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Abstract: Metallic surface defect detection is an essential and necessary process to control the qualities
of industrial products. However, due to the limited data scale and defect categories, existing defect
datasets are generally unavailable for the deployment of the detection model. To address this problem,
we contribute a new dataset called GC10-DET for large-scale metallic surface defect detection.
The GC10-DET dataset has great challenges on defect categories, image number, and data scale.
Besides, traditional detection approaches are poor in both efficiency and accuracy for the complex
real-world environment. Thus, we also propose a novel end-to-end defect detection network (EDDN)
based on the Single Shot MultiBox Detector. The EDDN model can deal with defects with different
scales. Furthermore, a hard negative mining method is designed to alleviate the problem of data
imbalance, while some data augmentation methods are adopted to enrich the training data for the
expensive data collection problem. Finally, the extensive experiments on two datasets demonstrate
that the proposed method is robust and can meet accuracy requirements for metallic defect detection.

Keywords: surface defect detection; convolutional neural network; object detection

1. Introduction

Surface defects have a greatly adverse effect on the quality of industrial products. Metallic defects
detection has been exploited to satisfy predefined quality requirements for the industry. Therefore,
metallic surface defect detection has attracted increasing interest in recent years and has achieved
a positive improvement for the quality control in industrial applications [1]. However, metallic surface
defect detection is easily influenced by many environmental factors such as illumination, light reflection,
and metal material. These factors significantly increase the difficulty of surface defect detection.

Several defects captured in the industry are shown in Figure 1. In the real-world environment,
the defect types are varied and complex, including crazing, inclusion, patches, pitted surface,
and scratches. However, most existing defect datasets are poor in data scale and defect richness,
even limited to only a few categories. Specifically, the dataset size is generally limited to several
hundred, which may lead to a detection model with weak robustness and generalization under complex
industrial scenarios. To solve such a problem, it is necessary to introduce a new benchmark that is closer
to realistic scenarios. Thus, we construct a new metallic surface defect dataset, named the “GC10-DET”.

In the real-world industrial environment, machine vision techniques are usually employed
to detect metallic surface defects along the production line. Generally, these techniques refer to
traditional image processing and deep learning that aim to analyze and detect defects collected in the
manufactories. Although traditional image processing techniques have been successfully exploited to
detect surface defects, deep learning-based approaches show great advantages in both surface defects
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detection and other industrial applications, such as the automotive industry [2], fruit classification [3],
and object detection [4,5].

(a) (b) (c)

(d) (e) (f)

Figure 1. Some samples of Metallic surface defects. (a) Crazing. (b) Inclusion. (c) Patches. (d) Pitted
surface. (e) Rolled in scale. (f) Scratches.

The main idea of traditional image processing techniques is to describe surface defects via
well-designed hand-crafted features. The commonly used hand-crafted features contain LBP (local
binary patterns), HOG (a histogram of the oriented gradient), GLCM (a gray level co-occurrence
matrix), and other statistical features. For an input metallic surface image, the crucial point is to
select suitable features to represent the defect information. According to the representation of the
surface defects, a classifier is trained to recognize and classify the defects. These detection approaches
have obtained a great improvement for various surface defect detections. However, traditional image
processing methods cannot be directly deployed in reality, since they usually need complex threshold
settings for defects recognition, which are sensitive to some environmental factors such as lighting
conditions and background. If the environmental factors change, these threshold settings should be
carefully adjusted again, otherwise, the algorithm is not applicable to the new environment due to lack
of adaptability and robustness.

In this paper, we propose an end-to-end metallic surface defect network based on the Single Shot
MultiBox Detector [6]. For each location on the feature map, the proposed model can separate the
output space of the defect bounding boxes into a set of default boxes with different aspect ratios and
multiple scales. For prediction, the proposed network generates confidence scores that denote the
probabilities belonging to each object category for each default box. Besides, the proposed network
can make suitable adjustments to search a better matching box. In addition, due to the significant
imbalance between the positive and negative examples, we introduce a hard negative mining method
to alleviate the problem of data imbalance. Furthermore, to solve the expensive data collection problem,
we also adopt some data augmentation methods to enrich the training data. In summary, the main
contributions of this paper are as follows:

• We contribute a new dataset named "GC10-DET" that includes 10 defect types collected in real
industry situations.

