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Abstract: This paper presents a novel adaptive recursive least squares filter (ARLSF) for motion artifact
removal in the field of seismocardiography (SCG). This algorithm was tested with a consumer-grade
accelerometer. This accelerometer was placed on the chest wall of 16 subjects whose ages ranged
from 24 to 35 years. We recorded the SCG signal and the standard electrocardiogram (ECG) lead 1
signal by placing one electrode on the right arm (RA) and another on the left arm (LA) of the subjects.
These subjects were asked to perform standing and walking movements on a treadmill. ARLSF was
developed in MATLAB to process the collected SCG and ECG signals simultaneously. The SCG peaks
and heart rate signals were extracted from the output of ARLSFE. The results indicate a heartbeat
detection accuracy of up to 98%. The heart rates estimated from SCG and ECG are similar under
both standing and walking conditions. This observation shows that the proposed ARLSF could be an
effective method to remove motion artifact from recorded SCG signals.

Keywords: adaptive recursive least squares filter (ARLSF); Seismocardiography (SCG); motion
artifact; Electrocardiogram (ECG); heart rate

1. Introduction

Seismocardiography (SCG) is a non-invasive measurement that records the local vibrations of
the chest wall in response to the heartbeat [1]. SCG was first discovered in 1961 [1], and its first
clinical application was used 30 years later in 1991 [2]. With the development of an accelerometer
with high-sensitivity, low-noise, small-size, high-efficiency, and high-robustness signal-processing
technology, SCG has shown its great potential to be used by wearables. Consequently, it is now feasible
to use the information in clinical applications [3,4].

However, there are still some limitations in SCG measurements and assessments. Motion artifact
is one of the major limitations. As a result, SCG research on motion artifact has been very active in
recent years. Motion artifact is usually irregular and it is mixed with the heartbeat signals in the
time and frequency domains. The mixture makes it difficult to separate the heartbeat signal from the
mixed signal [3-5]. Some researchers tried to use multiple sensors to remove the motion artifact from
the recorded signals [6-9]. The tri-axis acceleration data collected from a chest-worn accelerometer
were utilized to remove motion artifact in an electrocardiogram (ECG) signal in 2003 [6], 2008 [7]
and 2010 [8]. An independent component analysis approach and a normalized least means square
(NLMS) adaptive filter to motion artifact cancellation of the SCG signal using two accelerometers were
developed in [9] and [10], respectively. In these studies, one accelerometer was placed at the center
of the sternum and the other was attached to the right side of the back of the subjects. The results
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were promising, but multiple sensors used in the experiments increased the complexity of the SCG
measurement and assessment.

Meanwhile, other researchers developed several algorithms to remove motion artifact from the
SCG signal by using only one accelerometer [11-17]. An ensemble empirical mode decomposition
method was developed to remove white noise from a synthetic vibrocardiographic signal in [11] and
the same method was successfully utilized to reduce the motion artifacts generated due to walking
at normal and moderately fast speeds at a treadmill [12]. However, SCG signal could not be well
recovered from corrupted signal. Rienzo et al. utilized an accelerometer to record a 24-hour SCG
signal from freely moving subjects [13]. A movement-free SCG was extracted from the recorded
accelerometer data using a continuous 5-second segment-based method. The results were promising,
but the physiological parameters were not extracted from the signal. Pandia et al. designed a
Savitzky Golay-based polynomial smoothing algorithm to extract the primary heart sound from the
accelerometer data during walking [14]. The primary heart sound detection rate was up to 99.36%, but
the graph of the extracted SCG signal could not be recovered. In another approach, the motion-free
SCG signal was successfully extracted using a time delay-based normalized least mean square (NLMS)
adaptive filter [17]. However, an extra moving average method was utilized to obtain the heart rate as
the primary heart sound graph was not clear in the extracted motion-free SCG signal.

To solve this problem, we present a novel adaptive recursive least squares filter (ARLSF) for
motion artifact removal in the SCG signal that was obtained by one accelerometer. The primary
heartbeat signal graph is very clear in the motion artifact removed SCG signal without any other
signal-processing procedures.

