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Abstract: In pedestrian inertial navigation, multi-sensor fusion is often used to obtain accurate
heading estimates. As a widely distributed signal source, the geomagnetic field is convenient to
provide sufficiently accurate heading angles. Unfortunately, there is a broad presence of artificial
magnetic perturbations in indoor environments, leading to difficulties in geomagnetic correction.
In this paper, by analyzing the spatial distribution model of the magnetic interference field on the
geomagnetic field, two quantitative features have been found to be crucial in distinguishing normal
magnetic data from anomalies. By leveraging these two features and the classification and regression
tree (CART) algorithm, we trained a decision tree that is capable of extracting magnetic data from
distorted measurements. Furthermore, this well-trained decision tree can be used as a reject gate in a
Kalman filter. By combining the decision tree and Kalman filter, a high-precision indoor pedestrian
navigation system based on a magnetically assisted inertial system is proposed. This system is then
validated in a real indoor environment, and the results show that our system delivers state-of-the-art
positioning performance. Compared to other baseline algorithms, an improvement of over 70% in the
positioning accuracy is achieved.

Keywords: indoor navigation; pedestrian dead-reckoning; magnetic perturbation; decision tree

1. Introduction

Indoor navigation refers to the technology that provides positioning and position tracking services
in large buildings or other places with certain closed structures. Indoor navigation may be applied to
various scenes, including urban fire rescue [1], elderly care in nursing homes [2], tracing a parked car in
a parking lot [3], and personnel tracking in underground mines [4]. Due to the loss of satellite signals
indoors, the popular Global Navigation Satellite System (GNSS) is ineffective for indoor positioning.
Therefore, a new high-precision indoor positioning technique is urgently needed. At present, passive
wireless signal positioning technology and active inertial navigation technology are the two mainstream
solutions [5,6].

A wireless signal-based positioning system relies on specific signal-emitting base stations. As a
result, the accuracy and range of such positioning systems are heavily reliant on the numbers of
base stations, which means that it may be financially costly to achieve a large-scale or high-precision
implementation. Moreover, there are many challenges in obtaining accurate positioning through
wireless signals due to the multipath effects and decay in obstacles [7–9]. It is also worth noting that if
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personal mobile phones are employed, users will have to face privacy problems involving personal
information security [10].

In contrast to wireless positioning systems, pedestrian dead-reckoning (PDR) systems make use of
9 degrees of freedom (DOF) inertial measurement units (IMUs), which are composed of a magnetometer,
an accelerometer, and a gyroscope, and are attached to the human body to estimate a person’s relative
location. Therefore, PDR systems require little or no infrastructure to be pre-installed in buildings [11].
PDR employs inertial sensors to obtain the step lengths and directions of walking pedestrians. PDR
is also autonomous and insusceptible to external jamming. Even when using a mobile phone as the
terminal, there are no extra security concerns. With the maturity of MEMS technology, IMUs can be
mass-produced; they are becoming progressively smaller and of a lower cost. Currently, IMUs are
widely deployed in smartphones and wearable devices and headset [12]. There are a growing number
of researchers engaged in related research topics [13–15].

Pedestrian Navigation Systems based on IMUs can be achieved through obtaining the relative
attitude angles, absolute heading angles, and motion accelerations of the carriers by gyroscopes,
magnetometers, and accelerometers, respectively. IMU sensors suffer from various noise, such as
gyro offset instability, angular velocity, and random walking. Fortunately, the heading angle can
be calculated based on sensor data fusion by utilizing the advantages of different sensors. During
the navigation process, ferromagnetic structures inside indoor environments cause interference in
geomagnetic fields, thereby corrupting magnetic data quality. Several researchers have made various
attempts to address the problems mentioned above. An effective technique called Zero Velocity Update
(ZUPT) was used in [16]. This algorithm increases the accuracy of heading angles by correcting
the offset of the gyroscope and accelerometer through the time interval of foot landing. Another
paper [17] verified that placing IMUs on the waist is the most beneficial to reduce the deviation
between gyroscope measurements and the true value of the heading angle. These efforts are limited in
reducing the measurement errors of sensors and do not consider the heading angle errors caused by
the magnetic anomalies.

Indoor magnetic fields may be severely distorted due to the existence of magnetic perturbations
in buildings. Thus, the heading angles cannot be correctly calculated by magnetic data directly.
Therefore, researchers have proposed different approaches to optimize the magnetic data process
and obtain true geomagnetic data. In [18], the authors placed multiple magnetic sensors in a circle
to capture the magnetic fields in all directions, and perturbation was treated as a dipole magnetic
field; using a complicated model, the perturbation was then subtracted from the uniform geomagnetic
field. However, this method is complex and its precision is limited by the numbers of sensors.
The study in [19] proposed that installing IMUs on the upper body can avoid interference from cables
laid underground and other surface magnetic interference sources. However, magnetic anomalies
originating from sources like steel structures cannot be properly handled by this method. Researchers
adopted the Quasi Static Field (QSF) method to obtain magnetic data without interference by using a
Generalized Likelihood Ratio Test (GLRT) in [20–22]. The false alarm probability can be high when
using GLRT, which is based on a single threshold.

