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Abstract: We introduce a distance metric between two distributions and propose a Generative
Adversarial Network (GAN) model: the Simplified Fréchet distance (SFD) and the Simplified Fréchet
GAN (SFGAN). Although the data generated through GANs are similar to real data, GAN often
undergoes unstable training due to its adversarial structure. A possible solution to this problem is
considering Fréchet distance (FD). However, FD is unfeasible to realize due to its covariance term.
SFD overcomes the complexity so that it enables us to realize in networks. The structure of SFGAN is
based on the Boundary Equilibrium GAN (BEGAN) while using SFD in loss functions. Experiments
are conducted with several datasets, including CelebA and CIFAR-10. The losses and generated
samples of SFGAN and BEGAN are compared with several distance metrics. The evidence of mode
collapse and/or mode drop does not occur until 3000k steps for SFGAN, while it occurs between
457k and 968k steps for BEGAN. Experimental results show that SFD makes GANs more stable than
other distance metrics used in GANs, and SFD compensates for the weakness of models based on
BEGAN-based network structure. Based on the experimental results, we can conclude that SFD is
more suitable for GAN than other metrics.
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1. Introduction

Generative Adversarial Net (GAN) is one of the models drawing attention in the field of machine
learning (ML) and computer vision [1]. The model learns the distribution of a given data and generates
sample data based on the learning.

Recently, several GAN models have been proposed to deal with different purposes, and the
performances of generative models have improved. For instance, Domain Adversarial Neural Network
(DANN) and Adversarial Discriminative Domain Adaption (ADDA) considered image-to-image
translation [2,3] and GAN with text manifold interpolation and image-text matching discriminator
considered text-to-image synthesis [4]. Super-Resolution Generative Adversarial Nets (SRGAN)
focused on super-resolution [5], and style transformation [6,7], Context Encoder (CE) and Globally
and Locally Consistency Image Completion (GLCIC) considered inpainting [8,9], and Generative
Adversarial Nets for Video generation (VGAN) was applied to generate high-dimensional data based
on image, video, and audio [10].

The principle of GANs is to set up a game between two players: a generator and a discriminator.
The generator generates samples based on the distribution obtained from training data [11]. On
the other hand, the discriminator examines whether the input sample is real or fake when a data
sample is given. During the training of a model, the generator is trained to deceive the discriminator,

Sensors 2020, 20, 1548; doi:10.3390/s20061548 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8081-0489
https://orcid.org/0000-0002-0418-4092
http://dx.doi.org/10.3390/s20061548
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/6/1548?type=check_update&version=2


Sensors 2020, 20, 1548 2 of 27

while the discriminator is trained to distinguish the generated samples from the real samples correctly.
The optimal generator generates plausible data samples, and this makes the discriminator foolish and
unable to work eventually [12]. Owing to many efforts to improve GANs [13–15], the data generated
by GANs are so realistic that human beings almost cannot differentiate real data from fake data.

Each loss of generator and discriminator should converge to a constant during the training process
for success data generation. If this occurs, then the training process of the GAN is called “stable” [13].
Usually, GANs suffer from unstable training for several reasons. Examples of unstable phenomena
include the vanishing the gradient, the gradient becoming too large, or the loss oscillating during
training [12,13]. Another problem that GAN is experiencing is the generator collapsing, which produces
only a single sample or a small family of very similar samples. These phenomena are called mode
collapse and mode drop. Mode collapse is generating the similar or even the same outputs for different
random input vectors, while mode drop is concerned with modes being dropped from the output
distribution [1]. These phenomena may occur when the distribution of real data cannot be represented
correctly because of using inadequate optimizations or insufficient network resources that cause an
inability of node counting [1,13,14]. In such conditions, the average of real data distribution is used for
mode collapse, while the distribution of real data is ignored for mode drop, during the generation of
fake data.

To be an acceptable GAN, the distance between the two distributions of real data and generated
data has to be far in the discriminator’s viewpoint, while it has to be near the generator’s viewpoint.
The performance of a GAN, therefore, is closely related to the adopted distance metric in the loss
functions, and the instability of networks might be solved by changing the distance metric. One of the
studies of this approach was the Wasserstein Generative Adversarial Network (WGAN) [15]. Unlike
the original GAN, WGAN applied Wasserstein-1 distance, called Earth Mover’s distance (EMD), to
measure the distance between two distributions of real data and generated data [16]. The superiority of
EMD was considered in terms of stability and quality of a GAN by comparing these values of EMD with
those of other distance metrics involved. For instance, WGAN compared EMD with Jensen–Shannon
distance (JSD) and Kullback–Leibler (KL) divergence [17,18]. With the advent of WGAN, EMD has
been used widely in GANs as a metric in loss functions.

Recently, Fréchet distance (FD), called as Wasserstein-2 distance, has been introduced [19]. FD was
initially used as a similarity evaluation index, called Fréchet Inception distance (FID), like the Inception
Score (IS) [20]. FID that applied FD was used in the inception v3 model [21]. It used feature values
extracted from a pre-trained inception v3 model to evaluate the similarity of real data and generated
data [22]. On the other hand, IS was a score correlating human judgment with a pre-trained ImageNet
dataset in inception v3 networks [23]. An experiment was conducted to verify the adequateness of
FID as an evaluation index, and the superiority of FID over IS demonstrated [20]. Therefore, FID
became a primary evaluation index used in GANs [24–26]. However, it is very challenging to apply
FD in GANs directly because it requires a longer time and bigger memory compared to other distance
metrics [27,28], which is caused by its complexity. To the best of our knowledge, there is no GAN using
FD as a metric of training GAN until so far.

In this paper, we introduce a Simplified Fréchet distance (SFD) and propose a GAN model in which
SFD is involved. SFD is a simplified and regularized version of FD. That is, SFD reduces the complexity
of FD and enables the training process stable representing some of the characteristics of FD. Therefore,
a portion of the characteristics of FD could be explored when SFD is used in the training process of
GANs. The structure of the proposed GAN model, the Simplified Fréchet Generative Adversarial
Networks (SFGAN), is based on the Boundary Equilibrium GAN (BEGAN) [29]. The difference
between the two GANs is the distance metric used in the loss functions of the networks. SFGAN
uses SFD, while BEGAN uses EMD. In other words, SFGAN is trained by adversarial losses that are
defined by SFD among the distributions of input and output. Output distribution is computed through
auto-encoder based discriminator by using an adversarial loss.
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For demonstrating the superiority and applicability of SFGAN, the experiments are conducted
with the CelebA, CIFAR-10, and a 2-D mixture of Gaussians [23,30,31]. Two purposes are considered
in the experiment. One is to investigate the stability of training GANs by using SFD and EMD, and the
other is to compare JSD, EMD, and SFD between real data and generated data during the training
procedure of SFGAN and BEGAN. The trainings are executed up to three million steps to investigate
the stability of training and the differences in distance metrics before and after mode collapse and/or
mode drop. The same values of hyperparameters are used in the two models. The experiment is
conducted five to ten times to see whether the results change with each experiment. It is observed
that the differences in results for all experiments are negligible. Experimental results show that the
training process of SFGAN seems stable, and neither mode collapse nor mode drop is detected. On the
other hand, these phenomena have occurred during the training process of BEGAN, which result in
unstable training. Moreover, it is observed that SFD distinguishes the distributions of real data and
fake data generated by unstable BEGAN, while EMD sometimes fails it.

