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Abstract: In recent years, as the mechanical structure of humanoid robots increasingly resembles the
human form, research on pedestrian navigation technology has become of great significance for the
development of humanoid robot navigation systems. To solve the problem that the wearable inertial
navigation system based on micro-inertial measurement units (MIMUs) installed on feet cannot
effectively realize its positioning function when the body movement is too drastic to be measured
correctly by commercial grade inertial sensors, a pedestrian navigation method based on construction
of a virtual inertial measurement unit (VIMU) and gait feature assistance is proposed. The inertial
data from different positions of pedestrians’ lower limbs are collected synchronously via actual IMUs
as training samples. The nonlinear mapping relationship between inertial information from the
human foot and leg is established by a visual geometry group-long short term memory (VGG-LSTM)
neural network model, based on which the foot VIMU and virtual inertial navigation system (VINS)
are constructed. The VINS experimental results show that, combined with zero-velocity update
(ZUPT), the integrated method of error modification proposed in this paper can effectively reduce the
accumulation of positioning errors in situations where the gait type exceeds the measurement range
of the inertial sensors. The positioning performance of the proposed method is more accurate and
stable in complex gait types than that merely using ZUPT.

Keywords: pedestrian navigation; virtual inertial navigation system; machine learning; gait phase
recognition; gait feature assistance

1. Introduction

Pedestrian navigation systems, with their light weight, small size, cheap price, and convenience
to carry, show wide prospects in military and civilian application. Pedestrian navigation technology
has become a hot issue in recent years as an important branch of navigation technology [1]. In the
case of the outdoors, the location information can be obtained by using the global navigation satellite
system (GNSS), as well as other precision-navigation technologies that fuse GNSS and sensor data
with map information [2]. Although these technologies are relatively mature, they need indoor and
outdoor deployment of related devices, and are vulnerable to interference from the surrounding
environment [3]. Therefore, scholars have begun to study the autonomous pedestrian navigation
methods in view of the insufficiency of satellite-based pedestrian navigation technology.

Wearable pedestrian navigation system navigation sensors refer to micro-electro-mechanical
system (MEMS) inertial sensors, magnetometers, barometric altimeter and so on [4]. With the rapid
development of MEMS technology, MEMS inertial sensor-based pedestrian navigation systems play
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an important role in personal positioning indoors and outdoors [5–8]. According to the installation
positions of micro-electro-mechanical system-inertial measurement units (MEMS-IMUs), pedestrian
navigation systems can be classified into pedestrian dead reckoning (PDR) systems and strapdown
inertial navigation systems (SINS) assisted by zero-velocity update (ZUPT) technology. The PDR
algorithm needs to conduct kinematic modeling of human body, calculate the step length according to
parameters such as step frequency and leg length, and obtain the 3D pedestrian position information
with the aid of magnetic sensors. However, the parameters of different individual models vary greatly
and PDR theories also have limitations when dealing with complex gait types [9,10]. Strapdown
inertial navigation methods assisted by ZUPT use accelerometers and gyroscopes to calculate the
navigation parameters of the human feet by a SINS algorithm, and ZUPT algorithm is used to suppress
the accumulation of navigation errors when human feet are in static gait phases. The method is based
on the fact that when a MEMS-IMU is installed on the foot of a pedestrian, the zero-velocity at the
moment of the foot being on the ground is taken as an observation, and the zero-velocity and SINS
information are fused to obtain the modified information of the MEMS-SINS, and sequentially to
improve the accuracy of the pedestrian navigation system [11–13].

In terms of the previous pedestrian navigation systems based on wearable navigation sensors,
Klingbeil et al. [14] used a foot-bound strapdown navigation algorithm, with the walking distance of
the pedestrian being obtained by the velocity integral of the foot in the swinging phase. Moreover,
a gyroscope threshold was designed to detect whether the foot was in the swinging phase. Alvarez et
al. [15] presented a waist-worn personal navigation method based on IMUs, and described an improved
algorithm based on a detailed description of the heel strike biomechanics, as well as its translation to
acceleration of the body waist to estimate the periods of zero velocity, the step length, and the heading
of the pedestrian. Liang et al. [16] presented a wearable inertial pedestrian navigation system and
its associated pedestrian trajectory reconstruction algorithm. They utilized a sensor fusion technique
based on a double-stage quaternion-based extended Kalman filter to fuse acceleration, angular velocity,
and magnetic signals. To sum up, although the required performance in stationary motions can be
achieved by current pedestrian navigation technologies, it may be affected by certain adverse factors,
such as continuous over-range and fault of inertial sensors while the foot inertial pedestrian navigation
system works under the circumstances of complex and strenuous human motions.

