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Abstract: Scene recognition is an essential part in the vision-based robot navigation domain.
The successful application of deep learning technology has triggered more extensive preliminary
studies on scene recognition, which all use extracted features from networks that are trained for
recognition tasks. In the paper, we interpret scene recognition as a region-based image retrieval
problem and present a novel approach for scene recognition with an end-to-end trainable Multi-column
convolutional neural network (MCNN) architecture. The proposed MCNN utilizes filters with
receptive fields of different sizes to have Multi-level and Multi-layer image perception, and consists
of three components: front-end, middle-end and back-end. The first seven layers VGG16 are taken as
front-end for two-dimensional feature extraction, Inception-A is taken as the middle-end for deeper
learning feature representation, and Large-Margin Softmax Loss (L-Softmax) is taken as the back-end
for enhancing intra-class compactness and inter-class-separability. Extensive experiments have been
conducted to evaluate the performance according to compare our proposed network to existing
state-of-the-art methods. Experimental results on three popular datasets demonstrate the robustness
and accuracy of our approach. To the best of our knowledge, the presented approach has not been
applied for the scene recognition in literature.
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1. Introduction

With the rapid development of machine learning and artificial intelligence, the application of
visual robots has attracted wide attention [1,2]. In particular, visual robots are applied in the field of
autonomous navigation, that is motivated by promising application in future autonomous driving.
In order to enable robots to deal with problems autonomously in special environments, it is very
important for visual robots have the ability to identify scenes they have visited. However, the robot
will face many challenges in autonomous navigation [3]. One of the most difficult problems is how
to achieve accurate scene recognition in unpredictable and complex environments. In most cases,
illumination or viewpoint will change dramatically, which has significant impacts on results of scene
recognition. In addition, different scenes with similar appearance will be a large challenge for robot
to recognize.

In recent years, many algorithms have been applied to scene recognition [4–7], and one of the most
popular are Convolutional Neural Networks (CNNs). CNNs are a deep learning method specially
designed for image classification and image recognition based on multi-layer neural network. Due
to the limitation of spatial structure and computational consumption, the traditional multi-layer
neural network cannot meet the basic needs of robot navigation, however, the emergence of CNNs
effectively solves these problems. The most frequently used networks are AlexNet [8], VGGNet [9]
and GoogleNet [10] in the CNN family. Many researchers apply these networks to image classification,
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object detection and scene recognition. Compared with traditional neural networks, they absolutely
improve the efficiency and performance of feature extraction and network training. In this paper, we
proposed a novel approach for scene recognition with an end-to-end trainable multi-column CNN.
Our proposed network structure is specifically designed for scene recognition capability of detecting
visited scenes under extreme changes in indoor or outdoor, which combines the robustness against the
appearance and viewpoint changes of CNN descriptors of local regions, as shown in Figure 1.
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Figure 1. Robot recognizes the visited scene by matching local regions in a changing environment
(e.g., Winter and Autumn). This method can be widely used to local region detectors, such as key
points, segmentation method and object proposals. The rectangle of different colors represents the
different position of interests.

Compared with previous CNN-based methods, our proposed method consists of multi-column
network and has a multi-level perception ability, which integrates the advantages of kinds of network
and also takes full account of stability of feature extraction and feature representation. In addition,
excluding the general networks using Softmax Loss to optimize the parameters, our proposed method
takes L-Softmax Loss as back-end to optimize the parameters, which make extracted feature more
discriminated, and hence significantly improving the performance on a variety of image retrieval and
verification tasks. In summary, the novel contributions of our paper are as follows:

Firstly, an end-to-end Multi-column CNN is proposed, which takes VGG16 as its front-end and
modified Inception-V4 (Inception-A) modules as its middle-end [11]. The architecture as shown in
Figure 2. This network utilizes filter of different size to deal with the scale and viewpoint change in a
complex environment, as well as has a strong ability of multi-level and multi-layer scene perception.
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Secondly, we cast scene recognition as an image retrieval problem. In our view, the scene where
the robot has visited are regarded as a series of datasets images, and the scene where need to be
detected regarded as query image. Therefore, the key of scene recognition is how to find an image
from datasets that is most similar to the query image.

Thirdly, in order to strengthen the discriminatory learning ability of network features, a novel
L-Softmax Loss is used as back-end of the proposed network, which is able to not only adjust the
desired margin but also avoid overfitting. According to [12], deeply learned features with L-Softmax
Loss becomes more discriminating, which is helpful to distinguish the different scenes information.