The contributions of this study are summarized as follows: (1) A Simplified Fréchet distance is
introduced. SFD reduces the complexity of FD, representing some characteristics of FD and enables
stable training by compensating the weakness that the models belonging to BEGAN-based network
structure have. (2) A new GAN model in which SFD is involved in the loss functions, SFGAN,
is proposed. SFGAN is more stable than BEGAN in which EMD applied. (3) SFD is introduced as an
evaluation index for detecting mode collapse and/or mode drop during the procedure of training a
GAN. It is possible to detect instability of a GAN during the training with SFD alone, without requiring
additional models, a balanced dataset or constrained space that other GANs are requiring.

This paper includes the following: The related works are presented in Section 2. In Section 3,
we introduce SFD and compare it with the existing distance metrics. The SFGAN model is presented
in Section 4, and the stability and effectiveness of the SFGAN model are verified via experiments in
Section 5. Lastly, Section 6 concludes the paper.

2. Related Works

There are many studies on GANs [13–15,24,32–47]. In this section, we investigate the studies that
consider the stability problem during the training of GANs. The studies dealing with the stability
on GANs can be divided into three categories: the GANs that consider stable training by evaluating
performances with only IS or FID, the methodologies to analyzing the stability of the GAN model,
and the GANs that consider stable training with their own evaluating methods to investigate the
stability. Figure 1 presents the known studies for the three categories.
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2.1. Stable Training

Many studies are dealing with stable training of GANs [13–15,24,32–43]. Notably, several
studies [13–15,32,33] also considered on mode collapse and/or mode drop problems. In these studies,
IS or FID is used as a performance evaluation index. This category can be classified further according
to their purposes or applied methods: optimization, model architecture, weight limitation, loss,
and game theory.

2.1.1. Optimization

The studies in the optimization class deal with the optimization of balancing of the generator and
discriminator for stable training. Unrolled GAN, SeqGAN, Gradient regularized GAN, and Consensus
GAN belong to this class [13,14,32,33].

The network parameters of the generator in the unrolled GAN are updated according to gradient
descent (GD) of every step, which reflects the state from the current step to some fixed number
of future steps, while those parameters of discriminator are updated according to GD of current
step only. Based on the updating rule, the unrolled GAN can mitigate the mode collapse and stabilize
the training of GANs. On the other hand, SeqGAN modeled a generator as a stochastic policy in
reinforcement learning (RL). SeqGAN performs the gradient policy update directly to avoid the
difficulty of differentiation of discrete data such as text generation and music generation. It showed that
the performance of SeqGAN outperforms that of the original GAN. A scheme imposing a regularization
penalty during the generator update was proposed [32]. This scheme was adopted in the original
GAN, and the local stability was confirmed. This local stability is updating the gradient near an
equilibrium point. Two major failures caused by GD optimization, vanished real-part and large
imaginary-part in the eigenvalues of the Jacobian, were considered in Consensus GAN [33]. By using
their Consensus Optimization, Nash equilibrium was found by more powerful optimization than GD
based optimization. Nash equilibrium is a state that no player in this state can gain more rewards
by changing its own strategy [48]. If the generator and the discriminator reach a Nash equilibrium
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state, the objective of GANs does not change any more theoretically, so this theory keeps the stability
of GANs during the training.

2.1.2. Model Architecture

The GANs in the model architecture class considered network architectures and their parameters
for stable training. Deep convolutional GAN (DCGAN), progressive GAN, spectral normalization
GAN (SNGAN), and packed GAN (PacGAN) are belonging to this class [24,34–36].

DCGAN is a Convolutional Neural Network (CNN)-based GAN model considering the way
of setting parameters and techniques for optimizing GAN [34]. It dealt with the use of batch
normalization and activation function. The resolution of images was increased up to 1024 by adding
layers, and mini-batch was also considered to improve stability in progressive GAN [24]. SNGAN
considered an architecture utilizing the residual block [35,49], and PacGAN considered to use an
augmented discriminator. The discriminator in PacGAN maps multiple samples that are jointly coming
from either real data or the generator to a single label [36].

2.1.3. Weight Limitation

In the weight limitation class, several techniques are dealing with the discriminator’s weights in a
network’s nodes. The techniques are schemes to control the instability of GANs.

Gradient-penalty and spectral normalization are typical examples in this class [37]. The main
idea of WGAN gradient-penalty (WGAN-GP) is considering the Lipschitz-1 constraint in WGAN.
The gradient penalty was added to the loss of WGAN, which is directly constraining the gradient
norm of the discriminator. By adjusting this method, WGAN-GP outperformed original WGAN in
terms of stable training and similarity between real data and generated data. SNGAN belonging to the
model architecture class also proposed a spectral normalization technique to increase the stability of
training [34]. Unlike gradient-penalty, spectral normalization does not depend much on the current
generative distribution but regularizes the weights of nodes in a network. Training with spectral
normalization was compared with that of gradient-penalty, and it was concluded that the former does
not easily destabilize with a high learning rate while the latter destabilizes.

2.1.4. Loss

Other recent approaches are considering new loss functions. NSGAN considered a risk that the
gradient of the generator would vanish when the original GAN loss is used [12]. For preventing
the risk, a function was proposed to maximize the loss of generator, and better performance was
obtained than that of the original GAN models. Margin adaption for GAN (MAGAN) evaluated the
performance improvement of stable training by using an adaptive hinge loss, which estimates the
appropriate margin of the loss [38]. MAGAN not only generated diverse datasets but also achieved an
improvement in terms of IS compared to energy-based GAN (EBGAN) and boundary equilibrium
GAN (BEGAN) [29,39]. Coulomb GAN trained the networks using the Coulomb potential equation
that makes samples attracted to the training samples but repulsed to each generated sample [40]. It was
shown that Coulomb GAN has only one Nash equilibrium.

2.1.5. Game Theory

In the game theory class, most studies used the Nash equilibrium [48]. For instance, EBGAN and
BEGAN considered Nash equilibrium [29,38]. These two models generate realistic data successfully
and hardly fail to learn the distribution of data. Stackelberg GAN was inspired by the Stackelberg
competition of game theory [41]. It is known that the Stackelberg model can be used to find the perfect
Nash equilibrium of sub-games. Experiments verified the effectiveness of the Stackelberg competition
by using a multi-generator architecture.
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2.1.6. Metric

The other approach of dealing with instability is considering distance metrics used in GANs.
As far as we know, Wasserstein GAN (WGAN) is the first study to improve the learning stability of
GANs by defining a new distance metric between data distributions [15]. It was shown that traditional
distances such as JSD are insufficient for data training in GANs. As an approach to mitigate this
problem, EMD was applied to WGAN. MMD-GAN used a maximum mean discrepancy (MMD) as
a distance and adopted auto-encoder [42,43]. The definition of MMD can be found in Appendix A.
This model’s discriminator was trained via MMD with adversarially learned kernels. Although it was
obtained that the IS of MMD-GAN was higher than WGAN when the experiment was conducted with
CIFAR-10, there are two problems in this model: (i) The performance of MMD-GAN comes only by
using either per-pixel reconstruction error term or gradient penalty. (ii) The fine learning from data
seems to discourage to contract the discriminator outputs of real data using MMD [50].