• We propose a novel end-to-end defect detection and classification network based on the Single Shot
MultiBox Detector combined with a hard negative mining method and data augmentation method.
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• The extensive experiments on two datasets demonstrate the effectiveness of the proposed method
and the superiority of our dataset.

2. Related Work

Numerous studies have been conducted for defect detection, yet, they have not been limited
to metallic surfaces. These approaches can be mainly divided into two categories: the traditional
methods and the deep learning methods, which are based on hand-crafted features or shallow learning
techniques, respectively.

2.1. Traditional Method

Traditional methods mainly refer to traditional image processing techniques and shallow learning
techniques (machine learning). Traditional image processing techniques extract hand-crafted features
to describe and detect defects, which can be mainly divided into four categories: structural-based,
threshold-based, spectral-based, and model-based methods [7]. In detail, the commonly used structural-
based methods include skeleton-based [8], template match [9], edge-based [10], and morphological
operations [11]. The threshold-based methods mainly contain the iterative optimal threshold [12],
the Otsu method [13], contrast adjustment threshold method [14], and the Kittler method [15].
The spectral-based methods commonly consist of Fourier transform [16], wavelet transform[17],
and Gabor transform [18], which are commonly used in image processing. Finally, model-based
methods include the low-rank matrix model [19] and Gaussian mixture entropy model [20]. In general,
shallow learning methods have two critical steps including feature extraction and classification.
For an input surface image, hand-crafted methods are used to extract effective features for defect
representation, then a special classifier is trained to judge whether the surface has defects. Local binary
patterns (LBP) [21] and a histogram of oriented gradient (HOG) [22] are the most used features.
There are lots of other features, such as co-occurrence matrix (GLCM) [23] and some grayscale statistical
features [24,25]. However, the above detection methods cannot be directly deployed to the metallic
surface, since traditional image processing techniques are very sensitive to illumination and background
clutter. Multiple parameters need to be constantly adjusted for changed environmental factors; even
the whole algorithm needs to be re-designed again. These approaches generally aim at only one
specific environment, which is difficult to deploy in the more challenging real-world due to the lack of
robustness and adaptability.

2.2. Deep Learning Method

Since the introduction of AlexNet [26], convolutional neural networks have been successfully
deployed to detect surface defects. The authors in [27] outperformed classic computer vision
approaches via combining hand-crafted features and support vector machines, which also demonstrate
the superiority of deep learning in surface defect detection. However, this work was limited as they
did not use ReLU and batch normalization in their network. Similarly, the authors in [28] proposed
segmentation architecture for surface defect detection based on deep learning. In this work, ReLU was
exploited as the activation function. In [29], the OverFeat network [30] was implemented to detect
5 different types of surface defects. The OverFeat network was trained on 1.2 million defect images
from the ILSVRC2013 dataset including general objects. To compare deep networks with different
amount of layers for surface detection, Weimer et al. [31] evaluated networks ranging from 5 layers
to 11 layers. However, their method is inefficient since it extracted small patches and classified them
respectively. Recently, Racki et al. [32] followed a two-stage segmentation network, in which several
changes were conducted to increase the size of the receptive field. Racki et al. [32] and Weimer
et al. [31] proposed to apply their networks to real-world samples rather than synthetic ones. However,
the dataset only consists of a small number of defect images. Furthermore, there are other datasets
reaching the hundreds or thousands. Lin et al. [33] proposed a LEDNet to exploit image-annotation
and large batch sizes. This method must choose the network carefully since the number of training
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samples is an important factor that influences the performance of the detection system. The pre-trained
models are often trained on ImageNet [34] and MS COCO [35] datasets.