In recent years, machine learning has become a very important technology with broad application
prospects [23,24]. One of the most commonly used data classification methods is a decision tree
algorithm. Compared with other machine learning methods like a Deep Convolutional Network
(DCN), decision tree is intuitive and fast and is computationally efficient and suitable to be integrated
into a real-time pedestrian inertial navigation system. Its structure is similar to a tree prediction model,
in which internal nodes represent tests of attributes and the end nodes represent the final classification
results. This splits the complicated decision process into a series of simple choices and more accurately
represents the process of human decision making. During the learning phase, the decision tree model is
established by using training data to pursue the minimization of a given loss function. In the predicting
phase, new data are classified by the trained decision tree model. These decision trees mainly use
three methods: the ID3 algorithm proposed by Quinlan in 1986, the C4.5 algorithm proposed in 1993,
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and the CART algorithm proposed by Breiman et al. in 1984 [25]. As decision tree algorithms are
able to provide satisfying results for large data sets over a short training time at the cost of relatively
low computational complexity, they can be used in the navigation and positioning process, which
inherently requires fast computation [26,27].

In this paper, we proposed a method to classify the magnetic field conditions in indoor navigation
using a decision tree. By applying a rotation invariance of the geomagnetic field modulus, we analyzed
the measurement data to obtain the characteristics of the magnetic field’s interference and discovered
two features that can be utilized in the decision tree for the classification process. After being trained
with experimental data, the decision tree can be used to find the true geomagnetic fields. Then, the
Kalman Filter is used to calculate the heading by fusing the gyroscope and processed magnetic data.

The rest of this paper is organized as follows: Section 2 studies the Earth’s magnetic fields and
compares indoor magnetic data with outdoor data to analyze the characteristics of the disturbed
magnetic field. We then train a decision tree using the indoor data and extract the undisturbed magnetic
data by the classification results. In Section 3, by combining the decision tree with a Kalman filter, a
new data fusion method is proposed to estimate the heading angle. Section 4 focuses on experimental
analyses. Finally, the conclusions are presented in Section 5.

2. Classification of Magnetic Data with a Decision Tree

2.1. Geomagnetic Information Analysis

The Earth acts like a giant magnet, with the line from the South Pole to the North Pole forming a
magnetic meridian. In most places, the heading can be provided by an electronic compass, as long
as we know the declination µ between the local longitude line and magnetic meridian as well as the
inclination β, which is between the vector direction of geomagnetic field Bm and the horizontal plane.
The distribution of the geomagnetic field varies extremely slowly over time and space. When the carrier
moves in a small space, Bm, β, and µ are considered constants that can be found in the geomagnetic field
model WMM2020 [28] according to local latitude and longitude. As shown in Figure 1, the three-axis
HMC5883L magnetic sensor, whose sampling frequency is set to 66.7 Hz, is used to measure the
three-axis geomagnetic field information Bmx, Bmy, and Bmz and to calculate the magnetic heading angle
ψ. Finally, the geographical heading angle of the carrier is obtained by a compensation calculation.
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The undisturbed geomagnetic field signal can provide a precise heading angle for a carrier platform.
The magnetic fields in some indoor environments, however, are seriously disturbed by various ferro
material structures or power lines. Examples of disturbance sources are steel structures in the building,
buried wires in the walls and floors, iron doors, windows, and other ferromagnetic materials or electric
devices, such as elevators. Among these numerous magnetic interference sources, some interference
sources are fixed (e.g., doors and windows), while others are varied, such as elevators and the current
in the power lines. These factors make magnetic fields even more complicated. According to the
WMM2020 model, the magnetic field strength can be considered as a constant in a small area of the
Earth’s surface. As indoor navigation is usually applied in a building complex, the approximation
is satisfied. The selected nearby outdoor space can be considered as a clean environment compared
to the indoor space, as shown in Figure 2, where the blue line represents the outdoor magnetic field
strength, and the red line represents its indoor counterpart. Clearly, extra steps are needed for indoor
magnetic fields to extract useful information from these distractions.
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Figure 2. The measurements of the geomagnetic field. The red line is obtained indoors, and the blue
line is obtained outdoors.

2.2. Decision Tree for Extracting geomagnetic Field Data

A decision tree is a data processing method used in classification tasks. This tree represents
the process of classifying instances based on features, which can be considered an if–then set and a
conditional probability distribution based on features and classes. The advantages of this method
mainly include the intuitiveness of the model, its fast classification speed, and its small consumption
of computing resources, all of which benefit pedestrian inertial navigation systems.

In order to train a decision tree that can identify magnetic anomalies accurately, we need to analyze
the magnetic field measurements and choose reliable features to build up. The vector form of the
geomagnetic field can be obtained by a three-axis magnetic sensor, and the modulus of the vector can
be regarded as constant in the indoor navigation area without measurement errors. This phenomenon
is known as rotation invariance [29], in which the modulus of the geomagnetic field data on the
three-axis magnetic sensor does not change with the attitude angles. However, there are calibration
errors, systematic errors, and measurement errors in magnetic sensor measurements. The systematic
errors of magnetic sensors can be mitigated by magnetic sensor calibration methods [30–32]. However,
the data after calibration still contain noise, comprising intrinsic sensor noise and geomagnetic noise.
Assuming that these errors obey a Gaussian distribution, the modulus measured by the magnetic
sensor is shown in Equation (1). B represents the true value of the geomagnetic field strength, and B0

represents the observed value of the geomagnetic field strength. ε defined in the braces represents
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the random error of measurement, which is Gaussian white noise according to the discussion above.
it obeys distribution probability function P and its power spectral density is noted as Rε. N0 is a
positive real constant which is used to describe the spectrum energy of the White Noise. Thus, at a
certain time point ti, the value of ε(ti) is calculated according to Gaussian distribution, whose given
probability of ε(ti = x) is P:

