A is the
original input image and B is the closing of the input image, then black top-hat filter is defined by
Equation (1):

Black Hat(A) = ABH = (A · B) − A (1)

Closing morphological operation is the erosion of the dilation of set A and B. Closing fills small
holes in the region while keeping the initial region sizes intact. It preserves the background pixels that
are like the structuring element, while eliminating all other regions of the background.
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The image obtained after applying the closing operation on a grayscale image is subtracted from
the image itself to obtain hair like structures. Binary mask of the hair elements is obtained by applying
a threshold value of “10” on the image obtained from the black top-hat filter. Images obtained from the
black top-hat filter and after thresholding, respectively, are highlighted in Figure 2d,e.

The image based on the fast marching method was employed [47]. The inpainting algorithm
replaces the hair structures with the bordering pixels of the image to restore the original image.
This technique is commonly used in recovering old or noisy images. The image to be inpainted and
the mask obtained after thresholding was used to inpaint those hairy regions that were extracted with
the neighboring pixels and output was achieved (Figure 2f).

2.2.2. Model Architecture

Deep learning architectures are currently being used to solve visual recognition and object
detection problems. CNN models have shown good impact over semi-automated methods for
semantic segmentation. The U-Net architecture, which is based on an encoder–decoder approach, has
revealed significant results in medical image segmentation. The output of these networks are binary
segmentation masks.

In general, CNN models are the combination of layers (i.e., convolutional, max pooling, batch
normalization, and activation layer). CNN architectures have been widely used in computer assisted
medical diagnostics.

For this purpose, a CNN architecture was trained on an ISIC 2017 dataset. The network architecture
(as shown in Figure 3) takes insight from both U-Net and ResNet. The contracting path (convolutional
side) is based on the ResNet architecture, and the expansive path (deconvolutional side) is based on
the U-Net pipeline. Overall, the network performs in an encoder–decoder fashion and is composed of
50 layers (ResNet-50). Input images of resolution 256 × 256 are fed into the model. The convolutional
network architecture is shown in Table 1.
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while the U-Net decoder is shown on the right. Given in the parenthesis is the channel dimensions of
the incoming feature maps to each block. Arrows are defined in the legend.

On the contracting side, after the first convolutional layer, a max pooling layer is defined with a
kernel of 3 × 3 and a stride of 2 that halves the input dimension. Repetitive blocks are introduced with
three convolutional layer per block; the 1 × 1 convolutional layer is defined before and after each 3 × 3
convolutional layer. It reduces the number of channels in the input before the 3 × 3 convolutional layer
and again, the 1 × 1 is defined to restore dimensions. This is called the “Bottleneck” design, which
reduces the training time of the network.
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Table 1. Convolutional network architecture based on ResNet-50.

Layer Name Output Size Kernel Size & No. of Filters

Conv 1 128 × 128 7 × 7, 64, Stride 2
Max Pooling 64 × 64 3 × 3, Stride 2

Conv 2 64 × 64

 1× 1× 64
3× 3× 64
1× 1× 256

 × 3

Conv 3 32 × 32

 1× 1× 128
3× 3× 128
1× 1× 512

 × 4

Conv 4 16 × 16

 1× 1× 256
3× 3× 256

1× 1× 1024

 × 6

Conv 5 8 × 8

 1× 1× 512
3× 3× 512

1× 1× 2048

 × 3

After 5 units of downsampling, the dimension ranges to 8 × 8 and 2048 filters. In contrast, the
deconvolutional side or expansive path (as shown in Table 2) consists of 10 layers that perform deconvolution.

Table 2. The deconvolution architecture based on U-Net.