3. Our Method

3.1. Overview of Our Industrial System

Our industrial system consists of four major stages in a sequential manner: host computer,
production line, server and detection results. The pipeline of the system architecture is shown in
Figure 2. The host computer is the core of the system that controls the operation of the entire system.
The production line is in the industry for defect image collection and production. We deploy our
detection model on the server for quality estimation. Finally, we obtain detection results as feedback for
the product line. For detail, the goal of the detection model is to detect and classify defects. The input
original image is firstly transformed by several data augmentation methods. Secondly, these images
are fed into the detection network for training, Our model can both detect and classify defects. Besides,
a hard negative mining method is developed to speed up the convergence of the model. The entire
system can be well deployed in the actual industrial environment.

Host Computer 

Camera Unit

Server

Machine Control 

Data Control 

Data Collection

Detection Results

Detection Model

Classification Model

 Feedback

Light

Product Line 

Figure 2. Overview of our industrial system. Our industrial system consists of host computers,
production lines, servers, and detection results. The host computer is to control the operation of the
entire system while the server is to deploy a defect detection model for the production line. Finally,
detection results provide feedback for the production line.

3.2. Data Collection for Production Line

The data collection system consists of a set of linear array CCD cameras with a direct current
(DC) light source to avoid the presence of stripes produced by an alternating current (AC). For some
production lines, such as a hot-rolled strip production line, the running speed can achieve 10 m/s.
Thus, the use of high-speed linear CCD cameras is able to improve the detection speed and the
resolution of captured images. For a wide format steel plate, 4096 pixel line scan CCD cameras can be
stitched to capture a complete image. The steel plate images are captured in this way and then we
transmit these images to the server. The server exploits a large number of computing resources to
detect the corresponding defects. Finally, results are output to the console for quality control.

To be rigorous, we introduce the brands, parameters and types of the related equipment for data
collection as follows:

• Camera: The brand of camera is Teledyne while the camera model is DALSA LA-CM-04K08A.
The type of lens is ML-3528-43F of Moritex. The pixel size is 7.04 µm × 7.04 µm.

• Server The running memory is 32G with the GPU cards of NVIDIA RTX 2082ti.

3.3. Detection Model

As shown in Figure 3, the detection model is based on the Single Shot MultiBox Detector,
which merely takes an input image and ground truth object boxes during the training process.
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In a convolutional fashion, the detection model adopts multi-scale feature maps to evaluate a set of
boxes with different aspect ratios at each position. For each box, the network predicts both the offsets
and the confidences for each category. During training, these boxes are matched with the ground truth
boxes. The loss is a weighted sum between Smooth L1 and Softmax Loss. The base of the detection
model is a feed-forward convolutional neural network, consisting of two major modules: VGG16
model and a non-maximum suppression procedure to output the final detection results. We then add
extra architectures into the network including multi-scale feature maps and predictors for detection.

512

512

VGG16 Conv Layer

Conv Conv Conv

Conv

Detections

Conv

Classifier: Conv: 3*3*(4*(classes+4))

Classifier: Conv: 3*3*(6*(classes+4))

 Conv: 3*3*(4*(classes+4))

Figure 3. Overview of our detection network. Our model adds several Conv layers to the end of a base
network, which predicts the offsets to default boxes of different scales and aspect ratios and their
associated confidences.

3.3.1. Multi-Scale Feature Maps

Several convolutional layers are added to the end of the base VGG16 network. The goal is to
progressively decrease the feature size and detect at multiple scales.

3.3.2. Predictors for Detection

Each convolutional layer in our network can produce a fixed set of predicted parameters using
a set of convolutional filters. The basic element to predict detections is a 3× 3× c convolution kernel,
where c is the number of the channels. The convolution kernel is used to produce the confidence for
categories of each box. For each location of the feature map, it is applied to output the value.