B0(ti) = B(ti) + ε(ti),

 P(ε(ti) = x) = 1
√

2πσ
exp(− x2

2σ2 )

Rε(τ = ti − t j) =
N0
2 δ(τ)

(1)

The magnetic data collected by the magnetic sensors in an outdoor interference-free environment
satisfy the Gaussian distribution model. However, the indoor magnetic disturbances are extremely
unevenly distributed and randomly scattered in every axial direction. As a result, the geomagnetic
field vector is disturbed, and the calculated heading angle is biased. The observed value B1 thus shows
strong random fluctuations rather than maintaining rotation invariance.

B1(ti) = B(ti) + η(ti) + ε(ti),

 P(ε(ti) = x) = 1
√

2πσ
exp(− x2

2σ2 )

Rε(τ = ti − t j) =
N0
2 δ(τ)

(2)

where η represents the stochastic magnetic disturbances, which are the sum of the various magnetic
disturbances. As mentioned before, the geomagnetic field data obeys a Gaussian distribution without
external interference, while the magnetic data disturbances are most likely no longer Gaussian.
Therefore, we can convert the detection of magnetic anomalies into the detection of non-Gaussian
distributed magnetic data. We will explain how to employ the decision tree algorithm to address this
problem in the following.

First, it is important to clarify that the classification object is a sequence of data like
B = {B1, B2, B3, · · · , Bn}, where n represents the number of data points, and Bi(i = 1, 2, 3, · · · , n) is
the magnetic vector modulus measured by the magnetometer at each data point. If the measurement
of the magnetic field is not disturbed, the deviation between the data and the true value B is caused by
the Gaussian error model of the measurement. As a result, the deviation will fluctuate within a certain
range, as well as the measurement.

However, if the magnetic data are disturbed by local interference, the magnetic field data will no
longer belong to a Gaussian distribution. The interference will be strengthened when approaching the
source of the interference, and it will be weakened when away from the interference source. The mean
value will present a notable deviation with respect to the original. Therefore, a method is proposed to
evaluate the change of the mean in a set of measurement data by consistency. The consistency C of the
data represents the notion of data consistency, which is obtained by Equation (3):

C =
mean(B1) −mean(B2)

σ
(3)

where B is a set of magnetic field data, B1 is a subset of B, which consists of the first half elements of
B, and B2 is a complement of B1 in B. The mean of B1 and B2 can be considered as two numbers
in the mean of the measurement value, and C will obey the distribution of N(0, 2). The probability
density function of C is given as:

P(|C| < X) =
∫

−X<x<X

1
2
√
π

exp(−
x2

4
)dx (4)

Therefore, if the data distribution of B obeys a Gaussian distribution, then there is a 95.4%
probability that C falls into the interval (−2

√
2, 2
√

2). According to the Bayesian estimation principle,
we take the value of C as the observation basis. If the value of C falls into the interval (−2

√
2, 2
√

2), it
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can be determined thatB obeys a Gaussian distribution, and the confidence will be (1–4.6%). Therefore,
we chose C as the first feature of the decision tree criterion, as C can be used to determine the possibility
that B obeys a Gaussian distribution.

Interference η also introduces fluctuations, thereby enlarging the dynamic range of the data.
The mean of the measurement data may not change significantly; therefore, the distribution of the
measurements will no longer maintain a Gaussian distribution. Based on this, we introduce the concept
of fluctuation. We define the fluctuation F of the data as the difference between the maximum and
minimum value divided by σ; F reflects the fluctuation of the data series B and is given by:

F =
max(B) −min(B)

σ
(5)

For a set of undisturbed magnetic field measurement data, B should obey an n-dimensional joint
Gaussian distribution. The distribution function of F can then be obtained by:

P(|F| < X) =
∫
Ω

dP(B1, B2, . . .Bn)

Ω :
{
(B1, B2, · · · , Bn) |

∣∣∣Bi − Bj
∣∣∣ < X, i , j, i, j = 0, 1, 2, · · · , n)

} (6)

Based on the calculation, F clearly obeys a Gaussian distribution, whose variance is n. If the data
in B meet the requirements of Gaussian distribution, there will be a 95.4% probability that F falls
into the interval

(
−2
√

n, 2
√

n
)
. According to the Bayesian principle, if we take the value of F as the

observation basis, when the value of F falls into the interval
(
−2
√

n, 2
√

n
)
, we can make an assumption

that B obeys Gaussian distribution, and the confidence is (1–4.6%). Therefore, we choose F as the
second feature of the decision tree.