In Section 2 of this paper, the main idea of ARLSF is introduced and two major parameters of
ARLSF are discussed. The measurement system including the hardware system, experimental setup
and software system are discussed in Section 3. Section 4 shows the results and Section 5 concludes
this paper.

2. Theory of Adaptive Recursive Least Squares Filter (ARLSF)

2.1. The Principle of Adaptive Recursive Least Squares Filter

Figure 1 illustrates the block diagram of ARLSF. An RLS filter is a finite impulse response (FIR)
filter of length M with coefficients w(n) [18,19]. The input vector u(n) is passed through the FIR filter
to produce the output vector y(n). At each time-step, the coefficients are updated through the adaptive
control unit using the input vector u(n). The prior estimation error &(n) is described in Figure 2.
All the parameters are defined in Equations (1)—(4) where d(n) is the desired signal.

w(n) = [wo(n),wi (), , w1 (n)]" (1)
u(n) = [u(n),u(n-1),--- ,u(n—M—i—l)]T )
y(n) = wh(n-1)u(n) @3)

&(n) = d(n) - y(n) 4)

The adaptive control unit updates the coefficients using the input vector and the prior estimation
error. The detailed information can be described in Equation (5):

W(n) = w(n—1) +k(n)&(n) ®)
where k(n) is the gain vector that is described in Equation (6):

_ AT'P(n-1)u(n)
1+ A tuHP(n—1)u(n)

k(n)

(6)
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where A is the forgetting factor and P(n) is a covariance matrix of the noise which can be updated by
Equation (7):

P(n) = A"'P(n—-1) - A7 k(n)u(n)P(n—-1) ?)
u(r) .| FIR Filter yin) |
Ww(n-1)
| Adaptive c(n) ( :
"| Control Unit Z)
+
d(n)

Figure 1. Block diagram of adaptive recursive least squares filter (ARLSF).

— y(n)

Figure 2. Signal-flow graph of ARLSF.

2.2. Discussion of the Desired Signal

The design of the desired signal is very important in the RLS filter when the desired signal
cannot be directly obtained from an aiding sensor. The RLS filter works under the premise that the
desired signal is linearly correlated to the input signal and orthogonal to the estimation error. The RLS
filter will perform better with the higher linear correlation and the stronger orthogonality mentioned
above [18,19].

The desired signal and the estimation error are the motion artifact and the SCG signal, respectively.
They are collected from a single accelerometer simultaneously and they are aliased in the frequency
domain with different frequency characteristics. The collected acceleration data contains the heartbeat
signal, the motion artifact, the respiratory component, the noise of the hardware system and sounds
from the other organs. The frequency of the respiratory component is less than 1 Hz [20,21], and the
frequency of the heartbeat signal can be up to 25 Hz [22,23]. As a result, the collected acceleration data
is band-pass filtered from 1 to 25 Hz with a 32th order FIR filter to remove the gravity component, the
respiratory component and the high frequency noise, and the filtered data composed of the expected
SCG signal and motion artifact within a frequency range from 1 to 25 Hz can be set as the input
of ARLSFE.

In addition, the maximum heart rate of a healthy adult is less than 210 beats per minute
(bpm) [24-26] which illustrate the maximum frequency of an adult’s heart rate is 3.5 Hz. In order to
further analyze the frequency of the motion signal and the heartbeat signal, a similar experiment has
been conducted to record the motion signal and the heartbeat signal [9]. Firstly, the SCG recorder
system is attached to the chest wall of the subject to record the heartbeat signal under the condition of
stand-up without moving as shown in Figure 3a; z-axis acceleration data is collected at a sampling
rate of 800 Hz for about 120 s. Afterward, the same SCG recorder system is placed at the right side
of the back of the same subject to record the motion artifact at a sampling rate of 800 Hz as shown
in Figure 3b. The subject is asked to walk on a treadmill that works at a low speed (3-5 km/h) and
the tri-axis acceleration data are collected for about 120 s. Four continuous 60-second signals are
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selected from the middle of each recorded acceleration data respectively and they are analyzed in
time and frequency domain. Figure 4a illustrates that the heart rate frequency (1.2 Hz) lies in the
low-frequency range(<3.5 Hz) while high frequency heart sound signal lies in the range from 4 Hz to
25 Hz. An obvious low-frequency point (1.82 Hz) representing the footsteps frequency is marked in
Figure 5b, and the high-frequency component of the motion concentrates on the range from 4 Hz to
10 Hz [15,27]. It can be observed that the heartbeat signal and the motion signal are overlapped in the
frequency domain and cannot be separated by bandpass filters.