The rest of this paper is organized as follows. We describe the related research on visual scene
recognition with different kinds of feature representation in Section 2. Section 3 introduces the process
of network training and image retrieval method. Experimental results are discussed in Section 4.
Finally, we conclude the paper and propose the future work in Section 5.

2. Related Work

Scene recognition is a relevant and frequently studied problem in the robot application
community [5,13]. It is the most important part of autonomous navigation of the robot. So far,
many methods have been developed for scene recognition. In summary, the method of scene
recognition can be categorized into three classes: Handcrafted method, which mainly used previous
works. Sequence-based method, which use image sequence to retrieve image rather feature extraction.
Lastly, CNN-based methods, which can automatically extract features without labelling them.

2.1. Handcrafted Feature Method

In the early stage, researchers mostly focused on the influence of image scale and rotation on
scene recognition. In the process of robot motion, due to the influence of camera parameters and
camera vibration, the extracted features will change greatly in scale. In order to cope with these
problems, the approach of Scale-invariant feature transform (SIFT) is proposed [14]. The SIFT feature
is just related to points of interest in the local appearance of the object, regardless of the size and
rotation of the image, therefore, this approach to recognition can robustly identify scenes. However,
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SIFT algorithm relies heavily on the acceleration of hardware and the matching of special image
processors. It is difficult for ordinary computer to real-time extract SIFT features. Speeded-Up Robust
Features (SURF) drew on the idea of simplified approximation in SIFT, simplifying the Gauss two
order differential template in DoH, that greatly improved the speed of feature extraction [15]. At the
same time, ORB-SLAM approach [16] for scene recognition was proposed, which has been embedded
a bag of words scene recognition module to perform relocation. This is a compromise approach, which
takes full account of computational complexity and stability of feature expression. However, the above
approaches use local descriptors to represent an image, which have difficulty in extracting key-points
under lacking sufficient textures. Global descriptors can be a better alternative, so Histogram of
oriented gradients (HOG) is widely used for scene recognition, which uses gradients to represent
scene [17]. Although these methods of manual features perform well in complex environment, they
still have many limitations. For example, handcraft feature has a poor scale invariance. However,
the method of deep learning has a large advantage that the absolute scale can be learned from the large
number of images, therefore, it can be predicted just by utilizing a single image without the need for
scene based assumptions or geometric constraints.

2.2. CNN-Based Method

In recent years, the application of deep learning to image representation has attracted more and
more attention. The appearance of CNN has played a ground-breaking role in the representation of
image features. Compared with traditional handcrafted methods (e.g., SIFT, SURF and ORB-SLAM)
and sequence-base method, CNN-based methods can automatically extract features and learn feature
representation based on these features. It is clear that the CNN-based methods outperform the previous
works. Based on CNN networks, researchers proposed many methods for scene recognition, such as
graph-based CNN [18], light-weight CNN [19] and VLAD-based CNN [20]. The graph-based CNN is
constructed by combining the features extracted from CNN and the temporal information of the images
in a sequence, and the graph just includes nodes and edges, which greatly reduces computational
consumption. Compared with CNN based on graph optimization, the use of light weight CNN in
scene recognition is more concise and effective, by reducing layers and filters in the structure of CNN,
which reduce the computational complexity greatly. In order to deal with the problem of large scale
visual scene recognition, a kind of CNN structure that utilizes an end-to-end manner directly for the
scene recognition task is proposed. The VLAD layer is integrated into CNN structure, which can be
applied to very large-scale weakly labelled tasks. However, the above mentioned CNN models are all
based on the original CNN structure, such as AlexNet and VGG, which will produce many parameters
in the process of training. In the case of significant changes in the appearance of the scene, which poses
a challenge to large-scale visual location recognition. In the literature [21], a new scene recognition
approach is proposed, which combines an efficient synthesis of novel views with a compact indexable
image representation. In the literature [22], a new scene recognition method based on end-to-end
multimodal CNN is described. The context information is in the form of semantic segmentation, which
using the information in the semantic representation to extract features from a series of RGB image. This
control process enhances the learning of indicative scene content and enhances scene disambiguation by
refocusing CNN’s reception domain. In the literature [23], A new method of indoor scene recognition is
proposed, which exploits rich mid-level convolutional features to categorize indoor scenes. In addition,
an image retrieval method based on depth space matching is proposed, in which image descriptors
extracted from convolutional neural network activation based on global pooling [24]. In the last few
years, a new modular network structure has been proposed, that is, the Google network series (include
Inception-V1, Inception-V2 [25], Inception-v3 [26] and Inception-V4), which is a structure of Network
in Network, and the number of its parameters is far less than VGG (about 5 million). In the structure
of GoolgeNet, the original node is also a network. So far, the GoogleNets have been successfully
applied to the field of the image classification. The previous works show that the prediction accuracy
is improved while the parameters are greatly reduced. In our work, we proposed a novel visual scene