Improving distance metrics in GANs has the following advantages: (1) No additional network
models may be required for stable training a GAN, and existing losses can be used as they are. (2) The
state of mode collapse and/or mode drop during the training process can be identified through the
proposed metric. The training curves and sample graphs by WGAN and MMD-GAN showed the
relation between the loss and the sample quality. As our study proposes a metric, the proposed model
can also take the advantages that these studies grouped by this section have.

2.2. Analyzing the Stability of the GAN Model

Although analyzing the stability of the GAN model did not affect directly stable training of GANs,
studies in this category detected and showed these phenomena based on the data generated by the
trained model. Covariate shift analysis was a scheme to add a multi-class classifier in a balanced
multi-class dataset to investigate whether the data generated by GAN was biased [44]. Unsupervised
deep domain adaptation was a scheme to extend covariate shift analysis to an unbalanced dataset with
the existence of a balanced dataset [45].

2.3. Stable Training and An Evaluation Index

In this category, there are several studies recently. For instance, an algorithm was proposed
in Variational Encoder Enhancement GANs (VEEGAN) to estimate mode collapse [46]. It was
conducted by training a multi-layer neural network with sample data and the standard deviation of
the data. Boundary Equilibrium Generative Adversarial Nets-Constrained Space (BEGAN-CS) added
an embedding space-constrained loss in BEGAN and showed the stability improvement by using
the proportional coefficient’s variation during training [47]. Although the results of VEEGAN and
BEGAN-CS were noticeable, they had limitations that require additional CNN models and a constraint
of latent space for a discriminator, respectively.

Our model, SFGAN, detects mode drop and (or) mode collapse during training. The details of
SFGAN are presented in Section 3. Experimental results of SFGAN and BEGAN presented in Section 5
show that the output values of the two models are related to the mode drop and (or) mode collapse
of BEGAN.

3. Simplified Fréchet Distance

In this section, we introduce SFD and present its advantages. Section 3.1 defines notations to
describe image distribution and then introduces the Fréchet distance and SFD based on the defined
notations. The advantages of SFD are investigated in Section 3.2 by comparing it with other distance
metrics using two different examples.
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3.1. Simplified Fréchet Distance

We introduce distance metrics of image distributions. For defining distance metrics, images have
to be converted to numerical values. Consider a color image that has h and w pixels for height and
width, respectively. As an image usually consisted of three channels, R, G, and B, and its values are
numbers, without loss of generality, we assume that each pixel of an image has a number for each
channel. Then, the image has 3hw pixels in total. Let X be a random vector whose components consist
of a random variable Xc

i, j, where Xc
i, j is the value of pixel (i, j) for c = R, G, B. Then X can be written as

X = (Xc
i, j), i = 1, · · · , h, j = 1, · · · , w, c = R, G, B. (1)

From now on, we call X as an ‘image vector’ and describe distance metrics in terms of the image
vectors. Figure 2 illustrates the way of converting an image to an image vector.
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We first describe FD of images and then introduce SFD. Assume that there are k images and
denote an image vector corresponding to the n-th image as Xn. Then, Xn is given by Xn = (Xc,n

i, j ), i =
1, · · · , h, j = 1, · · · , w, c = R, G, B.

Let X and Y be random vectors given by image vectors and F and G be their distributions,
respectively. Let m• and C• be the mean vector and covariance matrix of a variable •, respectively,
where • = X, Y. Then, mX and CX of X are defined by

mX = (mXc
i, j
) =

(
1
k

k∑
n=1

Xc,n
i, j

)
and CX = (Xc

i, j −mXc
i, j
)T(Xc

i, j −mXc
i, j
),

i = 1, · · · , h, j = 1, · · · , w, c = R, G, B.
(2)

respectively, where T in CX represents transpose of a matrix.

Definition 1. Fréchet Distance.

The Fréchet distance Fr(F, G) between two distributions F and G is defined by

Fr2(F, G) = min
X,Y

E|X −Y|2, (3)

where E represents the expectation, and the minimization is taken over all random variable X and Y
having distributions F and G, respectively [19].

In particular, if X and Y follow multivariate normal distributions Fr2(F, G) is given by

Fr2(F, G) = ‖mX −mY‖
2 + tr

{
CX + CY − 2(CXCY)

1/2
}
, (4)

where ‘tr’ in Equation (4) represents the trace of a matrix [51].
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FID was a metric providing a better result for measuring the similarity between the two
distributions of generated data and the real data. For instance, FID was compared with the IS
in experiments using various data [20]. However, the covariance term in Equation (4) has drawbacks
in adopting FD as a loss to train GAN. These drawbacks were demonstrated in [28] by the empirical
results using the MNIST [52], Fashion-MNIST [53], CIFAR-10 [31], and CelebA [30] datasets. In [28],
each dataset was divided into two groups, and the FID was used as the similarity index between the
groups. It was observed that estimating a total covariance matrix can be unnecessary and unproductive.
It was also mentioned that a constrained version of FID might be enough to represent distances between
data. Based on this, it seems relevant to delete the covariance term in FID. By considering this aspect,
it may not be a problem to apply the distance metric without covariance in FD to the data, not the
inceptionv3 feature of data. Furthermore, the larger the dimension size of the datasets is, the higher the
computational load on the covariance matrix is. These facts motivate SFD. That is, SFD simplifies and
regularizes the covariance term in FD to reduce the complexity of FD and to learn stably, respectively.
This distance metric makes applicable FD in the training process of GANs with less computing load.
For this purpose, we assume that all components of both random vectors X and Y are independent.
There is no guarantee that these components are independent, and they may be dependent on the real
world. In the field of deep learning, however, such an assumption was used in several studies, and the
better results were obtained under the assumption [54–56]. The independence of the two variables
does not imply that they have the same variances. The SFD is introduced with this assumption.

Definition 2. Simplified Fréchet Distance.

The Simplified Fréchet distance SF(F, G,α) between two multivariate normal distributions F and
G with coefficient α is given by

SF2(F, G,α) = ‖mX −mY‖
2 +

1
α
‖σX − σY‖

2, (5)

where σ2
• is the variance of a random variable • and α is a constant for regularization.

In the following, SF(F, G,α) is representing
√

SF2(F, G,α).

3.2. Advantages of Simplified Fréchet Distance

To investigate the advantages of SFD, we consider two examples. Although these examples might
be extreme cases, they can appear in the training process of GANs. For the two examples, SFD is
compared with two distance metrics: JSD and EMD. The definitions of JSD and EMD can be found in
Appendix A.

Example 1. (Learning parallel distribution) The distributions of real data and estimated data are parallel.

It was shown that JSD is inadequate, while EMD is adequate to measure data distributions that
are parallel [15]. We consider the two-dimensional random vectors X and Y whose components are

normally distributed with means (0, 0) and (θ, 0), and covariance matrices
(

0 0
0 1

)
and

(
0 0
0 1

)
,

respectively. Then, the distributions of X and Y are parallel.

Example 2. The distributions of real data and estimated data are a couple of univariate normal distributions
with mean zero.