In relevant research fields, neural network (NN) models are essentially statistical models which
can establish a relationship or mapping between input and output through learning algorithms without
the need for determining the model of the system. Due to this characteristic, the application of neural
networks in navigation has become a research hot spot and trend. Aboelmagd [17] proposed a global
positioning system/ inertial navigation systems (GPS/INS) integrated navigation technology based
on input delay neural network (IDNN), and the results showed that IDNN method showed better
navigation performance than the GPS/INS integrated navigation system based on Kalman filter when
GPS signals were occluded or shielded. Chiang et al. [18] studied and developed an embedded sensor
fusion algorithm based on a cascade correlation neural network, which could automatically determine
the prediction task with a simpler, more flexible topology structure and less training workload,
thus mproving the accuracy of positioning parameters during GPS downtime. Ko et al. [19] verified the
potential of neural network-based autonomous navigation for mobile homecare. The result suggested
that the recurrent neural network can perform better robot navigation because of its capability to
handle the temporal dependency of a data sequence.

Inspired by the research works on NN mentioned above, a novel pedestrian navigation method
based on gait feature assistance and construction of a virtual foot IMU is proposed. It can be learned
from previous experience that inertial sensors can be installed on the human hand, waist, shoulders
and other parts, where there are periodic changes during walking. Due to the large acceleration of the
foot, it is convenient to make use of the inertial information at rest to correct it. Therefore, the method
proposed in this paper chooses to bind the IMUs to thigh and foot [20]. Human walking is a regular,
cyclical complex movement, in which the inertial information between pedestrian’s thigh and foot
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follows the nonlinear kinematic model of the human body. The lever arm effect between thigh and
foot can be eliminated by the use of kinematic algorithms [21], as well as by neural networks for
regression [22]. Because the characteristics of a non-rigid body make the human rigid model inaccurate,
a machine learning method is used in this paper to establish a nonlinear model of the relationship
between the thigh and foot inertial information. Since the visual geometry group-long short term
memory (VGG-LSTM) neural network model can take advantage of the structural characteristics of
hierarchical timing sequence of inertial sensor data to conduct more comprehensive data mining,
it can be used to construct a virtual foot IMU from an actual thigh IMU according to the kinematic
model of human body and complete the virtual inertial navigation system. Furthermore, the attitude
information from the virtual inertial navigation system (VINS) is modified via the repeatability feature
of human walking motion. With the aid of the ZUPT algorithm, the accumulation of positioning error
along with the travel distance can be further slowed down to meet the requirement of both indoor and
outdoor application.

In the next section, an overview and design basis of the pedestrian navigation method is
introduced. Section 3 presents the construction of virtual inertial measurement unit (VIMU) based on
machine learning. Section 4 provides the pedestrian navigation algorithm with gait feature assistance.
Experimental results from the pedestrian navigation system are presented and analyzed in Section 5.
Finally, Section 6 concludes the paper.

2. System Overview

Figure 1 shows the process of the proposed pedestrian navigation method, which consists of two
parts. Part 1 is the construction process of neural network model, which is completed in advance and
is not included in the actual pedestrian navigation process. Part 2 is the actual pedestrian navigation
process. Both parts will be introduced in detail in this section.
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2.1. Part 1

The foot acts as the key position for human motion information collection in pedestrian navigation
systems based on wearable sensors. However, MIMUs mounted on feet may exceed their measurement
range or malfunction when the human motion range includes strenuous actions. Aiming at resolving
this problem, this paper presents a virtual foot IMU construction method based on machine learning.

As shown in Figure 1a, in order to construct the virtual foot IMU, a neural network model
(VGG-LSTM) is needed to realize the nonlinear mapping function between the inertial information of
foot and leg. In order to construct the VGG-LSTM neural network model, MEMS IMUs should be
installed on the leg and foot of the same side of lower limb, respectively, and the tri-axial acceleration
and tri-axial angular velocity of the IMUs collected at the same frequency are used as the training
samples of the neural network model. When the model is completed after training, testing and
verifying, the virtual foot IMU can be constructed from the inertial information of the leg. The details
of neural network model will be illustrated in Section 3.