gk 2 '3

sl

Tri-axis Accelerometer

Figure 3. (a,b) Seismocardiography (SCG) recorder system placement for measuring heartbeat signal
and motion signals, respectively. (c) A pair of electrocardiogram (ECG) lead I electrodes placement
and SCG recorder system placement. (d) An image of the SCG recorder system which shows the
dimensions. X-axis, y-axis and z-axis describe the head to foot, shoulder to shoulder and dorsoventral

direction, respectively.
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Figure 5. (a,b) Time plot and frequency plot of the tri-axis motion signal respectively.
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Further process procedures including bandpass filtering and correlation analyzation are performed
on the z-axis of the motion signal and the heartbeat data. The z-axis of the motion signal and heartbeat
signal are bandpass filtered from 1 Hz to 25 Hz, and the filtered signals are plotted in Figure 6a,c
respectively. Figure 6b represents the filtered signal of the z-axis of the motion signal through the FIR
bandpass filter of the same type as Figure 6a,c, but at different cutoff frequencies from 3.5 Hz to 25 Hz.
Meanwhile, the correlation coefficient between signals in Figure 6a,b is calculated to be 0.99978 and the
counterpart between signals in Figure 6a,c is 0.15374, which proved well the high linear correlation of
the signals in Figure 6a,b, and the strong orthogonality of the signals in Figure 6a,c [28]. Therefore, the
desired signal can be obtained by bandpass filtering the recorded acceleration signal from 3.5 to 25 Hz.

ol (a) Z-axis motion signal bandpassed from 1Hz to 25Hz
. y T y T y T y T y T y

Acceleration

(b) Z-axis motion signal bandpassed from 3.5Hz to 25Hz
y T T T T T T
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Figure 6. (a) Z-axis motion signal band passed from 1 to 25 Hz. (b) The Z-axis motion signal band
passed from 3.5 to 25 Hz. (c) The Z-axis heartbeat signal band passed from 1 to 25 Hz.

2.3. Discussion of the Forgetting Factor

The forgetting factor plays an important role in the behavior of the RLS algorithm under
non-stationary conditions. In a classical RLS algorithm, the value of the forgetting factor is fixed
between 0 and 1. For the value of the forgetting factor closer to 0, the RLS algorithm has not only a
smaller memory length and fast-tracking ability but also a reduced convergence speed and stability.
On the other hand, when the forgetting factor is closer to 1, the RLS algorithm has fast convergence and
good stability, but the tracking ability suffers and the memory length becomes longer [18,19]. In order
to meet the conflicting requirements in non-stationary conditions, the forgetting factor is set between
0.98 and 1.0 [29,30]. In theory, the optimal value of the forgetting factor in non-stationary conditions
can be defined by Equation (8) [19]:

1 l( tr[Ro) )1/2 ®)

T o \m[R:Y

where CT%, Ry, Ry, are the measurement noise variance, process noise correlation matrix, and input
vector correlation matrix respectively, tr[-] denotes the trace of the matrix.
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3. Measurement Technique

3.1. Hardware System

Figure 3d shows the prototype of the SCG Recorder System (SRS), which integrates a
commercial tri-axis accelerometer (ICM-20602 manufactured by InvenSense) and a microprocessor
(STM32F411CEY6 manufactured by STMicroelectronics). The size of the device is less than 1 cm?.
The tri-axis accelerometer is used to capture acceleration data including SCG signal and motion
information within a range of +2g. The micro controller unit (MCU) collects the acceleration data from
the accelerometer via a serial peripheral interface (SPI) at a rate of 800 Hz. The SRS is attached to the
chest wall and placed at the left of the sternum as shown in Figure 3c. The z-axis of SRS describes the
dorsoventral direction of the subject, and the x-axis and y-axis describe the head to foot direction and
the shoulder to shoulder direction respectively.