Let X and Y be the one-dimensional random variables distributed according to normal probability
density function (pdf) with means 0 and 0, variances 1 and δ2, respectively.

The three distances for the two examples are represented in Table 1. The detailed derivation of
the obtained values can be found in Appendix B. According to the table, JSD is a constant or log2,
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regardless of θ,θ , 0. On the other hand, EMD and SFD are varying according to θ for Example 1.
These values imply that JSD cannot distinguish the given distributions, while EMD and SFD can
distinguish those. For Example 2, on the other hand, EMD has zero as a lower bound regardless of δ,
while JSD and SFD depend on the δ. That is, EMD cannot distinguish the given distributions, while
JSD and SFD can distinguish those. Figure 3 illustrates the obtained three distances given in Table 1 for
varying θ and δ with α = 1 for SFD; (a) Example 1 with θ ∈ [−1, 1], (b) Example 2 with δ ∈ [0.04, 2].
From the two examples, it is noticed that SFD is the only distance metric that can always be expressed
in terms of the respective parameters θ and δ.
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δ ∈ [0.04, 2].

This disadvantage of EMD is not limited to a univariate normal distribution, as shown in Example 2.
By Equation (A22), it is noteworthy that the lower bound of EMD is zero for other cases, such as the
given two distributions are multivariate normal distributions with the same mean but other than zero.
In this case, EMD cannot distinguish the two distributions.

Table 1. Comparison of JSD, EMD, and SFD for the examples.

Distance Metric Example 1 Example 2

Jensen–Shannon distance (JSD) log 2, θ , 0
0, θ = 0

1
2 log δ2+1

2δ

Earth Mover’s distance (EMD) |θ| [0, |δ− 1|]
Simplified Fréchet distance (SFD) |θ| 1

√
α
|δ− 1|

4. Simplified Fréchet GAN

In this section, we present a GAN model, simplified Fréchet GAN (SFGAN). SFGAN uses the SFD
in the calculation of the discriminator loss and the generator loss in a GAN.

Since GANs are trained by an adversarial loss that is based on the discriminator output, the output
must have a multivariate normal distribution to apply SFD. As far as we know, however, no studies
have considered multivariate normal distributions as outputs. It is widely accepted in the image
processing field that the distribution of a lot of images is assumed as multivariate normal [57–59],
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and the distribution of output data will be the same as that of input data through an auto-encoder.
For this reason, we design the discriminator in the form of an auto-encoder.

Three candidates can be considered for the baseline of our model; BEGAN, EBGAN,
and MMD-GAN. The architectures of all three models include an auto-encoder. However, EBGAN
cannot apply measures based on data distributions because EBGAN uses errors per pixel. Therefore,
EBGAN is excluded from the candidates. As MMD-GAN requires additional reconstruction error
term, the error has to be defined additionally as the form of per-pixel error. Therefore, this model is not
relevant to the baseline model. Since BEGAN is only required to replace distance metric, it seems to be
the better model than the other two models.

For this reason, we select BEGAN as the baseline model of SFGAN. The network architecture and
used losses in the network of SFGAN are the same as those of BEGAN. The only difference is the used
distance metric, SFD for SFGAN, and EMD for BEGAN. Figure 4 illustrates the model architecture and
procedure of SFGAN. The procedure, including the data flow of SFGAN, is described in Table 2.Sensors 2020, 20, x 11 of 28 

 

 

Figure 4. Schematic diagram of the SFGAN algorithm. The numbers on the arrow indicate those steps 
in the procedure of SFGAN. 

Figure 5 illustrates the overall network architecture of SFGAN. This architecture consists of two 
parts: encoder and decoder/generator. The decoder and the generator have the same structure with 
different weights. The discriminator consists of an encoder and a decoder. All convolutional layers 
in the encoder are the same as the layers in the generator except for the number of filters. In the sub-
sampling layers of the encoder, the input of a layer is downsampled using stride two, which reduces 
the input size as it passes through the layers. On the other hand, in the up-sampling layers of the 
decoder/generator, the input of a layer is up-sampled using the nearest neighbor method, which 
enlarges the input size as it passes through the layers. 

The input of encoder is the real data or the generated data, while the input of decoder is the 
output of the encoder, which is called as a hidden variable. The input of the generator is the noise 
sample vectors z  and it gets into the fully connected layer. All convolutional layers use 3 3×
convolutions with exponential linear units [60] and are repeated twice for better output. The batch 
size of the discriminator is twice of that for generator because discriminator has to afford to deal with 
both real data and generated data. In the figure, n and c represent the batch size and the number of 
filters, respectively. 

Figure 4. Schematic diagram of the SFGAN algorithm. The numbers on the arrow indicate those steps
in the procedure of SFGAN.

Table 2. Procedure of SFGAN.

The Procedure of SFGAN

1. Generate n noise samples z =
{
z1, · · · , zn

}
. Each zi is vector given by zi = (zi

1, zi
2, . . . , zi

d), where d is the
number of dimensions, and each component of zi is randomly generated according to a uniform distribution in
the interval [−1,1] with pdf pz.
2. The generator G generates fake data G(z) based on the generated samples z.
3. n samples x =

{
x1, · · · , xn

}
are taken from real data with pdf pdata.

4. Auto-encoder D receives G(z) and x as inputs and produces D(G(z)) and D(x) as outputs.

The detailed structure in D will be explained according to Figure 5. The loss functions in SFGAN
are as same as those of BEGAN except involved distance metric in the functions. The losses consist of
discriminator loss LD and generator loss LG, which is given by

LD = Ex∼pdata(x)[SF(x, D(x),α)] − ktEz∼pZ(z)[SF(G(z), D(G(z)),α)] (6)
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and
LG = Ez∼pZ(z)[SF(G(z), D(G(z)),α)], (7)

where Er∼p represents the expectation of variable r with pdf p. kt is a variable for stable learning at t
step which is updated by proportional control given by

kt+1 = kt + λk(γ(SF(x, D(x),α)) − SF(G(z), D(G(z)),α)), (8)

where k0 = 0, kt ∈ [0, 1], λk is the proportional gain depending on kt, and γ is a hyperparameter for
controlling image diversity taking values in the interval [0,1]. Note that the small value of γ gives low
diversity of generated data. Both of discriminator and generator are trained using the GD method
with values of Equations (6) and (7), respectively.Sensors 2020, 20, x 12 of 28 
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Figure 5 illustrates the overall network architecture of SFGAN. This architecture consists of
two parts: encoder and decoder/generator. The decoder and the generator have the same structure
with different weights. The discriminator consists of an encoder and a decoder. All convolutional
layers in the encoder are the same as the layers in the generator except for the number of filters.
In the sub-sampling layers of the encoder, the input of a layer is downsampled using stride two,
which reduces the input size as it passes through the layers. On the other hand, in the up-sampling
layers of the decoder/generator, the input of a layer is up-sampled using the nearest neighbor method,
which enlarges the input size as it passes through the layers.

The input of encoder is the real data or the generated data, while the input of decoder is the output
of the encoder, which is called as a hidden variable. The input of the generator is the noise sample
vectors z and it gets into the fully connected layer. All convolutional layers use 3× 3 convolutions with
exponential linear units [60] and are repeated twice for better output. The batch size of the discriminator
is twice of that for generator because discriminator has to afford to deal with both real data and
generated data. In the figure, n and c represent the batch size and the number of filters, respectively.