2.2. Part 2

As shown in Figure 1b, when the pedestrian is performing a strenuous action while the MEMS
IMU is installed on the leg, the neural network model constructed in advance can be used as the
approximation function of the nonlinear mapping relationship between the foot and the leg inertial
information. Synchronously the network can identify the gait characteristic phases of the walker.
In other words, the input of the neural network model is six-axial inertial information of the leg, and the
output is six-axial inertial information of the virtual foot IMU and the gait characteristic phases. To meet
the positioning requirement without GNSS, the output of the VIMU is used to calculate attitude, velocity
and position information through a strapdown navigation algorithm, and the detection conditions of
gait phases (including the zero-velocity phase) with multiple constraints are designed according to the
gait feature of the pedestrian. Furthermore, the error state equations and observation equations are
established, with the velocity of the system taken as the observation. When the zero-velocity state
or certain gait characteristic phases of pedestrian is detected, Kalman filter is triggered to estimate
the error states and to compensate the navigation parameters of the pedestrian navigation system.
In addition, since the headings of the foot and leg are basically the same according to the human lower
limb kinematics model [23] the heading of human walking can be determined by the magnetic sensor
information collected by a leg MIMU. The method proposed in this paper is suited to a clean magnetic
environment without obvious interference from electromagnetic devices or magnetic materials, and the
modification for magnetic interference will not be discussed further. The details of the pedestrian
navigation system will be illustrated in Section 4.

3. Construction of VIMU Based on Machine Learning

Several problems exist when using a MEMS IMU to monitor pedestrian motion. Firstly, due to the
influence of human physiological structure characteristics, though the extremities (such as foot) are
necessary for monitoring the human motion, it is difficult to balance the accuracy and measurement
range of the inertial sensors. Secondly, the distributed installation of MEMS IMUs will increase the
hardware complexity of the pedestrian navigation system and decrease the reliability [23]. Aiming
at addressing these issues, this section will put forward a method of building a virtual IMU based
on machine learning, which can improve the accuracy of the inertial information, and widen the
measurement range simultaneously.

3.1. Human Lower Limb Kinematics Model

The relationship between the motion information of each part of a pedestrian is usually described
by the rigid body model under the premise of ignoring the flexible characteristics of human, as shown
in Figure 2.
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Figure 2. Side view and front view of human lower rigid-body kinematics model.

A fixed coordinate system and generalized coordinates are defined in Figure 2. In the fixed
coordinate system, the ankle joint is taken as the origin and the radial direction is taken as the
X-axis direction. Suppose that the vertical direction is the Y-axis direction and the Z-axis direction
is determined by the right hand rule when the pedestrian moves with a certain heading angle.
The generalized coordinates θi(i = 1, · · · , 5) and γi(i = 1, · · · , 5) represent the angle between the
linkages in the XY plane and the YZ plane, and the vertical direction and clockwise are defined
as positive.

Thus the posture of the pedestrian can be uniquely determined by the origin of the fixed coordinate
system and the generalized coordinates. As shown in Figure 2, Xh, Yh, Zh are the coordinates of human
hip joint; Xe, Ye, Ze are the coordinates of the end of the swinging shank in the fixed coordinate system;
Xb, Yb, Zb are the coordinates of the ankle joint in the generalized coordinate system; l4 and l5 are the
length of shank and thigh of the swinging leg, respectively; d4 and d5 are the absolute distance of the
inertial sensor mounted on thigh and shank from the Y-axis direction; the marks A, B, and C represent
the inertial device mounted on the thigh, the foot, and the shank respectively. For the remaining
definitions readers can refer to [24]. Based on the forward kinematics theory, the relative positional
relationship between the thigh and the foot, is shown in Figure 2:

xe = xm4 + (l4 − d4) cosγ4 sinθ4 + l5 cosγ5 sinθ5 + l6 cosγ6 sinθ6 (1)

ye = ym4
+ (l4 − d4) cosγ4 cosθ4 + l5 cosγ5 cosθ5 + l6 cosγ6 cosθ6 (2)

ze = zm4 + (l4 − d4) sinγ4 + l5 sinγ5 + l6 sinγ6 (3)

In the scheme proposed in this paper, the inertial information of position A (leg) and B
(foot) approximately conforms to the rigid kinematic model. However, due to the non-rigid body
characteristics of human body, it is difficult to establish an accurate model, so the relationship between
the inertial information of position A and B cannot be obtained accurately. Therefore, a machine
learning method is considered to construct the nonlinear model between the leg and the foot.