Based on aforementioned two indicators and a data sequence with a length of 15, a decision tree
that identifies magnetic anomalies can be trained. In the learning process, the decision tree model is
established by using the training data set and minimizing the loss function. During prediction, the new
data are classified by the decision tree model. In this paper, we use a Classification and Regression
Tree (CART) based on the Gini Index Minimization Criteria (GIMC) for data classification. Assuming
that K is the number of total classes and the probability that class k is pk, the expression of the Gini
coefficient is:

Gini(p) =
K∑

k=1

pk(1− pk) = 1−
K∑

k=1

p2
k (7)

Magnetic anomaly identification is a two-class problem that deals with both Gaussian and
non-Gaussian distributions. The Gini coefficient expression can be simplified as:

Gini(p) = 2p(1− p) (8)

For a given set of magnetic data samples D, the samples can be classified into two classes, D1 and
D2, according to a certain standard of the eigenvalue A:

D1 =
{
(x, y) ∈ D

∣∣∣A(x) = a
}
, D2 = D−D1 (9)

The expression of D’s Gini coefficient is:

Gini(D, A) =
|D1|

|D|
Gini(D1) +

|D2|

|D|
Gini(D2) (10)

In order to verify the proposed decision tree algorithm, first, the data set must be collected.
The testers wearing the IMUs on their waists collected magnetic data in a magnetic-clean open space
that can be treated as a baseline magnetic environment. As expected, the collected data follow a
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Gaussian distribution due to rotational invariance. In the same environment, the disturbed data set
is collected by introducing artificial magnetic sources to simulate the magnetic disturbances in the
room. Figure 3a shows the undisturbed magnetic data, and Figure 3b shows the magnetic data under
the condition of simulated indoor irregular magnetic interference. These data are used to train the
decision tree and generate the model parameters.
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Figure 3. Magnetic field observations under different conditions: (a) an interference-free condition and
(b) an interference condition.

In Figure 4a, the blue bars represent the consistency distribution of the Gaussian data sets and
99.7% of the data distributed within 2σ. On the other hand, the yellow bars represent the consistency
distribution of the non-Gaussian data-sets under the influence of abnormal magnetic field interference
sources; here, the consistency distribution is clearly more scattered than the magnetic data with no
interference. In Figure 4b, the blue bars show the distribution of the Gaussian data set, and 99.9%
of the data are distributed within 6σ. In contrast, the yellow bars show the volatility distribution
of the non-Gaussian data set, and the scattered data distribution is influenced by external magnetic
interference sources.
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The collected data are classified based on interference and non-interference. As shown in Table 1,
the fluctuation value, the consistency value, and the Gaussian and non-Gaussian categories are listed
relative to the numbering of the data group and are used for decision tree training. The data group
size was varied and optimized for modeling accuracy.

Table 1. The magnetic data sequence with different feature values and categories.

No. Fluctuation Consistency Gauss(Y/N)

1 a1 b1 Y
2 a2 b2 N
3 a3 b3 Y
4 a4 b4 N
...

...
...

...
n an bn N

In order to avoid over-fitting by excessive layers of the decision tree, the maximum split layer
number is set to 4. The model is also cross-validated by 10-fold cross-validation. The decision tree
generation graph is shown in Figure 5. The red cotyledons indicate the Gaussian class, and the green
cotyledons indicate the non-Gaussian class. The fluctuation features eventually adopt the eigenvalues
B1 and B2, and the consistency features adopt eigenvalues A1 and A2.Sensors 2020, 18, x FOR PEER REVIEW  9 of 23 
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Figure 5. Tree diagram for the decision tree. A stands for the consistency feature, and B stands for the
fluctuation feature. The red end nodes indicate that the input data are Gaussian, while the green end
nodes mean that the input data are non-Gaussian.
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Using the generated decision tree to predict the test data set can verify the precision of the
predictive classification. We extracted a data-set containing disturbed magnetic data and verified
the classification results by using a decision tree. We obtained this decision tree with the collected
interference data and non-interference data. The first node shows that if the value of coherence is
large enough, it can be used to screen non-Gaussian data with high confidence. When the value of
coherence is not enough to screen out the Gaussian data, we can filter the Gaussian data according
to the fluctuation value at different value levels of coherence. In this way, we can generate other
nodes of the decision tree. Figure 6 shows the results of decision tree classification in magnetic data
sets with interference. The blue data points in the figure represent the magnetic data with Gaussian
distribution during data acquisition, and the red data points represent the disturbed magnetic data
with non-Gaussian distribution. We found that the accuracy of the decision tree classification was as
high as 92% for the sample classification.
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Figure 6. A decision tree extracts interference-free magnetic data from the measurement data of
the magnetometer.

The generated decision tree can detect whether a data sequence obeys Gaussian distribution,
which does not depend on the position where the data is obtained and only relies on the sequential
relationships between data points. Considering the environment-independent nature of the data’s
statistical features, a decision tree can be used to work well in other environments. Geomagnetic
field data can be obtained through filtering and can be fused into the Kalman filter to calculate the
heading angle.

3. Heading Algorithm Based on a Decision Tree and the Kalman Filter

3.1. Attitude Angle Error Equation

A Kalman filter based on multi-sensor fusion is one of the most effective methods to calculate
attitude angles. The Kalman algorithm is an optimal linear filtering method based on the minimum
variance principle. It estimates the attitude angles through state equations and uses observation
equations to correct those estimates. Since the Kalman filter is a filter method in the time domain, this
calculation is a continuous loop of prediction and correction. It does not need to store a large amount
of data to solve equations, and the calculation is relatively simple, which satisfies the requirements of
real-time navigation. The direct and indirect estimation methods can be used for the attitude angle
estimation. The “direct method” means that the estimated object is the attitude angle of the system
(i.e., the heading angle, pitch angle, and roll angle). The “indirect method” refers to estimating the
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errors of the attitude angles first and then using the errors to correct the angle estimates. The latter is
used in this paper. After first-order approximation, the equations are linear in the indirect method, and
a linear Kalman filter estimation can be directly employed to reduce computational complexity.