3.4. Defect Default Boxes

At the top network, a set of defect default bounding boxes are matched with each feature map cell
for multi-scale feature maps. The feature map is produced by convolutional filters to associate with
defect boxes; thus, each box position is relative to both fixed and corresponding cells. In each feature
map cell, we predict the offsets for the defect box and confidence scores that indicate the probabilities
belonging to each category. Besides, at a given location, we calculate c class scores and the 4 offsets
corresponding to the original default box shape. Thus, total(c + 4)k convolutional filters are needed to
produce the feature maps, where k is the number of default boxes. Therefore, an m× n feature map
has (c + 4)kmn outputs.

3.5. Loss Function

The training objective is inspired by the MultiBox objective [6] to handle multiple object classes.
We use xp

ij to indicate if i-th default box matches with the j-th ground truth box of category p. If matched,

let xp
ij = 1, otherwise, let xp

ij = 0. Thus, we obtain ∑i xp
ij ≥ 1. The overall loss function is a combination

of the localization loss and the confidence loss via weighted sum, which can be written as:

L(x, c, p, g) =
1
N

(
Lloc(x, c) + αLcon f (x, p, g)

)
(1)
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where N is the number of the matched default boxes, c is the center of the box, p is the predicted
box and g is the ground truth. Besides, if there are no matched boxes (N = 0), the loss is set as 0.
Then, we regress to offsets for the center (cx, cy), width (w), and height (h) of the default box (d). Thus,
the localization loss is written as:

Lloc(x, p, g) = ∑
i

∑
m

xk
ij smoothL1

(
pm

i − ĝm
j

)
ĝcx

j =
(

gcx
j − dcx

i

)
/dw

i ĝcy
j =

(
g

cy
j − d

cy
i

)
/dh

i

ĝw
j = log

(
gw

j

dw
i

)
ĝh

j = log

(
gh

j

dh
i

) (2)

where i is the indicator of the positive samples and m ∈ {cx, cy, w, h}. The confidence loss is a softmax
loss for multiple classes and their confidence (c). It can be written as:

Lconf(x, c) = −
N

∑
i∈pos

xp
ij log

(
ĉp

i

)
− ∑

i∈neg
log
(

ĉ0
i

)
(3)

where

ĉp
i =

exp
(

cp
i

)
∑p exp

(
cp

i

) (4)

and the weight term α is set as 1 via cross validation.

3.6. Matching Strategy

During the training process, the corresponding ground truth is to be selected from default boxes
for the loss computation. These selected ground truth boxes vary over different aspect ratios and
scales. Inspired by [36], we match default boxes to any ground truths according to a Jaccard overlap
that is higher than a threshold. This operation allows the network to output high prediction scores for
multiple overlapping boxes rather than selecting only the one with maximum overlap.

3.7. Hard Negative Mining

It is obvious that most of the default boxes are negatives after matching, especially when the
number of default boxes becomes large. This would introduce a significant bias because of the
imbalance between the positive and negative training samples. To solve this problem, we exploit their
confidence loss to choose the highest confidence default boxes so that the ratio between the negatives
and positives is limited (at most 3:1). This can lead to a more stable and faster training.

3.8. Data Augmentation

In order to obtain a robust model for various shapes and size of the object, we make a data
augmentation for each training image like [ssd] as follows: (1) Use the entire original image. (2) Select
a patch so that the minimum Jaccard overlap with the objects is 0.1, 0.3, 0.5, 0.7, or 0.9. (3) Randomly
select a patch. (4) The size of each selected patch is [0.1, 1] of the original size. The aspect ratio is
between 1/2 and 2.

4. Experiments

In this section, we conduct a series of experiments to evaluate the proposed method using real
defect images of a metallic surface. First, we provide a brief introduction of the used datasets and
experimental settings. Then, the experimental results are presented in both visual and quantitative
analyses. Finally, we conclude the whole work and present future work.
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4.1. Datasets

4.1.1. Description of NEU-DET

NEU-DET [21] is the Northeastern University (NEU) surface defect dataset that includes six types
of surface defects, i.e., rolled-in scale (Rs), patches (P), crazing (Cr), pitted surface (Ps), inclusion (In)
and scratches (Sc). The collected defects are on the surface of the hot-rolled steel strip. The dataset
includes 1800 gray-scale images, i.e., 300 samples in each class of surface defects. The detailed defects
are as follows:

• Inclusion: Inclusion is a typical defect of metal surface defects. Some inclusions are loose and
easy to fall off, some pressed into the plate.