3.2. VGG-LSTM Hybrid Model Architecture

In order to construct the mapping model between the inertial information from the ipsilateral leg
and foot, this paper studies and applies an improved deep hybrid network model, which is composed
of one-dimensional serial convolutional neural network (visual geometry group network, or VGG
network) and long short term memory network (LSTM network). The structure of the model is shown
in Figure 3. The input of the VGG-LSTM hybrid network model is the six-axial inertial information
of the leg, and the output is the six-axial inertial information of the ipsilateral foot, as well as the
characteristic phases of the foot. Through sufficient training, the information of the leg IMU can be
used to construct the virtual foot IMU in real time.
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The convolutional neural model is connected serially instead of being set with a large convolutional
core, so as to increase the depth of the model and provide more complex nonlinear transformation to
extract higher dimensional features. The maximum pooling layer is used to reduce feature dimensions
and control the risk of over-fitting while maintaining translation invariance [25]. On this basis,
LSTM network receives the feature fragments of convolutional neural network, and further mines the
time-order characteristics of inertial data via LSTM network, thus realizing the effect of maintaining
long-term memory on the basis of short-term memory [26].
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The convolutional neural network model includes the input layer x0, convolutional layer c and
pooling layer p. Generally, the input layer is set to layer 0, it can be modeled as:

x0 =
[
x0

1, · · · , x0
M

]
(4)

where M represents the size of the time window after data preprocessing. The output of the
convolutional layer is:

ci = f (b+ < q, x0
i , · · · , x0

i+φ−1 >),

i = 1, · · · , M−φ+ 1
(5)

where f (·) is the activation function; b is the bias item; q is the one-dimensional convolutional kernel
vector; φ is the length of q. The output of the pooling layer is shown in Equation (6):

pj = max([ c(j−1)R+1, · · · , cjR]),
j = 1, · · · , M/R

(6)

where R represents the size of a pool window. The output of the pooling layer is the characteristic
graph p learned by the convolutional kernel in the convolutional network, and multicore convolution
means that each convolutional kernel e will generate a feature map pe in the convolutional process.

As shown in Figure 3, the LSTM network is an improved structure of the Recurrent Neural Network
(RNN), which maintains long-term memory on the basis of adding input gate, output gate and forget
gate to realize short-term memory. The one-dimensional feature maps output from the convolutional
neural network are pieced together to form a one-dimensional eigenvector. The eigenvector s can be
modeled as:

s = [p1, · · · , pn] (7)

where n represents the number of convolutional kernels. The eigenvector s is processed in the full
connection layer, and the output of the full connection layer is;

h = f (Ws + ε) (8)
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where W is the weight matrix of the full connection layer, ε is the connection layer offset item vector.
The output of LSTM network is sent to the full connection layer of N nodes in turn, where N denotes
the number of categories of motion.

In order to determine the optimal convolutional block number and layer number of LSTM network,
we train the neural network models of different convolutional block numbers and layer numbers of
LSTM network respectively. Then the optimal network structure is selected according to the statistics
of CPU/GPU utilization rate and training performance. Finally, we found that when the convolutional
block number is 4 and layer number of LSTM network is 3, the ratio of performance to power
consumption reaches a minimum. Further increases of the complexity of the network model, will no
longer significantly improve the approximation accuracy of VIMU. Therefore, the network structure
of four convolutional blocks and three LSTM network layers can minimize the ratio between the
approximation precision of VIMU and the system resource occupancy, that is, the system performance
is optimal.

3.3. Construction of Training Model Based on VGG-LSTM Neural Network

The MTI-300 IMU (Xsense,) which is shown in Figure 4, consists of a tri-axial accelerometer,
a tri-axial gyroscope, a tri-axial magnetometer, a 16-bit AD, internal DSP, nonvolatile memory and a
serial transceiver, where the range of accelerometer is ±5 g, the range of gyroscope is ±600 ◦/s and the
angular resolution is 0.05◦. The main function of MTI-300 IMU is to collect the motion information
data in real time, which will be transmitted for the construction of VGG-LSTM neural network model
and pedestrian navigation calculation.
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In order to build the training model based on VGG-LSTM neural network, two MTI-300 IMUs are
installed respectively on the leg and foot of the same side, with the inertial information being collected
synchronously. It can be seen from Figure 5 that the tri-axial information output of accelerometer and
gyroscope varies when the gait changes at different stages. If the original data is taken as the network
training data directly, the normalization degree of various parameters is poor, leading to the network
performance deviation. Therefore, it is necessary to normalize the original sensor information output
before it is used as the training samples of the VGG-LSTM neural network.
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In this paper, the method of maximum value normalization is adopted, and the linear function
normalizes the original data to the range of [0–1]. The normalization formula is shown as Equation (9):

Xnorm =
X −Xmin

Xmax −Xmin
(9)

This method realizes equal scaling of the original data. In Equation (9), Xnorm is the normalized
data, X is the original data, with Xmax and Xmin denoting the maximum and minimum value of the
original data set, respectively.