In the Kalman filter equations, attitude angle errors are set to be the state vector. It is assumed
that the true attitude angle is composed of the angle estimation and the error of estimation during
pedestrian walking. The real-time attitude also needs to be converted from the carrier’s coordinate
system to a navigation coordinate system. Using the quaternion theory, the rotation process can be
expressed in the following form:

qn
b (t) = q̂n

b (t) ⊗ δqn
b (t) (11)

In Equation (11), the qn
b (t) represents the true value of the current attitude quaternion, q̂n

b (t)
represents the estimation, and δqn

b (t) represents the error of estimation. ⊗ is the quaternion
multiplication symbol. The following equation can be obtained by the simultaneous differential
on both sides of Equation (11):

.
qn

b (t) =
.
q̂

n
b (t) ⊗ δqn

b (t) + q̂n
b (t) ⊗ δ

.
qn

b (t) (12)

which is determined by the nature of the quaternion:

.
qn

b (t) =
1
2

qn
b (t) ⊗ω

b
nb(t) (13)

where ωb
nb(t) = ωb

ib(t) − (ω
b
ie(t) +ωb

en(t)). ωb
ib(t) is the carrier angular rate measurement, ωb

ie(t) is the
Earth rate measurement in the inertial frame, ωb

en(t) is the navigation frame rate measurement in the
Earth frame, and ωb

nb(t) is the rotation angular rate measurement in the n-frame. In pedestrian inertial
navigation, ωb

en(t) and ωb
ie(t) can be ignored since a consumer-level MEMS gyroscope is not sensitive to

them. Therefore, the previous equation can be simplified to ωb
nb(t) ≈ ω

b
ib(t), in which ω̂b

nb(t) represents
the estimated value of ωb

nb(t). At the same time, Equation (13) is brought into Equation (12), yielding

2δ
.
qn

b (t) = δqn
b (t) ⊗ω

b
nb(t) − ω̂

b
nb(t) ⊗ δqn

b (t) (14)

Since the error of δqn
b is small, it can be rewritten as δqn

b =
[

1 δqn
b

]T
according to the quaternion

property. At the same time, the angular velocity can be rewritten into a quaternion vector form,

ωb
nb =

[
0 ωb

nb

]T
. Furthermore, Equation (14) can be expanded into a vector form:

2

 .
1

δ
.
qn

b (t)

 = [
1

δqn
b (t)

]
⊗

[
0

ωb
nb(t)

]
−

[
0

ω̂b
nb(t)

]
⊗

[
1

δqn
b (t)

]
(15)

The quaternion operation rule gives:

2

 .
1

δ
.
qn

b (t)

 = [
δqn

b (t) ·ω
b
nb(t) − ω̂

b
nb(t) · δqn

b (t)
δqn

b (t) ×ω
b
nb(t) − ω̂

b
nb(t) × δqn

b (t) +ωb
nb(t) − ω̂

b
nb(t)

]
(16)

Omitting high-order small items, we obtain

δ
.
qn

b (t) = −
[
ω̂b

nb(t)×
]
δqn

b (t) +
1
2

bω(t) (17)

where [ω̂b
nb(t)×] is the antisymmetric matrix, and bω(t) = ωb

nb(t) − ω̂
b
nb(t), indicating the estimated

value of the gyro’s zero deviation at time t. Then, we construct the state vector, as follows:

X =

[
δq
bω

]
(18)
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Then, the state equation of the Kalman filter can be obtained by differentiating the state’s quantity:

.
X(t) =

 −[ω̂b
nb(t)×

]
1
2 I3×3

03×3 03×3

X(t) + [ 1
2 W1

W2

]
(19)

where bω represents the gyro bias, which includes random noise, W1, and bω is the first-order
autoregressive model. The system sampling frequency is much higher than the change rate of the gyro
zero drift. The random walk model can be used instead to meet the accuracy requirements. Suppose
.
bω = W2, and W2 is a zero-mean noise with low intensity. In this way, the equation for the state,
according to the relationship between state quantity and noise, is attained.

3.2. Observation Equation Using Magnetic Data from Decision Tree

The angular velocity of the gyroscope is used as a parameter to update the quaternion state in
real time. Gyroscope data contain time-varying errors such as zero-bias instability, which causes the
measurement accuracy to decrease with time. It is necessary to correct this deviation by fusing the
geomagnetic field data. A decision tree can be used to screen the magnetometer data, and classified
interference-free magnetic data are used as the observation values for heading angle correction to
effectively improve the accuracy of the attitude angles.