In addition to the acceleration data captured by the tri-axis accelerometer, a standard ECG system
simultaneously collects a standard ECG lead I signal at a rate of 512 Hz. The two electrodes are placed
at the right arm and the left arm, respectively, as shown in Figure 3c. Both the SCG Recorder System
and ECG system are connected to a host PC via serial cables for data transmission and synchronization.

3.2. Experiment Setup

The hardware system described above was used on sixteen subjects whose ages ranged from 24 to
35. The experiment was conducted on a treadmill and the subjects were asked to keep standing for at
least 120 s before walking at least 180 s. After walking, the subjects stood for at least 60 s. The subjects
could breathe freely during the whole experiment. The walking speed of the subjects was limited to
less than 1.5 m/s by setting the treadmill at a low speed (3-5 km/h). The SCG and ECG signals including
sampling time and sensor data were collected and transmitted to the PC for further analyzation in
MATLAB (R2016a).

3.3. Software System

MATLAB (R2016a) was used to analyze all the data. The processing procedure consists of three
parts: signal preprocessing to obtain the primary and reference channel of the ARLSF, the ARLSF and
feature extraction.

3.3.1. Signal Preprocessing

The collected acceleration data is a mixed collection of signals in both the time and frequency
domains, which contain the heartbeat signal, the motion artifact, the respiratory component, the noise
of the hardware system and sounds from the other organs.

Firstly, the collected acceleration data is bandpass filtered from 1 to 25 Hz with a 32 order FIR
filter to remove the gravity component, the respiratory component and the high-frequency noise. This
procedure leaves the expected SCG signal and motion artifact within a frequency range from 1 to 25 Hz
in the filtered signal, which is fed to the primary channel of the ARLSF.

The second filtered signal is obtained by bandpass filtering the acceleration data from 3.5 to 25 Hz
with the same order and type of FIR filter. The correlation coefficient between the filtered signal of the
primary channel and the second filter signal is calculated to be 0.987 which proved well the high linear
correlation of these two filtered signals as discussed in Section 2.2. Therefore, the second filtered signal
can be fed into the reference channel of the ARLSF. The raw data of the collected acceleration data, the
primary channel obtained, and the reference channel are plotted in Figure 7a—c, respectively.
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Figure 7. (a) Raw data from SCG Recorder System (SRS). (b,c) The primary and reference channel of
ARLSF respectively.
3.3.2. ARLSF

The same order and same type of FIR filter used in signal preprocessing section creates the same
delay to both the primary channel and the reference channel. As a result, the primary channel and the
reference channel are synchronized in the time domain. In addition, the forgetting factor is calculated
to be 0.9908 based on Equation (8). The variable &(n) described in Equation (4) is the estimated
heartbeat signal.

3.3.3. Feature Extraction

Features extracted from the ECG signal and filtered SCG signal are R peaks and aortic valve
opening (AO) peaks, respectively. R peaks can be extracted from the ECG signal using the classical
Pan Tompkin algorithm [31], while the extraction algorithm for AO peaks is different. The formula is
described in Equations (9) and (10):

[loc_min,val_min] = min(&(f—0.3: 1)) 9)

[loc_max, val_max] = max(&(t—0.3 : 1)) (10)