5. Experiments

In this section, we present experimental results. We implemented two experiments. One is for
stability comparison of generation models, and the other is for comparison of distance metrics to detect
mode collapse and/or mode drop during training the network. For performance comparison, BEGAN
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is executed in the experiment. SFGAN and BEGAN are trained until mode collapse and/or mode drop
occur to compare the stability. In the former experiment, the images generated during the training at
every 1000 steps, the measured values of losses, and the kts at that time are compared. In the latter
experiments, JSD, EMD, and SFD between the generated data and the training data of the two models
are measured. As a criterion for the similarity between real data and fake data, FID is considered for
the two models.

In the following, the experimental setting is explained in Section 5.1, and the image stability on
sequential steps by SFGAN and BEGAN are presented in Section 5.2. The results for verifying the
stability of SFGAN and the performance comparison of the two models are presented in Sections 5.3
and 5.4, respectively.

5.1. Experimental Setting

For training, two computers are used. One of them is composed of Intel® CORE™ CPU, NVIDIA
GTX 1080ti as GPU with 24 GB RAM, while the other is composed of Intel® Xeon® CPU E5-2680 v4,
NVIDIA RTX TITAN as GPU with 128 GB RAM. All experiments are implemented by the TensorFlow
library [61].

The CelebA [30], CIFAR-10 [23], and a mixture of Gaussian distributions are used to train the GAN
models. These datasets are commonly used in GANs research. The CelebA is a collection of human
face images. It is effective at testing qualitative results because human faces are good at recognizing
defects [29]. In the experiment, the images of 64 × 64 and 128 × 128 resolutions will be generated
for CelebA. The CIFAR-10 is a set of widely used images in the image-based machine learning studies.
CelebA has only human faces, and the number of training images is 202,599, while CIFAR-10 contains
various images such as trucks, frogs, birds, and ships, which are hardly the same objects, and the
number of images is 60,000, relatively small. The last dataset consists of 2-D random variables from
the mixture of Gaussian distributions. Eight random variables are distributed in a circle, and each
random variable consists of x and y coordinates. The expectation of each random variable depends
on the position of the random variable, and its standard deviation is fixed as 0.02. The test with this
dataset was proposed in unrolled GAN [13] to evaluate the performance of discriminator. In the test,
it was assumed as unstable if any one of eight distributions are not learned. With the same stability
criterion, the stability of SFGAN is also investigated with this dataset.

Figure 6 shows samples from CelebA, CIFAR-10, and the mixture of Gaussian. Table 3 summarizes
parameters and the corresponding values used in the experiments. Note that the parameter values are
the same used in BEGAN-cs [50] or BEGAN. It is noteworthy that two regularization constants are
used in the experiments. The value one is for detecting mode collapse and/or mode drop while 12,288
is for training the networks, which is obtained for acceptable learning of 64 × 64 resolution images
during the experiments. The experiments are conducted five to ten times to see if the results fluctuate
per each experiment. It is observed that the differences among results are negligible. The presented
SFD values are one-dimensional values, which are obtained from the experimental results divided
by the number of dimensions. Adam is used as an optimizer to both models since this optimizer is
invariant to a diagonal rescaling of the gradients [62].
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Figure 6. Samples of datasets: (a) CelebA; (b) CIFAR-10; (c) a mixture of Gaussian.

Table 3. Hyperparameters used in the experiments.

Hyperparameter Value

Batch size (n) 64
CelebA resolutions (h×w) 64 × 64, 128 × 128

CIFAR-10 resolution (h×w) 32 × 32
Channel unit (c) 64

Regularization coefficient for training (α) 12,288
Regularization coefficient for detecting (α) 1

Adam (β1, β2) 0.9, 0.999
Proportional gain (λk) 0.001

Diversity ratio (γ) 0.5
Learning rate 0.001

Total global steps 3000,000

5.2. Stability of Training

5.2.1. The Generated Images of CelebA: 64 × 64 Resolution

Figure 7a,b show 16 sample images in 64 × 64 resolution generated in four steps by BEGAN and
SFGAN, respectively. 16 samples (i.e., l is set to 16) are chosen from a random uniform distribution for
the generator’s input at the beginning, and the images generated from the samples are monitored in
every 1000 steps until 3000k steps. It is challenging to say mode collapse or mode drop numerically,
but the generated samples allow us to determine if the training was as intended. In the 200k step,
the training result of BEGAN is similar to that of SFGAN. However, at 970k step, the generated images
by BEGAN became weird while SFGAN still generated acceptable human faces. At 3000k step, BEGAN
generated very similar images even for different inputs. On the other hand, SFGAN generated diverse
human-like face images steadily until 3000k steps. In other words, BEGAN started to generate weird
similar face images after 968k steps on the average in a total of ten experiments. This implies that the
mode collapse occurs at 968k step, and BEGAN never optimized or restored to stable status after all.
On the other hand, SFGAN keeps on generating face images until 3000k steps without mode collapse.
Therefore, it can be said that the training process of SFGAN is stable until 3000k steps. However,
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the example in Figure 7 appears hard to assume that a mode drop has occurred in both BEGAN
and SFGAN.
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Figure 7. A total of 16 samples generated at 200k, 960k, 970k, and 3000k steps trained with CelebA
dataset in 64 × 64 resolution by: (a) BEGAN; (b) SFGAN with α = 12, 288.

Figure 8 compares the two losses, kts, and the generated images during the training process of the
two models. Figure 8a,b shows the losses of discriminator and generator of the models, respectively.
The amplitudes of both losses of discriminator and generator of BEGAN increase after 970k steps,
while those of SFGAN do not change much and even seem to converge. The loss differences for
the two models appeared the difference between generated images, as shown in Figure 8d. That
is, the generator of BEGAN fails to generate human-like faces at 970k step, while the generator of
SFGAN keeps on generating human-like faces until 3000k steps. Figure 8c shows that the change
of kt is negligible if GANs are in the equilibrium state. That is, the more stable the training gives
a smaller variation of kt [50]. In early training stages, both of BEGAN and SFGAN are tending to
generate easy-to-reconstruct data by auto-encoder because the real data distribution has not been
learned accurately yet. BEGAN seems to find a stable value as it gradually descends. When BEGAN
started to generate images that are not human-like faces, however, kt decreases rapidly. This means that
the discriminator’s loss is reduced faster than that of the generator. In other words, the discriminator
won the generator. SFGAN, on the other hand, kt increases and then decreases slowly until 150,000
steps. After 150,000 steps, no abrupt decrements are observed for SFGAN as BEGAN does have.
Based on this observation, we may derive the following: (1) If kt is not zero and has small vibration or
converging to a constant that is not zero, then the network can be considered as in a stable state. (2) If
kt converges to zero, the generator’s loss is too large, and the network is far from the equilibrium state.
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5.2.2. The Generated Images of CelebA: 128 × 128 Resolution