Assume that Bn
DT is the magnetic data with no interference, whose value can be converted by the

carrier observation data as follows:

Bn
DT(t) = qn

b ⊗Bb
DT(t) ⊗ qn

b
∗ (20)

There are observation errors in the magnetic data and, consequently, errors in the quaternion
estimations. The error model of the observation equation is given as follows:

δBn
DT(t + 1) = Bn

DT(t) − (δqn
b ⊗ q̂n

b ) ⊗ (B̂
b
DT(t + 1) + δBb

DT(t + 1)) ⊗ (δqn
b ⊗ q̂n

b )
∗ (21)

Simplifying the error equation and omitting the high-order infinitesimal yields:

δBn
DT(t + 1) = Bn

DT(t) − δqn
b ⊗ B̂n

DT(t + 1) ⊗ δqn
b
∗ (22)

Expanding Equation (22) according to the quaternion operational rule yields:[
0

δBn
DT(t + 1)

]
=

[
0

Bn
DT(t)

]
−

[
1
δqn

b

]
⊗

[
0

B̂n
DT(t + 1)

]
⊗

[
1

δqn
b
∗

]
=

[
0

Bn
DT(t)

]
−

([
0

B̂n
DT(t + 1)

]
⊗

[
1
δqn

b

]
−

[
0

2B̂n
DT(t + 1) × δqn

b

])
⊗

[
1

δqn
b
∗

]
=

[
0

Bn
DT(t)

]
−

[
0

B̂n
DT(t + 1)

]
⊗

[
1
δqn

b

]
⊗

[
1

δqn
b
∗

]
+

[
0

2B̂n
DT(t + 1) × δqn

b

]
⊗

[
1

δqn
b
∗

]
=

 2B̂n
DT(t + 1) × δqn

b ·δqn
b
∗

2
[
B̂n

DT(t + 1)×
]
δqn

b + 2
[
B̂n

DT(t + 1)×
][
δqn

b×
]
δqn

b
∗



(23)

Omitting the high-order infinitesimal gives:

δBn
DT(t + 1) = 2

[
B̂n

DT(t + 1)×
]
δqn

b (24)

If we differentiate the equation, we obtain:

δ
.
B

n
DT(t + 1) = 2

[ .
B̂

n

DT(t + 1)×
]
δqn

b + 2
[
B̂n

DT(t + 1)×
]
δ

.
qn

b (25)
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where B̂n
DT is the estimated value, which can be treated as a constant. Equation (26) can be obtained by

substituting Equation (17) into Equation (25):

δ
.
B

n
DT(t + 1) = −2

[
B̂n

DT(t + 1)×
][
ωb

nb×
]
δqn

b +
[
B̂n

DT(t + 1)×
]
bω (26)

Reorganizing Equations (24) and (26) yields the observation equation: δBn
DT(t + 1)

δ
.
B

n
DT(t + 1)

 =  2
[
B̂n

DT(t + 1)×
]

03×3

−2
[
B̂n

DT(t + 1)×
][
ωb

nb×
] [

B̂n
DT(t + 1)×

] X +

[
V1

V2

]
(27)

where V1 and V2 are observation errors that satisfy the Gaussian distribution.
A flow chart for the attitude angle calculation is shown in Figure 7, among which γ represents

the roll angle, θ represents the pitch angle, and ψ represents the heading angle. When the attitude
angle is small, the error quaternion and error attitude angle can be transformed into each other. bx,
by, and bz are the zero offsets of the gyroscope’s three axes. Under the condition that the state vector
of the previous time is known, the state vector of the current time can be predicted according to the
state equation in combination with the observation of the gyroscope. In practical applications, the
measured magnetic data are first handled by the decision tree, which can determine whether the
magnetic dataset obeys a Gaussian distribution. When the decision considers the current magnetic
dataset to be a Gaussian sequence, magnetic data can be used as the observation value to enter the
Kalman filter to solve the attitude angle. When the decision tree classifies the magnetic dataset as a
non-Gaussian sequence, the magnetic data are considered interference data and discarded, and the
attitude angle is updated with calibrated gyroscope data. Since magnetic interference is local and gyro
data has high accuracy in a short time, the proposed algorithm can utilize the gyro data to tolerate that
the magnetic data is unavailable for a certain period in pedestrian inertial navigation.
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4. Results and Discussion

4.1. Experimental Equipment and Test Environment

A wearable IMUs device worn on the waist was used to test the navigation algorithm and verify
the effectiveness of the magnetic data classification method. In Figure 8, the left picture shows the
pedestrian inertial navigation system designed by our team. We call the system “VT-IMUs”. It is
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composed of consumer-level 9 DOF MEMS sensors, microprocessors, and other electronic components.
The sampling frequency of the system is 66.7 Hz, and some parameters of the MEMS sensors are
shown in Table 2. The sensor coordinate system is noted as O-XsYsZs, where the directions are set
as “front–right–down”, and these three axes are coordinated with the axes of the gyroscope. When
the VT-IMUs are worn on the pedestrian’s waist, coordinate systems of carriers and sensors are fixed.
For convenience, it is assumed that the carrier coordinate system and sensor coordinate system are
coincident. As shown in the right of Figure 8, the navigation coordinate system in this paper is set as
the “North–East–Down” geographic coordinate system.
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Table 2. The performance parameters of the VT-IMUs.