Sensors 2020, 20, 1556 5 of 16

recognition approach, which is greatly improved in recognition accuracy. The proposed approach
uses an end-to-end multi-column network to improve the performance of feature extraction as well as
maintain the stability of feature representation.

3. Proposed Approach

In this section, we introduce the structure of the network, and describe how the network is
specially trained for scene recognition and learning feature representation.

3.1. The Multi-Column Network Structure

The proposed network is a multi-column architecture, which is trainable end-to-end. The whole
structure consists of three parts: front-end, middle-end and back-end. In Figure 3, the first three
blocks make up the front-end of the network, blocks 4–6 make up the middle-end of the network
and L-Softmax layer makes up the back-end of the network. In the convolutional process, the same
size 3 × 3 convolutional kernel is used in front-end. Due to the better ability of perception in the
middle layer, size 1 × 1 and 3 × 3 convolutional kernels are used in the middle-end, which is helpful for
multi-level and multi-layer perception in large scale scenes. However, the structure in Figure 3 above
cannot express the real network, to demonstrate the process more briefly, the process of pooling is not
demonstrated in the figure, but it is real and exists. In this paper, we utilize maxpooling to aggregate
all descriptors falling into that region to create a feature vector. Considering the complexity of network
computing, it is beneficial to adopt the pre-trained model. In [27,28], a pre-trained CNN is used to
extract features for scene recognition, which shows the perfect performance and efficiency. In our work,
we adopt pre-trained VGG16 that is trained on the ImageNet dataset, and take it as the front-end of the
whole structure, which is able to produce a compact image representation. Specifically, Inception-A
modules are embedded into middle-end, and then trained in a distributed way, which is able to divide
each copy into a model with multiple subnetworks to meet the memory requirement. At the back-end
of the network, L-Softmax layer is used to effectively guide network learning, which is able to make
the distance within the same class smaller and the distance outside the different class larger.
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Figure 3. The multi-column network architecture. In the first 3 blocks (including 7 convolution layers),
VGG16 pre-trained on ImageNet is used, and the parameters in the rectangle are represented as
Conv − (block number) − (layer number) (filter number × filter size × filter size). In the next 3 blocks
(also including 7 convolution layers), Inception-A modules are used, and the parameters in the rectangle
are denoted as same with VGG16 modules.

3.2. Train the Network by an Embedded L-Softmax Layer

The Softmax Loss function is often used in convolutional neural network. It plays an essential role
in image classification, object detection and scene recognition. It is simple and practical, but it cannot
clearly guide the network learning to distinguish the features with high discrimination. However,
the literature [29] represented Large-Margin Softmax (L-Softmax) that can effectively guide network
learning and be able to make the intra-class distance smaller quickly. In addition, L-Softmax can
not only adjust different margins, but also prevent overfitting, which is helpful to network training
efficiency. Its forward and backward feedback can be calculated by using the stochastic gradient
descent method. It can be seen from the Figure 4, with the increasing of the epoch, the value of loss
(training and validation) exhibits a rapid reduction, and the opposite the value of accuracy presents
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a rapid rise within the range of training epoch. However, after this range is exceeded, the value of
accuracy and loss remain almost unchanged, which demonstrates the excellent performance using
L-Softmax loss function. We also show the changes in the value of learning rate with increasing training
epoch on the KITTI dataset as shown in the Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 6 of 15 
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Before introducing L-Softmax, it is vital to review the traditional Softmax function. When defining
the ith input feature xi and its label yi, Softmax loss is recorded as:

L =
1
N

∑
k=1

Li =
1
N

∑
k=1

− log

 e fyi∑
j e f j

 (1)

where f j denotes the jth element of the feature vector representing the output of the last convolution
layer, and N is the number of training samples. We also define the activation function as W, therefore,
we obtain the formula f = WT

yi
xi, and the final loss function can be expressed as:

L = − log

 e‖Wyi ‖‖xi‖ cos (θyi )∑
j e‖W j‖‖xi‖ cos (θ j)

, 0 < θ j <
m
π

(2)
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The initial motivation of the Softmax is to obtain the inequality ‖WT
i ‖‖xi‖ cos(θi) >

‖WT
i+1‖‖xi+1‖ cos(θi+1), However, the key of large-margin Softmax Loss is that adding a positive

integer variable m to generate a decision margin, which is able to more strictly constrain the above
inequality, namely: 

a = ‖WT
i ‖xi cos(θi)

b = ‖WT
i ‖xi cos(mθi)

c = ‖WT
i+1‖xi+1 cos(θi+1)

(3)

If Wi and W j can meet the inequality a > b, then a > c must be meted. Such constraints impose
higher requirements on the learning process of Wi and W j, which making class 1 and class 2 have wider
classification decision boundaries. Then, L-Softmax Loss function can be shown as Formulas (4) and (5):

Li = − log

 e‖Wyi ‖‖xi‖ϕ(θyi )

‖Wyi‖‖xi‖ϕ
(
θyi

)
+

∑
j,yi

e‖W j‖‖xi‖ cos (θ j)

, 0 < θ j <
π
m

(4)

ϕ(θ) =

{
cos(mθ), 0 < θ < π

m
ϑ(θ), πm < θ < π

(5)

When m gradually becomes bigger, this causes the boundary of classification to also be bigger and
the learning difficulty is higher. Most importantly, ϕ(θ) must be a Monotone decreasing function and
meet equation ϑ(θ) = cos

(
m
π

)
, which makes sure that ϕ(θ) is a continuous function.

3.3. Image Retrieval

In the paper, extracted features are used to provide the spatial image support for scene recognition,
which is the local descriptors in the perceptual field of the image. Given an image, it has been known
that local pixels are closely related while the remote pixels are weakly correlated. Therefore, it is not
necessary for each neuron to perceive the whole image. Instead, it only needs to perceive these regions
of local interests, and then the local information can be integrated at a higher level for obtaining the
global information. The main function of the feature detector is to provide spatial image support for
the subsequent description steps. To tackle the problem of changes in appearance and viewpoint
because of the scale and illumination changes, the proposed multi-column network is trained for
representing the interest regions. The first step in visual scene recognition is that an image is directly
fed into the multi-column network, and then robust features are able to be extracted. The second
step, all extracted descriptors in an image are fed into the back-end of the network, and then salient
descriptors begin to aggregate together, which is able to represent an interested region in an image,
as shown at the highlight regions in Figure 6. The last step, to retrieve an image, here we define xi
as one of the descriptors in the image A and yi as one of the descriptors in the image B. The match
between image A and image B is performed by matching all region vectors PA = (x1, x2, ..., xn) and
vectors PB = (y1, y2, ..., yn). In our work, we utilize cosine similarity for image retrieval, the similarity
of regions between region i from image A and region j from image B can be calculated according to the
Formula (6):

S =

∑M
i=1, j=1

(
xi × y j

)
√∑M

i=1(xi)
2

=
PAT

i PB
j

‖PA
i ‖‖P

B
j ‖

(6)

where i = 1, 2, ..., M, and i, j denote ith and jth salient regions in image A and image B, respectively.
According to the Formula (6), the high similarity regions in the two images can be matched. Then,
the weight in the process of extracting each local feature can be expressed as:

W′ = lg
(

k
nc

)
, c = 1, 2, ..., N (7)
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where k is the total number of training images, and nc is the number of images containing the region c.
However, in order to determine the similarity between two images A and image B, all similarity of
salient regions in both images should be calculated. In our work, we adopt Cross-checking principle to
complete the overall similarity between two images A and image B:

QA,B =
1
M

∑
i, j

Si, j ×Wi ×W j (8)

where Wi
′ and W j

′ is the weight of feature vectors PA and PB, respectively. Then, in order to search the
best matched reference image A corresponding to image B from a dataset, all referenced images in the
dataset are traversed, and the image with the highest similarity score is selected that realizes scene
recognition. The highest similarity score can be calculated by the Formula (9):

Ω(B) = argmax
A

QA,B (9)
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L-Softmax Loss has a clear geometric explanation and that can adjust the difficulty of training by
setting the value of m. It is able to effectively prevent over-fitting, and effectively reduce the intra-class
distance and increase the inter-class distance.