• Crazing: Crazing is the phenomenon that produces some cracks on the surface of a material.
• Patches: A part of metal marked out from the rest by a particular characteristic.
• Pitted surface: Pitting is a form of corrosion that focuses on a very small range of metal surfaces

and penetrates into the metal interior. Pitting is generally small in diameter but deep in depth.
• Scratches: A scratch is a mark of abrasion on a surface.
• Rolled in scale: A rolled-in scale defect occurs when the mill scale is rolled into the metal during

the rolling process.

4.1.2. Description of GC10-DET

The GC10-DET dataset is available on the github (Website: https://github.com/lvxiaoming2019/
GC10-DET-Metallic-Surface-Defect-Datasets). GC10-DET is the surface defect dataset collected in
a real industry. It contains ten types of surface defects, i.e., punching (Pu), weld line (Wl), crescent gap
(Cg), water spot (Ws), oil spot (Os), silk spot (Ss), inclusion (In), rolled pit (Rp), crease (Cr), waist folding
(Wf). The collected defects are on the surface of the steel sheet. The dataset includes 3570 gray-scale
images. Table 1 shows the comparison of NEU-DET and GC10-DET dataset. The detailed defects are
as follows:

Table 1. Comparison of NEU-DET and GC10-DET dataset.

Dataset Scale Type Number Defect Types

NEU-DET 1800 6 rolled-in scale, patches, crazing, pitted surface, inclusion, scratches

GC10-DET 3570 10
punching, weld line, crescent gap, water spot,

oil spot, silk spot, inclusion, rolled pit, crease, waist folding

• Punching: In the production line of the strip, the steel strip needs to be punched according to the
product specifications; mechanical failure may lead to unwanted punching, resulting in punching
defects.

• Welding line: When the strip is changed, it is necessary to weld the two coils of the strip, and the
weld line is produced. Strictly speaking, this is not a defect, but it needs to be automatically
detected and tracked to be circumvented in subsequent cuts.

• Crescent gap: In the production of steel strip, cutting sometimes results in defects, just like half
a circle.

• Water spot: A water spot is produced by drying in production. Under different products and
processes, the requirements for this defect are different. However, because the water spots are
generally with low contrast, and are similar to other defects such as oil spots, they are usually
detected by mistake.

• Oil spot: An oil spot is usually caused by the contamination of mechanical lubricant, which will
affect the appearance of the product.

https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets
https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets
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• Silk spot: A local or continuous wave-like plaque on a strip surface that may appear on the upper
and lower surfaces, and the density is uneven in the whole strip length direction. Generally,
the main reason lies in the uneven temperature of the roller and uneven pressure.

• Inclusion: Inclusion is a typical defect of metal surface defects, usually showing small spots,
fish scale shape, strip shape, block irregular distribution in the strip of the upper and lower surface
(global or local), and is often accompanied by rough pockmarked surfaces. Some inclusions are
loose and easy to fall off and some are pressed into the plate.

• Rolled pit: Rolled pits are periodic bulges or pits on the surface of a steel plate that are punctate,
flaky, or strip-like. They are distributed throughout the strip length or section, mainly caused by
work roll or tension roll damage.

• Crease: A crease is a vertical transverse fold, with regular or irregular spacing across the strip, or
at the edge of the strip. The main reason is the local yield along the moving direction of the strip
in the uncoiling process.

• Waist folding: There are obvious folds in the defect parts, a little more popular, a little like
wrinkles, indicating that the local deformation of the defect is too large. The reason is due to
low-carbon.

4.2. Performance Evaluation

We adopt Recall, Average Precision (AP), and mean Average Precision (mAP) for performance
evaluation. Recall represents the ratio of correctly detected images and all testing images for each
defect category. AP represents the average detected precision for each defect category; mAP is the
mean of average detected precision for all defect categories.