Sensors Gyroscope Accelerometer Magnetometer

Standard full range 500 deg/s 8 g 8 Gauss

Sensitivity 65.6 LSB/deg/s 1024 LSB/g 4.35 milligauss

Noise Density 0.007 deg/s/ √Hz
(@10 Hz)

120 ug/
√Hz -

Noise Floor 0.07 deg/s
(@200 Hz) - 2 milligauss

Non-linearity 0.1% FS 0.5% FS 0.1% FS

Cross-Axis Sensitivity 2% 1% 0.2% FS/Gauss

In order to verify the performance of the decision tree, the urban road and interior of the office
building were selected as the test environments. As shown in Figure 9, there are ferromagnetic
materials on urban roads, such as fire hydrants, sewer covers, and vehicles, which will interfere with
the measurement of the magnetometer. Compared with the outdoor magnetic environment, the indoor
magnetic field distribution is more complicated since there are a large number of interference sources
like steel structures, buried cables, doors and windows, etc.
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4.2. Pedestrian Stride Estimate

In pedestrian inertial navigation, the pedestrian track is estimated by the heading angle and stride
length. The estimation of a step’s stride mainly depends on the measurement data of the accelerometer.
Many researchers have been working to improve the accuracy of step stride estimation. Methods for
estimating step stride have thus been studied in the literature [33,34]. In this paper, the Weinberg
method is used as per paper [35]. While walking, the knee is bent only when the foot is off the ground,
and the leg can be treated as a lever of a fixed length while the foot is on the ground. Therefore,
an empirical nonlinear model can be used to estimate the stride length:

L = K × 4
√

Amax −Amin + b (28)

where L is the stride length, and Amax (or Amin) is the maximum (or minimum) modulus of acceleration
in a step. K is a personalized parameter, and b is the correction factor used to reduce the estimate error.

Our pedestrian inertial navigation system is based on the Step-and-Heading method, which
is recognized as a relative positioning algorithm. After initializing the position coordinates, the
pedestrian’s position in real-time can be obtained through a location update. The navigation equation
is as follows: 

xk = x0 +
k∑

i=1
Li cosψi

yk = y0 +
k∑

i=1
Li sinψi

(29)

where (xk, yk) represents the real-time location of the pedestrian, and (x0, y0) represents the starting
position of the pedestrian, ψi and Li(i = 1, 2, 3, · · · , k) stands for the heading angle and stride length of
step i, respectively. Thus, the pedestrian’s position can be calculated by (29) as soon as the parameters
ψi and Li are estimated.

4.3. Test and Discussion

As the heading angle and stride length are two key indicators, any error in them will affect the
accuracy of navigation. This article only focuses on attitude estimation (the step length in Weinberg’s
method (28)), which is necessary for de-correlating the stride error budget from the heading angle,
thereby allowing the assessment of heading accuracies only.
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The performance of the decision tree-based magnetic classification algorithm was verified in an
outdoor environment. The tester took a route on the test road and collected data for the VT-IMUs
during the walking process. The magnetic data were classified by the trained decision tree, the result
of which is shown in Figure 10. The blue dots represent the data selected by the decision tree that
obey a Gaussian distribution, while the red dots represent the anomalies. The proportion of magnetic
anomalies is 10.29%, indicating that there is little interference in the outdoor road environment.
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Figure 10. Magnetic data classification in outdoor pedestrian inertial navigation.

To assess the effectiveness of the proposed algorithm in attitude angle calculation, we compared
three calculation methods in the test. As shown in Figure 11, blue dots are the heading angles that were
estimated by the gyro data directly, and the heading error accumulates gradually over time. Specifically,
the horizontal axis represents the number of steps, and the vertical axis represents the heading angle
corresponding to each step. Green dots are the heading angles calculated by the Kalman filter through
a fusion of raw magnetic data and gyro data. It can be seen that the heading angle is significantly
closer to the reference angle after fused with the outdoor magnetic data. Finally, the undisturbed
geomagnetic data were screened from the original data by a decision tree and were combined with
the Kalman filter to derive the heading angle. The red dots represent the result of the heading angle
under the decision tree and Kalman (DT+Kalman) algorithm. The heading angle data obtained by
the proposed method and the reference heading have a high degree of coincidence. Since there is
less magnetic interference outdoors, the Kalman algorithm and proposed algorithm can achieve good
heading angle estimations.

Figure 12 shows the tracking trajectory comparisons of one trace between the different heading
estimate approaches. Clearly, the heading estimate error is the main localization error source for the
pedestrian positioning trajectory. The error of the heading angle based on the gyro integral accumulates
over time, and the test trajectory is far from the baseline trajectory. The proposed DT+Kalman method
has the smallest heading estimation error; The method not only uses magnetic data to improve the
accuracy of heading angle but also prevent the errors caused from abnormal magnetic anomalies.
Thus, it obtains the best tracking performance. The orange box in upper right corner shows that the
proposed algorithm can effectively mitigate the influence of magnetic interference in the heading angle,
and the orange box in the upper left corner show that, without the correction from the magnetic data
screened by our algorithm, the trajectory based on Kalman method will have an error in the horizontal
coordinate due to the accumulation of inertial navigation errors.
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Figure 12. Trajectory test of the three different algorithms for outdoor pedestrian inertial navigation.
The walking time is 598.6 s outdoors.