The estimated heartbeat signal &(n) is divided into several segments with a length of 0.3s [32].
E(t—0.3 : t) is the segment at time t and loc_min, val_min, loc_max and val_max are the timestamp of the
minimum value, the minimum value, the timestamp of maximum value and the maximum value of
the segment at time t respectively. In addition, some constraints are used to avoid incorrect extracted
AO peaks:

val_min< —0.007
val_max > 0.01 (11
|loc_max — loc_min| < 0.02

A continuous 0.3 s segment including a correct AO peak is picked from the estimated heartbeat
signal and plotted in Figure 8. val_max represents the magnitude of the AO peak and val_min represents
the magnitude of the successive isovolumic moment (IM) peak or maximum acceleration (MA) peak.
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Constant values -0.007 and 0.01 in Equation (11) are the maximum amplitude of the IM envelope peaks
and minimum amplitude of the AO envelope peaks respectively [32]. In addition, the time interval
between val_max and val_min should be restricted shorter than 0.02s [33]. When loc_min, val_min,
loc_max and val_max meet the restrictions in Equation (11), loc_max and val_max are the timestamp and
the value of the extracted AO peak respectively. For further analysis, the heart rate can be calculated
from the R-R and AO-AO interval.

0.020

0.015 -
I thrl = 0.01
0.010
0.005

0.000

Acceleration

-0.005

thr2 =-0.007

-0.010 -

-0.015 MA

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)
Figure 8. A correct aortic valve opening (AO) peak from a continuous 0.3s segment.

4. Results

Figure 9 displays the raw data and processing results. Figure 9a shows the raw acceleration data
collected from the SRS. The data show that the heartbeat signals are contaminated by the motion
artifact, and the features and graphs of the heartbeat signals cannot be identified during the walking
period. Figure 9b,c show the extracted heartbeat signals using Savitzky Golay-based polynomial
smoothing [14] and ARLSFE. Features and graphs of heartbeat signals are not clear from 120 s to 300 s
in Figure 9b. It can be observed that the proposed ARLSF outperforms the Savitzky Golay-based
polynomial smoothing. For better visualization, six segmented signals selected from the standing
period before walking, transitions from standing to walking, the first half of walking, the second half of
walking, transitions from walking to standing, and standing after walking are plotted in Figure 10a—f
respectively. It is obvious that the features and graphs of the heartbeat signals are visually noticeable
after ARLSF. Thus, any other signal-processing procedures are unnecessary on the heartbeat signals.
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Figure 10. (a—f) Segmented signal during standing before walking, transitions from standing to walking,
the first half of walking, the second half of walking, transitions from walking to standing, standing
after walking. (The x-axis and y-axis are time in seconds and acceleration in gravity respectively.)

4.1. Heartbeat Detection Accuracy

The standard ECG lead I recordings are the baseline references for heartbeat signals. Heartbeat
detection accuracy is defined as the ratio of the detected SCG peaks divided by the detected ECG peaks.
The detected SCG peaks are visually noticeable and marked with the red dotted line in Figure 11.
In addition, the missing SCG peaks are also considered to give a more precise estimate of detection
accuracy. These peaks represent the undetected and false-positive detected SCG peaks. The blue
rectangular, which is marked in Figure 10, can be considered as an undetected SCG peak using the
rule of feature extraction described previously. This method is used even though the features and
graphs of the signal are visually noticeable. Numbers in the brackets represent the missing peaks that
occur at the beginning and end of walking in Table 1. It can be observed that above 60% of the missing
SCG peaks occur at the beginning and end of walking when MA changes rapidly. The detection rates,
which are shown in Table 1, are higher than 98%.

Table 1. Heartbeat detection accuracy.

Subject No. ECG Peaks Detected SCG Peaks Detected SCG Peaks Missing Accuracy

1 483 478 5(2) 98.9%
2 475 468 7(4) 98.5%
3 472 468 4(3) 99.1%
4 480 475 5(3) 98.9%
5 488 483 5(3) 98.9%
6 478 473 5(2) 98.9%
7 492 483 9(6) 98.1%
8 501 496 5(2) 99.0%
9 495 490 5(2) 98.9%
10 490 486 4(1) 99.1%
11 477 471 6(5) 98.7%
12 486 483 3(2) 99.3%
13 496 491 5(3) 98.9%
14 491 489 2(2) 99.5%
15 485 477 8(4) 98.3%

16 482 474 8(6) 98.3%
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4.2. Heart Rate Estimations