4.3. Comparison Methods and Parameter Tuning

We compared the proposed model with several state-of-the-art methods, including: SSD [6],
Faster-RCNN [37], YOLO-V2 [38], and YOLO-V3 [39]. Besides, we also compared proposed model
with several traditional methods, including: LBP [21] and HOG [22]. The classifiers are the nearest
neighbor classifier (NNC) and the support vector machine (SVM).

To be rigorous, we introduce the best parameter tuning process in this section. The above-
mentioned deep methods adopt a pre-trained model on the ImageNet, which can be helpful to extract
basic image features including edge, texture and so on. Therefore, the SSD method utilizes VGG16 as
the pre-trained model, YOLO-V2 uses Darknet19 model, YOLO-V3 uses Darknet53 model, and Faster
R-CNN adopts Resnet50 model. We claim parameter tuning for them respectively, as follows:

• Learning Rate: In the classical back propagation algorithm, the learning rate is determined by
training experience. The larger training rate denotes the larger weight updating, which can
accelerate the convergence of the model, but if the learning rate is too large, it may cause the
oscillation of the training. Besides, a slower learning rate may lead to a slow convergence of the
training process. Thus, we adjust as follows: (1) A large learning rate is used to initialize the
model, and the learning rate decreases as training iterations increase. (2) Initial learning rate is
set from 0.1 to 0.00001, and the best one is selected through experiments. Thus, we obtain the
best learning rate as follows: SSD (0.0005), Faster-RCNN (0.01), YOLO-V2 (0.0005), and YOLO-v3
(0.0005).

• Weight decay: Weight decay is used to alleviate overfitting. In the loss function, the weight decay
is a coefficient of the regular term. Thus, the setting of weight decay depends on the loss function.
According to the loss function and experiments, the final settings of weight decay are follows:
SSD (0.00005), Faster-RCNN (0.0001), YOLO-V2 (0.0001), and YOLO-v3 (0.00005).

• Momentum: Momentum is a method to retrieve the updating direction and speed up convergence
of the model. This value is fixed for the SGD method according to the existing experiments. Thus,
all of the methods have a set momentum of 0.9.
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4.4. Accuracy Comparisons with Deep Methods

4.4.1. NEU-DET

Table 2 shows the detailed comparison results of Recall on the NEU-DET dataset. Some detection
results of NEU-DET are shown in Figure 4. The proposed method can obtain the best results on the
defects of Cr, In, Pa, Ps, and Rs, while the SSD300 is slightly higher than proposed method on Sc (0.990
vs. 0.981). Table 3 shows the detailed comparison results of AP and mAP on the NEU-DET dataset.
The proposed method can obtain the best results on the defects of Cr, Pa, Ps, Rs, and Sc, while the
SSD300 is slightly higher than the proposed method on In (0.796 vs. 0.763) and Rs (0.621 vs. 0.581).

Table 2. Comparison of Recall on NEU-DET dataset. The proposed method performs the highest Recall
values for five defect categories. The bold helps to emphasize the highest data.

Types
Recall

SSD Faster-RCNN YOLO-V2 YOLO-V3 Proposed Method

Cr 0.965 0.874 0.552 0.692 0.965
In 0.974 0.923 0.811 0.755 0.974
Pa 0.935 0.981 0.910 0.923 0.987
Ps 0.971 0.943 0.791 0.561 1.000
Rs 0.932 0.881 0.500 0.602 0.966
Sc 0.990 0.971 0.884 0.816 0.981

Table 3. Comparison of Average Precision (AP) on NEU-DET dataset. The proposed method performs
the highest AP values for four defect categories. The proposed method also provides the highest mAP
value. The bold helps to emphasize the highest data.