Figure 9 presents the results for the images with 128 × 128 resolution. In the 200k step, the training
result of BEGAN is similar to that of SFGAN. However, it is observed that the mode collapse occurs 520k,
which is earlier than that with 64 × 64 resolution in BEGAN. At 3000k step, BEGAN generated the
same images even if different inputs are given. Based on the results with two different resolutions,
the mode collapse seems to occur faster as the image resolution increases in BEGAN. This phenomenon
seems caused by the insufficiency of the weight parameters in the model network because the mode
collapse and/or mode drop can easily occur when the number of weight parameters is insufficient [63].
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Figure 9. A total of 16 samples generated at 200k, 519k, 520k, and 3000k steps trained with CelebA
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Figure 10 compares the two losses, kts, and the generated images during the training process of
the two models. Figure 10a,b show that the differences in both discriminators’ losses are insignificant,
while those of both generators’ losses seem significant. The loss of generator of BEGAN fluctuates
significantly after 700k steps compared to the previous steps, while the loss of generator of SFGAN
is almost consistent. The instant of the abrupt changes in loss of generator with this resolution is
different from that with a smaller resolution, 520k steps. This can be interpreted in two ways; (i) The
exact instant is missing because the losses are measured at every 1000 steps. (ii) The mode collapse
and/or mode drop can occur even if the generator learns stably. Figure 10c illustrates kts for every 1000
steps of the two models, and Figure 10d presents the created samples corresponding to 200k steps,
519k steps, 520k steps, and 3000k steps. At 520k steps, kt of BEGAN dropped rapidly, and the similar
images are generated. The rapid drop of kt implies that the loss of discriminator does not change much
during its update, and this may result in the model collapse or mode drop. This phenomenon did not
occur in SFGAN until 3000k steps, as same as 64 × 64 resolution.

If we compare the results of two resolutions and two models, the followings are concluded;
(i) BEGAN requires one and two more convolutional layers for the generator and discriminator,
respectively, if the resolution becomes twice. (ii) The used network architecture is not a good model
for large sizes of images. (iii) Even though the network structure of SFGAN is the same as BEGAN,
it is less affected by the architecture and, therefore, resolution. This phenomenon seems to owe to
using SFD.
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5.2.3. The Generated Images of CIFAR-10: 32 × 32 Resolution

The same experiments are conducted with CIFAR-10. Figures 11 and 12 present the results with
32 × 32 resolution. Figure 11 compares the images generated by the two models at 397k, 427k, 457k,
and 3000k steps. Overall, it is difficult to figure out the images created by both models. According
to [63], BEGAN-based models perform slightly better than DCGAN in training CIFAR-10. Therefore, it
can be derived that the obtained unclear images may be caused by the network structure of BEGAN.
The figure shows that BEGAN seems to produce relatively sharp images initially up to 397k steps
compared to SFGAN. However, similar images are generated from 427k, and it seems to fail to generate
different images from 457 k steps. The generated images are all the same images at 3000k steps finally.
On the other hand, SFGAN generates different images continuously, even though the images are blurry
from the beginning. Figure 12 compares the two losses, kts, and the generated images during the
training process of the two models. The losses of discriminator seem stable in both models, while the
losses of the generator are not. That is, the loss of generator in BEGAN increases slightly from about
400k steps and then fluctuates after all. This phenomenon may result in a lack of diversity in the
generated images.
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is not valid for the CIFAR-10. This phenomenon seems to owe to the number of training data because 
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LD; (b) generator loss LG; (c) variable kt; (d) samples during the training process of BEGAN and SFGAN
with α = 12, 288.
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On the other hand, for SFGAN, the amplitude of loss of the generator gradually decreases, staying
around small values near zero. As shown in Figure 12c, the kt values for BEGAN drop rapidly at
397k steps, 427k steps, and 457 steps, which seems to be associated with the reduction of diversity in
the generated images, as shown in Figure 12d. The kts for SFGAN does not drop abruptly, except in
the initial stage of training. The stable kts seem to correspond to the generated images of SFGAN.

Comparing the results of two datasets, CelebA and CIFAR-10, the followings are concluded:
(i) BEGAN and SFGAN can make human faces up to 500k steps when training a CelebA dataset, but it
is not valid for the CIFAR-10. This phenomenon seems to owe to the number of training data because
the number of images of CelebA is approximately 3.4 times that of CIFAR-10. (ii) Based on the training
results of CIFAR-10, the capacities of SFD and BED as distance metrics are similar in training, while
SFD is better than EMD in stability and performance.

5.3. Mixture of Gaussian Dataset

In this section, we compare the qualitative results of a mixture of Gaussian. Figure 13c shows
examples of images used as training data. The example images are dawn by randomly generated
100 samples from the mixture of Gaussian distribution. Figure 13a,b presents the generated images by
BEGAN and SFGAN, respectively. As shown in the figure, both models learn roughly the circular
positions of the random variables. However, the densities of each eight centers of BEGAN are relatively
low compared to those of SFGAN. These results imply that SFD enables us to learn the distribution at
least as same as or better than EMD.

Sensors 2020, 20, x 20 of 28 

 

 

 
(a)  (b)  (c)  

Figure 13. Four batches of 100 sample generation results trained with a 2-D mixture of Gaussian by: 
(a) BEGAN; (b) SFGAN with 12,288α = ; (c) training data. 

5.4. Detecting Mode Collapse Using Distances 

Figure 14 compares (a) JSD, (b) EMD, (c) SFD between the training data and the generated data 
for every 1000 steps during the training process of BEGAN and SFGAN with 12,288α =  for (a) and 
(b), and 1α = for (c), and (d) the generated samples presented in Figure 14 d. At a glance, each of the 
three distance metrics for BEGAN is more fluctuate than that of SFGAN, especially after 970k. For 
BEGAN, the following are observed; For JSD, it is difficult to find the exact spot where the distance 
is distinguished from detecting the mode collapse even though the amplitude of the values increases 
between 960k and 970k. For EMD, the range of distances slightly increases from 960k to 970k after 
mode collapse occurs. However, there are overlapping ranges before and after the mode collapse 
occurs, which seems to owe the definition of EMD. In the case of SFD, however, the ranges of distance 
differ significantly before and after the mode collapse, compared to those of JSD and EMD. In other 
words, mode collapse and/or mode drop detection is detected better by SFD than by JSD and EMD. 
As already seen in Section 5.2, no collapse occurs in SFGAN, and distance metrics verifies this. As a 
result, the distance values of SFGAN in (a), (b), and (c) can imply the stable state. 

In Table 4, the mean values of the three distance metrics are compared for two groups: a group 
from 1 step to 968k step and a group from 969k step to three million steps, for the two models. The 
presented values in the table are the averages of ten experiments. In BEGAN, all values of JSD, EMD, 
and SFD for the second group are increased compared to the corresponding value for the first group. 
The biggest increment is observed in SFD, followed by JSD and EMD. This increment shows that 
mode collapse and/or mode drop signs can be captured without the inception v3 model or balanced 
dataset, which are regarded requirements for detecting these phenomena. All values of the three 
metrics for SFGAN are slightly increased in the second group compared to the corresponding value 
for the first group, even if mode drop and (or) mode collapse did not yet appear. This phenomenon 
can be interpreted as two situations: (1) SFGAN's learning is almost balanced, which derives similar 
values of distances. (2) SFGAN remains the possibility to occur mode drop and (or) mode collapse. 
  