4. Experimental Results and Analysis

In this section we describe the experimental setup and results evaluation. In the experiment,
we use a computer equipped with an i9-processor and 1080Ti graphics (11G) card to train our
proposed network. Meanwhile, in order to demonstrate the superiority of our proposed method, other
experiments are also completed on the same hardware platform, and then the performance of our
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proposed method compared with state-of-art. In order to give quantitative and qualitative results, we
compare our proposed method with others on three standard scene recognition benchmarks.

4.1. Performance Measurements

The proposed method was evaluated against other state-of-the-art algorithms of scene recognition.
The performance evaluation method we adopt is Precision–Recall curves. In our experiment, we
compare our proposed method with hand-crafted feature method and CNN-based feature method,
such as SeqSLAM, VGG and NetVLAD. We also exhibit the visual detection results in three datasets,
as shown in Figure 6. We assume that TP denotes true positive, TN denotes true negative, FP denotes
false positive and FN denotes false negative, then the precision (A) and recall (B) can be calculated:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

4.2. Dataset Used in the Experiment

In the experiment, three popular datasets are used, we divide them into three groups according
to changes in appearance and viewpoint. The Nordland Dataset exhibits severe appearance change
while virtually no variation in viewpoint. On the contrary, the KTH-IDOL2 dataset exhibit severe
viewpoints change, but no variation appearance change. The last dataset is a compromise choose,
we choose KITTI dataset as an independent group mainly because it does not show much change in
appearance or viewpoints. The specific character of the three datasets are shown in Table 1.

Table 1. The dataset used in our experiment and show the change in appearance and viewpoint.

Dataset Environment Appearance Viewpoint

The Nordland dataset train journey severe minor
The KTH-IDOL2 dataset indoor minor sever

The KITTI dataset outdoor none minor

4.2.1. The Nordland Dataset

The Nordland dataset is collected along railway lines from the perspective of the front cart, consists
of about 10 h of video in four different seasons. The Nordland dataset exhibits severe appearance
change that occur when the seasonal change from spring to winter, and it is a perfect experimentation
dataset since it’s almost no change in viewpoint.

4.2.2. The KTH-IDOL2 Dataset

The KTH-IDOL2 dataset is collected in indoor environments by laser scanning. It consists of
24 image sequences. All image sequences are continuous acquainted at the rate of 5 fps under different
illumination. Each image sequence exhibits severe viewpoint, in order to make sure that the experiment
is carried out in an environment where there is no change in the appearance but only in the viewpoint,
we only select one of the sequences to carry out the experiment.

4.2.3. The KITTI Dataset

The KITTI dataset is the largest computer vision algorithm evaluation dataset in the world under
the circumstance of automatic driving, it totally consists of 22 stereo sequences, saved in a loss less png
format. The first 11 sequences (00–10) with ground truth trajectories are used for training, and the
next 11 sequences (11–21) without ground truth are used for evaluating. In our experiment, the image
sequence (00) is chose for training, and the image sequence (10) is chose for test.
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4.3. Scene Recognition with Appearance Change

Figure 7 shows benefits of the presented approach using multi-column CNN compared to the
best existing advanced matching approach in the Nordland dataset. The blue curve shows matching
based on image descriptor of NetVLAD as described in [30]. This approach fails in the presence of
the appearance changes greatly. The reason may be that its retrieval effect on a small database is
better, but when the size of database becomes large, the retrieval effect using this retrieval algorithm
is very unstable, and there may be a significant decline. The red curve shows matching based on
image descriptor of VGG16. This approach exhibits stable performance in case of extreme changes in
appearance. However, comparing to our proposed approach, the performance is not good. The main
reason is that the network structure of classical VGG16 is relatively simple, which has the same
size of filters so that only has a relatively simple receptive field, and the network we present is a
multi-column structure that has different receptive field and corresponding to visual scene of different
scales, as descripted in [29]. The orange curve shows matching based on method of SeqSLAM as
described in [31]. This approach exhibits a better performance, which is almost equivalent to methods
of CNNs. The main reason is that this method discards feature-based image matching for visual
localization, but adopts a sequence-based approach. Under the conditions of extreme environmental
changes, the authors of the proposed method verified their good performance.
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Nordland dataset.