AP
Recall

SSD Faster-RCNN YOLO-V2 YOLO-V3 Proposed Method

Cr 0.411 0.374 0.211 0.221 0.417
In 0.796 0.794 0.592 0.580 0.763
Pa 0.839 0.853 0.774 0.772 0.863
Ps 0.839 0.815 0.454 0.239 0.851
Rs 0.621 0.545 0.246 0.335 0.581
Sc 0.836 0.882 0.739 0.570 0.856

mAP 0.724 0.711 0.503 0.453 0.724

As shown in Tables 2 and 3, the YOLO methods are difficult to distinguish the six types of
defects. The reason may be because the defects on the surface generally are small scale, which cannot
be well solved by YOLO-V2 and YOLO-V3 with fixed scale detection. However, the proposed
method adopts multi-scale cells to better distinguish multi-scale defects and the mAP can reach
0.724. While Faster-RCNN exploits anchor boxes to overcome this problem, it is still lower than the
proposed method.

4.4.2. GC10-DET

Table 4 shows the detailed comparison results of Recall on the GC10-DET dataset. Some detection
results of GC10-DET are shown in Figure 5. The proposed method can obtain the best results on the
defects of Pu, Wl, Cg, Ws, Os, Ss, In and Wf, while the SSD300 is slightly higher than proposed method
on Rp (0.667 vs. 0.333) and Faster-RCNN is higher than proposed on Cr (1 vs. 0.857).
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Figure 4. Detection results on NEU-DET dataset. In sequence, the pictures are: (1) Inclusion, (2) Crazing,
(3) Patches, (4) Pitted surface, (5) Scratches, and (6) Rolled in scale.

Table 4. Comparison of Recall on GC10-DET dataset. The proposed method performs the highest
Recall values for seven defect categories. The bold helps to emphasize the highest data.

Types
Recall

SSD Faster-RCNN YOLO-V2 YOLO-V3 Proposed Method

Pu 0.964 0.964 0.857 0.964 0.965
Wl 1.000 0.623 0.869 0.869 0.967
Cg 0.968 0.968 0.936 0.871 0.969
Ws 0.696 0.696 0.674 0.609 0.739
Os 0.848 0.761 0.630 0.565 0.891
Ss 0.956 0.708 0.694 0.542 0.988
In 0.578 0.551 0.444 0.311 0.667
Rp 0.667 0.333 0.333 0.333 0.333
Cr 0.571 1.000 0.429 0.429 0.857
Wf 1.000 0.800 0.900 0.700 1.000

Table 5 shows the detailed comparison results of AP and mAP on the GC10-DET dataset.
The proposed method can obtain the best results on the defects of Pu, In, and Rp, while the SSD300
is slightly higher than proposed on Wl (0.974 vs. 0.885), Ss, (0.689 vs. 0.650) and Wf (1 vs. 0.919).
Faster-RCNN is higher than proposed on Cg (0.872 vs. 0.848), Ws (0.599 vs. 0.558), Os (0.653 vs. 0.622),
and Cr (0.736 vs. 0.521). Besides, the proposed method shows the best mAP accuracy.
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Figure 5. Detection results on the GC10-DET dataset. In sequence, the pictures are: (1) Crescent gap,
(2) Welding line, (3) Water spot, (4) Silk spot, (5) Waist folding, (6) Inclusion, (7) Oil spot, (8) Crease,
(9) Punching, and (10) Rolled pit.

Table 5. Comparison of Average Precision (AP) on GC10-DET dataset. The proposed method performs
the highest AP values for three defect categories. The proposed method also provides the highest mAP
value. The bold helps to emphasize the highest data.