Figure 13. Four batches of 100 sample generation results trained with a 2-D mixture of Gaussian by:
(a) BEGAN; (b) SFGAN with α = 12, 288; (c) training data.

5.4. Detecting Mode Collapse Using Distances

Figure 14 compares (a) JSD, (b) EMD, (c) SFD between the training data and the generated data
for every 1000 steps during the training process of BEGAN and SFGAN with α = 12, 288 for (a)
and (b), and α = 1 for (c), and (d) the generated samples presented in Figure 14 d. At a glance, each of
the three distance metrics for BEGAN is more fluctuate than that of SFGAN, especially after 970k.
For BEGAN, the following are observed; For JSD, it is difficult to find the exact spot where the distance
is distinguished from detecting the mode collapse even though the amplitude of the values increases
between 960k and 970k. For EMD, the range of distances slightly increases from 960k to 970k after
mode collapse occurs. However, there are overlapping ranges before and after the mode collapse
occurs, which seems to owe the definition of EMD. In the case of SFD, however, the ranges of distance
differ significantly before and after the mode collapse, compared to those of JSD and EMD. In other
words, mode collapse and/or mode drop detection is detected better by SFD than by JSD and EMD. As
already seen in Section 5.2, no collapse occurs in SFGAN, and distance metrics verifies this. As a result,
the distance values of SFGAN in (a), (b), and (c) can imply the stable state.



Sensors 2020, 20, 1548 20 of 27

Sensors 2020, 20, x 21 of 28 

 

(a) 

 

(b) 

(c) 

(d) 

Figure 14. Comparison of distances between the distributions of training data and data generated by 
BEGAN and SFGAN: (a) JSD; (b) EMD; (c) SFD with 1α = ; (d) generated samples of the two models. 

Table 4. Mean values of JSD, EMD, and SFD of two groups; Before 968k (from 1 step to 968k) and 
After 968k (from 969k step to three million steps) for BEGAN and SFGAN. 

Model 
BEGAN SFGAN 

Step group Step group 
Before 968k After 968k Before 968k After 968k 

JSD 0.038065 0.048083 0.044120 0.045827 
EMD 0.152573 0.365471 0.227430 0.229367 
SFD 0.197894 0.867904 0.237440 0.240151 

5.5. Quantitative Comparison 

The performance of SFGAN is evaluated in two ways; comparison of FID index with BEGAN 
and comparison with well-known GAN models. 

Figure 15 shows the FID [20] between the real and the generated data for BEGAN and SFGAN 
for every 1000 steps up to 2000k steps. As the green circle indicates, the minimum values of FID for 
both models are 32.88 and 32.4, respectively, which are almost the same. The FID values of BEGAN 

Figure 14. Comparison of distances between the distributions of training data and data generated by
BEGAN and SFGAN: (a) JSD; (b) EMD; (c) SFD with α = 1; (d) generated samples of the two models.

In Table 4, the mean values of the three distance metrics are compared for two groups: a group
from 1 step to 968k step and a group from 969k step to three million steps, for the two models.
The presented values in the table are the averages of ten experiments. In BEGAN, all values of JSD,
EMD, and SFD for the second group are increased compared to the corresponding value for the first
group. The biggest increment is observed in SFD, followed by JSD and EMD. This increment shows that
mode collapse and/or mode drop signs can be captured without the inception v3 model or balanced
dataset, which are regarded requirements for detecting these phenomena. All values of the three
metrics for SFGAN are slightly increased in the second group compared to the corresponding value for
the first group, even if mode drop and (or) mode collapse did not yet appear. This phenomenon can be
interpreted as two situations: (1) SFGAN’s learning is almost balanced, which derives similar values of
distances. (2) SFGAN remains the possibility to occur mode drop and (or) mode collapse.
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Table 4. Mean values of JSD, EMD, and SFD of two groups; Before 968k (from 1 step to 968k) and After
968k (from 969k step to three million steps) for BEGAN and SFGAN.

Model
BEGAN SFGAN

Step Group Step Group

Before 968k After 968k Before 968k After 968k

JSD 0.038065 0.048083 0.044120 0.045827
EMD 0.152573 0.365471 0.227430 0.229367
SFD 0.197894 0.867904 0.237440 0.240151

5.5. Quantitative Comparison

The performance of SFGAN is evaluated in two ways; comparison of FID index with BEGAN and
comparison with well-known GAN models.

Figure 15 shows the FID [20] between the real and the generated data for BEGAN and SFGAN
for every 1000 steps up to 2000k steps. As the green circle indicates, the minimum values of FID for
both models are 32.88 and 32.4, respectively, which are almost the same. The FID values of BEGAN
increased suddenly around 970k, while those of SFGAN remain steady. However, BEGAN could no
longer maintain its quality after 970k, while SFGAN maintained its quality until 2000k steps. This FID
value demonstrated that SFGAN is not in mode drop or mode drop phenomenon.
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The obtained FID indices of the two models are compared with those of well-known GAN
models. Table 5 summarizes the FID indices of those GAN models, including SFGAN. The FID indices
of DCGAN, WGAN, and WGAN-GP in the table are from [28], which obtained by using CelebA
and CIFAR-10.

Table 5. Comparison of FID indices by several GAN models.

Model CelebA CIFAR-10

DCGAN 65.6 ± 4.2 72.7 ± 3.6
WGAN 41.3 ± 2.0 55.2 ± 2.3

WGAN-GP 30.0 ± 1.0 55.8 ± 0.9
BEGAN 38.9 ± 0.9 71.4 ± 1.6
SFGAN 38.1 ± 0.8 68.4 ± 1.3

For the CelebA dataset, WGAN-GP performs best. This superiority comes from the process of
calculating the gradient of the discriminator. The calculation of gradient in WGAN-GP is executed the
forward and backward propagation as a whole. Even though SFGAN is in the second position, it is
the best FID value in the models that do not calculate the gradient. The models with BEGAN-based
architecture, such as BEGAN and SFGAN, appear to be better models for learning CelebA data than
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the models with DCGAN-based architecture. Note that DCGAN, WGAN, and WGAN-GP belong to
models with DCGAN-based architecture.

Meanwhile, when training CIFAR-10, BEGAN and SFGAN are worse than WGAN and WGAN-GP.
These performances are because the models with BEGAN-based architecture do not train the dataset
sufficiently, which seems to owe the number of filters of a layer [63]. In other words, it is assumed that
the number of filters in each layer within the BEGAN-based architecture is smaller than that of the
DCGAN-based architecture.

Even though the training processes of some experiments turn out to be unstable and the same or
blurred images are generated, it is difficult to figure out the reason for the results. Maybe it is because
of mode drop or mode collapse or both. At the current level of researches, it is not very easy to find out
the relationship between the stability of the training process and the two phenomena, quantitatively
measure and distinguish the two phenomena.