Comparisons of the three different sets of trajectories are shown in Table 3. These trajectories
are obtained by initializing the starting position and orientation for each loop, and the end location
errors are caused only by the methods. The start and end positions are marked in yellow in Figure 12.
By analyzing the Kalman method and the Gyro method, geomagnetic filed data play an important
role in the heading angle deviation. Using the decision tree to eliminate magnetic data anomaly
interference, the proposed DT+Kalman method further reduces the positioning error by 52.6%.

Table 3. Comparison of the end point positioning error in outdoor track1.

Test Method Gyro Kalman DT+Kalman

End point error 201.57 m 6.41 m 3.04 m
1 Note: The track is 219 m long and 131 m wide with a total length of 700 m.

The indoor magnetic environments are much more complicated than the outdoor environments.
As shown in Figure 9b, a typical office building was selected as our experimental site, including
the office areas and floor aisles. The tester wearing the VT-IMUs collected data while walking.
The distribution of magnetic data during this pedestrian walking cycle was collected, and the results
are shown in Figure 13. The blue dots indicate the undisturbed measurements, and the red dots
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represent the disturbed data. The results show that the proportion of magnetic anomalies ranged up to
45.99%, indicating that the indoor interference was serious.
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Figure 13. Magnetic data classification results generated by the decisions for indoor pedestrian inertial
navigation. The red points are used to mark the interference measurements.

Figures 14 and 15 show the heading, heading error, and positioning of the three methods compared
to the actual routes (in magenta dots). The elevators at the position of orange frame 1 and the reinforced
concrete column at orange frame 2 (Figure 15) heavily interfered with the geomagnetic field and caused
deviations in the calculations of the heading angle. Using the Kalman filter only as in Figure 14a,
the headings in orange frame 1 and orange frame 2 deviate noticeably from the baseline heading.
Compared to the Gyro and Kalman methods, DT+Kalman has a significant effect in reducing the
heading angle errors shown in Figure 14b. Using the proposed method can effectively solve irregular
and short-term magnetic anomalies to achieve satisfactory performance for trajectory estimates.
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Figure 15. The result of the trajectory test by three different algorithms for indoor pedestrian inertial
navigation. The walking time is 131.2 s indoors.

The performance of the DT+Kalman algorithm is demonstrated quantitatively by the end point
errors reported in Table 4. The proposed method improves the pedestrian inertial positioning accuracy
by 74.6% in an indoor environment.

Table 4. Comparison of the end point positioning errors in indoor track2.

Test Method Gyro Kalman DT+Kalman

End point error 7.53 m 4.61 m 1.17 m
2 Note: The track is 33.3 m long and 11.9 m wide, with a total length of 90.4 m.

In order to prove that our algorithm can function in different indoor environments and to verify
the performance advantages of the decision tree classification method, we also performed trajectory
tests in the new environment and further compared it with the magnetic data classification method
based on the GLRT from [20]. The classification effects of the decision tree and GLRT are exhibited in
Figure 16. Compared with the decision tree, GLRT offers single threshold detection via the manual
calculated method, which yields more false alarms and missed alarms when it filters the measurement
magnetic data and will thus produce more errors in pedestrian navigation.
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Figure 16. The magnetic data classification result generated by the Decision Tree and GLRT. (a) The red
dots mark the interference measurement. (b) The cyan dots mark the interference measurement; the
missed alarms and false alerts of the magnetic interference dots are also marked.

For a more intuitive comparison, we tested both methods separately via a pedestrian inertial
navigation experiment. Thanks to the more accurate interference magnetic data screening, the heading
angle obtained by DT+Kalman is closer to the reference value in Figure 17a, and the error of the
heading is smaller than that in Figure 17b. Meanwhile, higher positioning accuracy based on the
proposed algorithm can be obtained, as seen in Figure 18.
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Figure 17. (a) Heading calculation of the GLRT+Kalman and DT+Kalman algorithms for indoor
pedestrian inertial navigation. (b) The error of the heading angle for these two algorithms.
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Figure 18. The result of the trajectory test based on the three algorithms in indoor pedestrian inertial
navigation. The walking time is 128.3 s indoors.

The positioning errors of the pedestrian inertial navigation for the different methods are shown
in Table 5. The result shows that the decision tree algorithm for classification based on multiple
eigenvalues has a higher accuracy in magnetic data anomaly detection than the single-threshold
GLRT method.

Table 5. Comparison of end point positioning errors in Indoor track3.

Test Method Kalman GLRT+Kalman DT+Kalman

End point error 2.78 m 1.88 m 1.32 m
3 Note: The track is 29.1 m long and 9.1 m wide, with a total length of 94.6 m.

5. Conclusions

As the artificial magnetic perturbations in indoor affect the accuracy of the heading angle in
pedestrian navigation, a magnetic anomaly processing method based on a decision tree was proposed.
The undisturbed magnetic data are extracted from raw data and used to correct the attitude angle
during the update phase of Kalman filtering. The proposed algorithm leverages the long-term
stability of geomagnetic data in heading angle calculations and addresses the problem of irregular
and short-term perturbation, thus increasing the accuracy of heading angle estimation and overall
pedestrian navigation performance. Compared to the Kalman filter method, we found that the proposed
algorithm effectively removed the non-Gaussian magnetic data and delivered higher accuracy, and the
pedestrian positioning error was reduced from 4.61 m to 1.17 m by adopting the DT+Kalman method
in the indoor navigation.
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