Types
AP

SSD Faster-RCNN YOLO-V2 YOLO-V3 Proposed Method

Pu 0.860 0.899 0.725 0.836 0.900
Wl 0.974 0.554 0.328 0.241 0.885
Cg 0.861 0.872 0.819 0.752 0.848
Ws 0.552 0.599 0.476 0.495 0.558
Os 0.612 0.653 0.403 0.329 0.622
Ss 0.689 0.579 0.473 0.325 0.650
In 0.168 0.194 0.096 0.036 0.256
Rp 0.105 0.364 0.018 0.036 0.364
Cr 0.527 0.736 0.212 0.429 0.521
Wf 1.000 0.818 0.614 0.400 0.919

mAP 0.635 0.627 0.433 0.388 0.651

As shown in Tables 2 and 3, the YOLO methods are difficult to distinguish between the six
types of defects. The reason may be because the defects on the surface generally are small scale,
which cannot be well solved by YOLO-V2 and YOLO-V3 with fixed scale detection. However,
proposed method adopts multi-scale cells to better distinguish multi-scale defects, and the mAP
can reach 0.724. While Faster-RCNN exploits anchor boxes to overcome this problem, it is still lower
than proposed method.
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4.5. Accuracy Comparisons with Traditional Methods

Table 6 shows the detailed comparison results of precision on the NEU-DET dataset. The proposed
method can obtain the best results on the defects of Cr, In, Pa, Ps, Rs, and Sc, while traditional methods
had the worse results. It is noticed that different hand-crafted features provided different results,
because the representation of one hand-crafted feature is limited. Although we try our best to assign
the parameters of the traditional methods such as threshold, they still performed worse than the
proposed method, which uses deep convolutional network.

Table 6. Comparison results with traditional methods on NEU-DET dataset. The bold helps to
emphasize the highest data.

Types
AP

LBP + NNC LBP + SVM HOG + NNC HOG + SVM Proposed Method

Cr 0.321 0.335 0.400 0.412 0.417
In 0.412 0.378 0.576 0.580 0.763
Pa 0.538 0.601 0.612 0.630 0.863
Ps 0.446 0.515 0.438 0.328 0.851
Rs 0.237 0.330 0.358 0.330 0.581
Sc 0.326 0.432 0.460 0.500 0.856

mAP 0.380 0.432 0.474 0.463 0.724

4.6. Computational Time Comparisons

As shown in Table 7, the proposed method can work with a relatively fast speed. To process
one image of NEU-DET, the proposed method performed a similar computational time to SSD, i.e.,
27 ms vs. 29 ms, while the result is 6 s vs. 7 s for the whole testing set. On the GC10-DET, to process
one image, the proposed method performed a second computational speed, i.e., 33 ms vs. 29 ms
(SSD), while results for whole testing set came third with 8 s vs. 4.49 s (YOLO-V2). Although the
computational time of YOLO-V2 may be slightly smaller than the proposed method, the accuracy of
the proposed method is higher. In addition, as shown in Table 8, the traditional methods generally
cannot meet the requirements in real-time.

Table 7. Comparison of Computational Time on Two datasets for deep methods.

Dataset
AP

LBP + NNC LBP + SVM HOG + NNC HOG + SVM Proposed Method

NEU-DET 379.65 ms 378.56 ms 465.32 ms 453.61 ms 27 ms

GC10-DET 399.01 ms 391.08 ms 495.26 ms 492.75 ms 33 ms

Table 8. Comparison of Computational Time on Two datasets for traditional methods.

Dataset Type
Method

SSD Faster-RCNN YOLO-V2 YOLO-V3 Proposed Method

NEU-DET single image 29 ms 37 ms 7.91 ms 15.75 ms 27 ms
testing set 7 s 7 s 4.03 s 8.46 s 6 s

GC10-DET single image 29 ms 43 ms 78.01 ms 86.80 ms 33 ms
testing set 5 s 11 s 4.49 s 8.67 s 8 s

5. Conclusions

In this paper, we contribute a new dataset called GC10-DET for metallic surface defect detection.
The GC10-DET dataset has various challenges regarding defect types, defect images, and dataset scales.
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Besides, we propose an end-to-end defect detection and classification network based on the Single Shot
MultiBox Detector. To solve the significant imbalance between the positive and negative examples,
we present a hard negative mining method to effectively train our network. Furthermore, to enrich the
training data, we also introduce some data augmentation methods into our training. Finally, extensive
experiments demonstrate that the proposed method is robust for metallic defect detection.
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