6. Conclusions

We have introduced a distance metric SFD and proposed a SFGAN model. SFD has used for
two cases: one is in loss functions of SFGAN, and the other is as a measure to detect mode drop
and mode collapse during the training process. SFGAN has implemented using several datasets,
including CelebA and CIFAR-10, and is compared with BEGAN that is using auto-encoder and EMD.
Experimental results show that the training process of SFGAN is more stable than that of BEGAN
under the same conditions. Also, it is verified that SFD is an acceptable distance metric presenting
better results than the existing distance metrics such as JSD and EMD in detecting mode drop and/or
mode collapse. This study will be extended to apply SFD in the field of GAN and apply SFGAN to
various datasets such as ImageNet. The relationship between stability and mode collapse and/or mode
drop and how to distinguish between mode collapse and mode drop will be studied in the future.
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Appendix A

Definition A1. The Jensen–Shannon distance (JSD).

JS(F, G) =
1
2

KL
(
F‖

F + G
2

)
+

1
2

KL
(
G‖

F + G
2

)
, (A1)

where KL(F‖G) is the Kullback–Leibler (KL) divergence defined by

KL(F‖G) =

∫
f (x) log

(
f (x)
g(x)

)
dx, (A2)

where both f (x) and g(x) are absolutely continuous with F(A) =
∫

A f (x)dx and G(A) =
∫

A g(x)dx [18].
JSD is based on the KL divergence considering symmetric property which KL divergence does

not have. Since JSD is bounded and symmetric [64], it is the first distance metric applied in GANs.
However, it has the disadvantage of not being able to learn the data distribution in low dimension [15].

Definition A2. The Earth-Mover distance (EMD or Wasserstein-1).
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EM(F, G) = inf
γ∈Θ

E(X,Y)∼γ[|X −Y|], (A3)

where Θ is the set of all joint distributions whose marginal distributions of X and Y are F and G,
respectively. The EMD considers the minimal cost for transformation of distributions.

Definition A3. Maximum Mean Discrepancy (MMD)

MMD(ψ, F, G) = sup
f∈ψ

(
Ex∼F[ f (x)] −Ey∼G[ f (y)]

)
, (A4)

where ψ =
{
h : χ→ R : χ is a metric space

}
and F and G are the distribution functions of x and

y, x, y ∈ χ, respectively [44].

Appendix B

For Example 1, the JSD, EMD, and SED are computed as follows:

Lemma A1.

(a)JS(F, G) =

log 2, θ , 0,

0, θ = 0.
(A5)

(b)EM(F, G) = |θ| (A6)

(c)SF(F, G,α) = |θ| (A7)

Proof. (a) If θ = 0, then F and G are the same distribution. Therefore, F+G
2 = F = G and this gives

JS(F, G) =
1
2

KL(F‖F) +
1
2

KL(F‖F) = KL(F‖F) =
∫

f (x) log
(

f (x)
f (x)

)
dx =

∫
f (x) · 0dx = 0 (A8)

If θ , 0, then

JS(F, G) = 1
2 KL

(
F‖F+G

2

)
+ 1

2 KL
(
G‖F+G

2

)
= 1

2

∫
f (x) log

(
2 f (x)

f (x)+g(x)

)
dx + 1

2

∫
g(x) log

(
2g(x)

f (x)+g(x)

)
dx

= 1
2

∫
f (x) log

(
2 f (x)
f (x)

)
dx + 1

2

∫
g(x) log

(
2g(x)
g(x)

)
dx

=
log 2

2

∫
f (x)dx + log 2

2

∫
g(x)dx

= log 2.

(A9)

(b) By Jensen’s inequality, the following relation holds.

inf
γ∈Θ

∣∣∣E(X,Y)∼γ[X −Y]
∣∣∣ ≤ inf

γ∈Θ
E(X,Y)∼γ[|X −Y|] ≤ inf

γ∈Θ

√
E(X,Y)∼γ‖X −Y‖2. (A10)

That is,

inf
γ∈Θ

∣∣∣E(X,Y)∼γ[X] −E(X,Y)∼γ[Y]
∣∣∣ ≤ EM(F, G) ≤

√
Fr2(F, G) (A11)

and this gives

inf
γ∈Θ
|mX −mY| = |θ| ≤ EM(F, G) ≤

√
Fr2(F, G). (A12)



Sensors 2020, 20, 1548 24 of 27

FD, the upper bound of Equation (A10), for this example is as follows:

Fr2(F, G) = θ2 + tr


(

0 0
0 1

)
+

(
0 0
0 1

)
− 2

((
0 0
0 1

)(
0 0
0 1

)) 1
2
 = θ2. (A13)

Therefore, EM(F, G) is given by
EM(F, G) = |θ|. (A14)

(c)SF2(F, G,α) = θ2 +
1
α
· 02 = θ2. (A15)

�

The JSD, EMD, and SFD for Example 2 are computed as follows.

Lemma A2.

(a)JS(F, G) =
1
2
(log

δ2 + 1
2δ

), (A16)

(b) 0 ≤ EM(F, G) ≤ |δ− 1|, (A17)

(c)SF(F, G,α) =
1
√
α
|δ− 1|. (A18)

Proof. (a) Since F and G are belonging to the same mixture family, JS(F, G) can be expressed as a
Jensen–Bregman divergence [65]. Therefore, it can be written as:

JS(F, G) =
1
2

1
2

mT
XC−1

X mX +
1
2

mT
YC−1

Y mY −mT
1/2C−1

1/2m1/2 + log
|CX|

1/2
|CY|

1/2∣∣∣C1/2
∣∣∣

, (A19)

where C1/2 =
(

1
2 C−1

X + 1
2 C−1

Y

)−1
and m1/2 = C1/2

(
1
2 C−1

X mX + 1
2 C−1

Y mY
)
. Substituting the mean and

covariance of X and Y respectively, C1/2 and m1/2 are simply written as

C1/2 =
(1

2
1 +

1
2
δ−2

)−1
=

2δ2

δ2 + 1
and m1/2 = C1/2

(1
2
· 1 · 0 +

1
2
· δ−2

· 0
)
=

2δ2

δ2 + 1
· 0 = 0, (A20)

respectively. Therefore, the JSD between F and G is computed as

JS(F, G) =
1
2

1
2

0 · 1 · 0 +
1
2

0 · δ−2
· 0− 0 ·

δ2 + 1
2δ2 · 0 + log

11/2
∣∣∣δ2

∣∣∣1/2∣∣∣∣ 2δ2

δ2+1

∣∣∣∣
 ==

1
2

(
log

δ2 + 1
2δ

)
(A21)

(b) By Equation (A10), we obtain

inf
γ∈Θ
|mX −mY| = 0 ≤ EM(F, G) ≤

√
Fr2(F, G). (A22)

In this example, mX = mY = 0, CX = 12, and CY = δ2. Therefore, FD, the upper bound of
Equation (A22), is as follows:

Fr2(F, G) = 12 + δ2
− 2(12δ2)

1
2 = (δ− 1)2. (A23)

Finally, EM(F, G) is given by

inf
γ∈Θ
‖0− 0‖ = 0 ≤ EM(F, G) ≤ |δ− 1|. (A24)
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(c) In this example, mX = mY = 0, σX = 12, and σY = δ2, therefore, SF2(F, G,α) is computed as

SF2(F, G,α) = ‖mX −mY‖
2 +

1
α
‖σX − σY‖

2 = ‖0− 0‖2 +
1
α
‖1− δ‖2 (A25)

and this gives the result. �
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