4.4. Scene Recognition with Viewpoint Change

Figure 8 shows the performance comparison between our proposed method and the other three
methods in the extreme viewpoint changes. As can be seen from the four curves, the method based
on SeqSLAM presents worse than the other three methods. The reason is that it is a sequence-based
method for image matching, which has no feature self-learning ability and no receptive field to perceive
each pixel in the image, and thus performs poorly in an environment where the viewpoint changes
strongly. For other three methods, they are all CNN-based method for image matching, which have
the ability that can automatically extract features and learn feature description based on these features.
So these three methods perform better under viewpoint changes.
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4.5. Scene Recognition with No Appearance and Viewpoint Change

Furtherly, in order to show the performance of the four methods, we select the KITTI dataset with
no significant change in viewpoint and appearance for image matching experiment verification, as
shown in Figure 9. It can be seen that the methods based on SeqSLAM and our proposed perform
better. The main reason is that in the environment where the appearance and the viewpoint do not
change greatly, the variation of feature scale presented in the captured image is not particularly serious,
which makes the method based on the learning feature not necessarily better than the sequence-based
method. The main reason for the different in performance between the three CNN-based methods may
be that the three different methods have different structure of back-end. The method of NetVLAD and
our proposed all use end-to-end training technology to learn the training parameters, which has great
advantages in image classification and image matching.
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4.6. Robustness Analysis

In order to show the robustness of the four methods in different scenes, we compare the recall and
standard deviation at 90% of precision of four methods. A larger standard deviation could have a
better robustness. The standard deviation can be calculated as follows:

H =

√√√√ n∑
i=1

(Xi −M)

n− 1
(12)

where X is the recall rate. M is the average recall rate of four methods. It can be seen from Figure 10,
compared with the other three methods, that the distribution of recall rate of our method is relatively
centralized, which corresponds to the lowest value of standard deviation (0.02043). The discrete level of
the VLADNet (0.36431) and SeqSLAM (0.39404) tends to be the same. The most serious discretization
is VGG16 (0.4659). The main reason is that its performance on the KITTI dataset is poor. Compared
with other datasets, The KITTI dataset has little changes in appearance or viewpoint, in fact, VGG16
has no advantage over other methods in this dataset. To sum up, our method has better robustness in
a more complex environment, as well as has relatively stable performance in full scene environment.
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4.7. Ablation Study

In order to verify the effect of each component of the proposed network on recognition performance,
an extended ablation study is conducted in this section. This is similar to the control variable method in
Mathematics. Firstly, while the front-end and middle-end of the proposed network remain structurally
unchanged, the effect of different back-end structures on the entire network is demonstrated by
comparing Max F1-Score. In Figure 11, four kinds of structure of back-end are showed, which all
consist of the first five VGG modules and embedded Inception-A modules. The difference between
them is that Fc6 adds three fully connected layers after the modules of the network and Conv6 just
utilize six modules of the network. In addition, the former consists of an original loss function, which
includes loss term and regularization term. The latter directly extracts feature vectors from the module
that used to similarity calculate. As can be seen, by making learning harder, L-Softmax loss forces the
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model learn the distance between the classes become larger, and the distance within the class become
smaller, which effectively improves the performance. Regardless of the scenario, the back-end that
consists of L-Softmax perform better than others. Moreover, we compare the performance between
the two structures with Inception-A modules and without Inception-A modules. We adopt the
multi-column architecture with different filter size to deal with the scale and perspective change in
complex environment, which is able to improve the detection precision, as shown in Figure 12. We can
see that having the Inception-A modules performs better than having no Inception-A modules in
every group.
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5. Conclusions

In this paper, we proposed a novel approach for scene recognition with an end-to-end trainable
multi-column CNN network. The multi-column CNN consists of some VGG16 layers, Inception-A
modules and L-Softmax layer, which has a strong multi-level and multi-layer perception ability. Instead
of the whole perceptual image, the proposed method is based on the detection of highly salient regions
for scene recognition. We validate the proposed method on three representative datasets. The results
show our proposed method is capable of successfully retrieving images. We also compared the
performance between the proposed method and three other state-of-the-art methods, which includes
CNN-based methods and hand-crafted method. The experimental results under the condition of
obvious appearance change show that the proposed method is comparable to the state-of-the-art,
and under the condition of sever viewpoint change also demonstrates a better performance, and under
the condition of minor viewpoint change and no appearance changes shows better performance by
using the proposed method. In addition, an extra ablation study is used, which verifies the role of
various elements of our multi-column network. All experiments demonstrate that the proposed method
is able to deal with the problems of scene recognition under appearance and viewpoint extreme change.
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