The detected SCG peaks and ECG peaks evaluate the heartbeat signals from the perspective of the
signal graph without considering the correctness. Heart rate can be an effective factor to verify the
correctness of the detected peaks. As a gold standard in the clinical field, the heart rate estimated from
the detected ECG peaks can be considered as the reference for the ground truth. Figure 11 illustrates
the heart rates estimated from the detected SCG peaks and ECG peaks. These peaks are marked as
black stars and red points, respectively. The x-axis represents the time that can be divided into three
regions: standing, walking and return to standing. It can be observed that the heart rate is stable and
low while standing, increases and then stabilizes at a relatively high level during walking, and then
decreases to a stable and similar low magnitude when the subject stands again. The detailed difference
between the heart rates from ECG and SCG with a mean value of 0.08 bpm and a standard deviation
value of 2.08 bpm is plotted in Figure 12. It can be observed that the heart rates estimated from the
detected SCG peaks and ECG peaks match very well.

100
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g 9 | i
o 80 X
£ 5F |
r I
S 0+ |
Q B ]
T 6 Standing [ Walking [ Standing
60 " 1 " 1 " 1 " 1 " 1 " 1 " 1 1 "
0 40 80 120 160 200 240 280 320 360
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Figure 11. Heart rates estimated from ECG and SCG.
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Figure 12. Heart rate difference between ECG and SCG.

4.3. Bland—-Altman Analyzation

To further analyze the agreement between the heart rates estimated from the detected SCG peaks
and ECG peaks, a Bland-Altman plot [34] is used and shown in Figure 13. Based on the definition of a
Bland-Altman plot, the x-axis represents the average heart rates from SCG and ECG, and the y-axis
represents their differences. A 95% confidence region is marked with blue dashed lines that have an
upper threshold of 4.9 and a lower threshold of —4.6. It is observed that there are a few outliers, but
overall most measurements lie in the 95% confidence region.
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Figure 13. Bland—Altman plot of the heart rate measurements from ECG and SCG.

5. Discussion and Conclusions

In this paper, we proposed a novel method based on an adaptive recursive least squares filter to
remove the motion artifact of the acceleration data recorded by only one accelerometer. The primary
channel of ARLSF containing the heartbeat signal and motion artifact signal within a frequency range
of 1 to 25 Hz was obtained by bandpass filtering the recorded acceleration data from 1Hz to 25Hz. Then
the same acceleration data was bandpass filtered from 3.5 to 25 Hz to remove the heart rate frequency
and footsteps frequency component from the heartbeat and motion artifact signals, respectively.
The filtered signal and the signal of the primary channel were proved to have high correlation, and the
heartbeat and motion artifact signal were proved to have strong orthogonality, which proved well that
the filtered data could be fed into the reference channel of the ARLSFE. The heartbeat signal graph of
the extracted SCG signal was very clear without the need for any other signal recovery procedures.
The heartbeat detection accuracy was up to 98% and heart rates estimated from the SCG and ECG
matched well under both the standing and walking conditions.

At present these results are limited by a particularly rapidly changing motion artifact which will
lead to missing SCG peaks’ detection. The forgetting factor is set at a fixed value at a balance of the
convergency, stability and tracking ability which leads to good convergency and stability but poor
tracking ability of the proposed ARLSE. Moreover, the forgetting factor calculated by Equation (8) was
a globally optimal solution but not a locally optimal solution especially when motion artifact changes
rapidly. To obtain better performance, future work on the ARLSF proposed in this paper will focus on
the optimization of the forgetting factor by using an adaptive method. That method will change the
forgetting factor in real time according to the changes of the motion and promote the performance
of ARLSE.

In addition, the experimental setup will be improved in future work. More subjects with a wider
range of age and different health conditions, and more dynamic conditions including jumping and
running, will be considered to evaluate the filter performance. In order to simplify the sensor placement
before experiment and sensor data collection during the experiment, a miniature system-integrated
SCG sensor, ECG sensor, MCU-embedded real-time filter algorithm and Bluetooth module will be
developed in the future.
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