Layer Name Kernel Output Size & No. of Filters

U1 2 × 2 16 × 16 × 2048
D1 3 × 3 16 × 16 × 256
D2 3 × 3 16 × 16 × 256
U2 2 × 2 32 × 32 × 256
D3 3 × 3 32 × 32 × 128
D4 3 × 3 32 × 32 × 128
U3 2 × 2 64 × 64 × 128
D5 3 × 3 64 × 64 × 64
D6 3 × 3 64 × 64 × 64
U4 2 × 2 128 × 128 × 64
D7 3 × 3 128 × 128 × 32
D8 3 × 3 128 × 128 × 32
U5 2 × 2 256 × 256 × 32
D9 3 × 3 256 × 256 × 16

D10 3 × 3 256 × 256 × 16
Output 1 × 1 256 × 256 × 1

2.2.3. Network Training

We trained our model for 100 epochs and applied data augmentation during runtime, which enhances
the performance as more data increases the predictability of the model so that it can classify better,
thereby producing a significant effect on the segmentation results. We rotated images in three dimensions,
which increased the dataset thricefold.

Early stopping is defined and the learning rate is reduced if the model loss does not decrease
for 10 epochs. Our model stopped after approximately 70 epochs. Transfer learning was employed
for training the model on our dataset, utilizing pre-trained weights obtained through training on the
ImageNet dataset. Table 3 shows the hyperparameters used to train our model.
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Table 3. Hyperparameters maintained during training.

Name Value

Input Size 256 × 256 × 3
Batch Size 16

Learning Rate 1 × 10−3

Optimizer Adam
Epoch 100

Loss Function Binary Crossentropy

3. Results

Model Evaluation

Our model was evaluated on images obtained from the International Skin Imaging Collaboration
ISIC 2017. We trained our CNN model on the training group of ISIC 2017, which consisted of 2000 skin
lesion images. During this process, a total training accuracy of 0.995 was obtained for 70 epochs.
The variations of accuracy between the training and validation group during training is highlighted in
Figure 4.
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Figure 4. Training and validation accuracy of the proposed convolutional neural network model for
70 epochs.

The model was tested on the validation and test set taken from the ISIC 2017 dataset. Furthermore,
the model was also tested on the PH2 dataset comprising of 200 dermoscopic images. The ground
truths were also available in order to check the performance of the proposed CNN model. All images
went through the preprocessing step before being fed into the CNN architecture as described earlier.
Parameters of convolutional layers were set during the training process. During the evaluation process,
the model parameters were not changed in order to assess our model’s performance on the pre-set
parameters. The results of multiple subjects are shown in Figure 5.

The receiver operative characteristics (ROC) curve was used to evaluate the performance binary
classifiers. ROC is a plot between the true positive rate (Sensitivity) as a function of false positive
rate (Specificity) at different thresholds. This study emphasizes segmenting the lesion region, with 1
representing the lesion region and 0 representing the black region of the image. The ROC curve is the
best evaluation technique that defines separability between classes. Each datapoint in a curve shows
the values at a specific threshold. Figure 6 shows the ROC curve of the model on the ISIC test set.
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The ROC curve dictates the model’s capability to distinguish between classes accurately. The higher
the area under the curve, the higher the network’s ability to distinguish two classes more precisely
(i.e., either 0 or 1). The AUC of our proposed model was 0.963, illustrating the model’s remarkable
competence of differentiability.

4. Benchmarks

4.1. Comparison with Different Frameworks

The model was tested both with and without preprocessing on the ISIC-17 dataset to ascertain
the efficiency of the hair removing algorithm. A Jaccard of 0.763 (as shown in Table 4) was achieved
when the inpainting algorithm was not employed to remove the hair structures from the images,
which improved considerably to 0.772 with the implementation of the preprocessing technique.



Sensors 2020, 20, 1601 10 of 14

Table 4. Model performance on the ISIC-2017 test set.

Methods Jaccard Index

No Preprocessing Preprocessed
0.763 0.772

For evaluation, we compared our results with the existing deep learning frameworks (enlisted in
Table 5) that had been tested on the ISIC-17 dataset. FCN-8s [48] achieved a JI (0.696) and DC (0.783),
respectively. Although our proposed method was the deepest among the below listed frameworks,
we improved the results by balanced data augmentation and reduced overfitting. Simple U-Net
obtained a JI of 0.651 and a DC of 0.768.

Table 5. Comparison with different frameworks on the ISIC-2017 test set.

Methods Jaccard Index Dice Coefficient

FCN-8s [47] 0.696 0.783
U-Net [48] 0.651 0.768
II-FCN [49] 0.699 0.794

Auto-ED [50] 0.738 0.824
FCRN [18] 0.753 0.839

Res-Unet (Proposed) 0.772 0.858

Our proposed method is a combination of the ResNet50 based encoder and U-Net based decoder,
which achieved a Jaccard index of 0.772 and Dice coefficient of 0.858.

4.2. Comparison with Top 5 Challenge Participants of Leaderboard

The intent was that this research would segment the lesion regions with higher accuracy when
compared to other methods. Three different group of images were used to validate our network: (1) the
ISIC 2017 test group; (2) ISIC 2017 validation group; and the (3) PH2 dataset. The test group consisted
of 600 dermoscopic images and the validation group was composed of 150 images. The PH2 dataset is
a renowned dataset and was used for further evaluation of our network and benchmarking our results
with existing methods and participants in the challenge. Table 6 depicts our results in terms of the
Jaccard Index as per the challenge’s demand, in comparison with the top five participants from the
ISIC-17 Challenge. The top ranked participant Yading Yaun et al. [21] obtained a Jaccard index of 0.765.

Table 6. Comparison of results with the challenge participants.

Authors Model Jaccard Index

Yading Yuan et al. [21] CDNN 0.765
Matt Berseth et al. [51] U-Net 0.762

Popleyi et al. [52] FCN 0.760
Euijoon Ahn et al. [35] ResNet 0.758

Afonso Menegola et al. [53] VGG16 0.754
Proposed Method Res-Unet 0.772

Different methods has been employed for segmentation purpose. The second ranked participant
Matt Berseth et al. [51] obtained a JI (0.762) by employing a U-Net framework. Our technique achieved
a Jaccard index of 0.772 with the proposed technique stated earlier. Based on our results, our model
performed better than the existing techniques used in the associative field of study.

4.3. Evaluation of Model on the PH2 Dataset

To evaluate the robustness of our proposed model, we further tested the architecture on the PH2

dataset and compared our segmentations with the existing state-of-the-art techniques. The results are
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listed below in Table 7. Our method achieved promising results. FCN-16s achieved a JI of 0.802 and
DC of 0.881, respectively. Another framework, Mask-RCNN attained a JI of 0.839 and a DC of 0.907 on
the PH2 dataset.

Table 7. Comparison with different frameworks on the PH2 Dataset

Methods Jaccard Index Dice Coefficient

FCN-16s 0.802 0.881
DeeplabV3+ 0.814 0.890
Mask-RCNN 0.830 0.904

Multi-Stage FCN - 0.906
SSLS - 0.916

Res-Unet (Proposed) 0.854 0.924

5. Conclusions

Skin lesion segmentation is a vital step in developing a computer aided diagnosis system for
skin cancer. In this paper, we successfully developed a skin lesion segmentation algorithm using
CNN with an advanced hair-removal algorithm that effectively removed hair structures from the
dermoscopic images, improving the accuracy considerably. We tested our model architecture on
the ISIC-2017 dataset and PH2 dataset, and the Jaccard index obtained thereof was 0.772 and 0.854,
respectively. Our proposed method achieved promising results compared with the state-of-the-art
techniques in terms of the Jaccard index. Furthermore, our CNN model was tested on a PH2 dataset
along with the ISIC-17 test set and produced better segmentation and performed better than the existing
methods in the literature. Empirical results show that the combination of the U-Net and ResNet shows
impressive results.

The limited training data used requires extensive augmentation to prevent the model from
overfitting. A large dataset is therefore needed for better accuracy and generalization of the model.
Furthermore, for it to achieve state-of-the-art results, the model was made to be complex and efficient,
which takes more time to train as opposed to the conventional U-Net.

Our future work includes using a larger dataset to reduce overfitting problems and hyper tuning
the parameters for more effective training. Additionally, a conditional random field (CRF) application
can also be applied to refine the model output.
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