The output benchmark for the accuracy test of the VGG-LSTM neural network is the expected
tri-axial gyroscope and accelerometer information, as well as the gait characteristic phases of
pedestrian foot. As is shown in Figure 5, the expected output information of neural network includes
ωxo,ωyo,ωzo, axo, ayo, azo. For the construction of the training model, the MEMS IMU information on
pedestrian thigh, including ωxi,ωyi,ωzi, axi, ayi, azi, is taken as the input samples of the VGG-LSTM
neural network, which is shown in Figure 6.
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The typical motion of horizontal walking is taken as an example for illustration. The distributed
structure inertial sensing system mentioned above is adopted to collect the inertial information of
horizontal walking from one of the pedestrian lower limbs. The MEMS IMU information samples of
the thigh position are taken as the training input of the VGG-LSTM neural network, and that of the
foot position are taken as the training output and accuracy test benchmark.

Comparing VIMU information samples of the foot output by the network with the actual
information samples collected by the Xsense MTI-300 in Figures 7 and 8, the VGG-LSTM network can
efficiently approximate the actual inertial information, and the values and periods keep persistently
consistent during the horizontal walking process.
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4. Pedestrian Navigation Algorithm

4.1. Pedestrian Navigation Algorithm

Real-time and accurate zero-velocity detection algorithm provides an important guarantee for
error correction of foot inertial navigation system. Based on the virtual foot IMU, the periodic
characteristics of accelerometer and gyroscope output and the foot characteristic phases can be utilized
for the zero-velocity detection of multi-condition constraints. The detection algorithm is composed
of two constraints, which are recorded as ξ1 and ξ2, respectively. The constraints are implemented
as follows:



Sensors 2020, 20, 1530 10 of 18

4.1.1. Judge the Zero-Velocity State According to the Accelerometer and Gyroscope Output of the
Virtual Foot IMU

Based on the virtual foot IMU, steps of automatically detecting zero-velocity state using original
signals are described below: 

ak = a2
kx + a2

ky + a2
kz

ak =
1

n+1

k+n∑
j=k

a j

σak =
1

n+1

k+n∑
i=k

(ai − ak)
2

λ1,2(k) =
{

1 σak < εa1

0 others

(10)


ak = a2

x + a2
y + a2

z

λ3,4(k) =
{

1 ak < εa2

0 others
(11)

In Equations (10) and (11), akx, aky, akz represent the tri-axial acceleration or angular velocity
collected by accelerometers or gyroscopes of virtual foot IMU respectively at moment k. n is the
variance of the interval size; εa1 , εa2 are the thresholds set according to the sensor accuracy of the VIMU.
λ1, λ2, λ3, λ4 represent the detection results of zero-velocity interval under four different discriminant
methods, respectively.

Under the condition of fixed parameter threshold, for different pedestrians and different walking
paces, if only one of λ1, λ2, λ3, λ4 is used for zero-velocity discrimination, the stability of the
judgment result will be poor, easily leading to misjudgment. In order to solve this problem, this paper
proposes a new zero-velocity detection method, where four kinds of zero-velocity detection schemes
are all adopted. The determination results of zero-velocity interval determined by the variance of
accelerometers and gyroscopes (λ1 and λ2) are utilized to identify the initial time of zero velocity,
and those determined by the amplitude of accelerometers and gyroscopes (λ3 and λ4) are utilized
to identify terminal moment [27]. Each stage using the accelerometer and gyroscope at the same
time improves the accuracy of zero-velocity judgment, and the joint determination procedure of zero
velocity state is expounded as follows:

ξ1 =

{
1 (λ1(k) + λ3(k)(λ2(k) + λ4(k)) ≥ 1
0 others

(12)

where ξ1 represents the comprehensive judgment program based on inertial information characteristics
for stable gait (such as normal walking). It can accurately identify different pedestrians, different
strides and different zero velocity intervals.

4.1.2. Judge the Zero-Velocity State According to the Recognition of Zero-Velocity Phase from all
Characteristic Phases of the Foot

Walking is a process of repeated movement of both feet, which is called gait cycle (GC). The typical
pedestrian GC is demonstrated in Figure 9.

During walking, each GC contains a series of transition of typical postures and GC can also be
divided into a series of time periods, which are called gait phases. Moreover, a walking cycle can
be generally divided into supporting phase and swinging phase, or the more detailed classification
consisting of 8 phases, which are generally expressed as the percentage of the whole GC [28]:

(1) First touchdown period: the moment when the moving side heel touches the ground, accounting
for about 2% of GC;

(2) Load-bearing reaction period: it starts from the moment when the heel of the moving side touches
the ground and lasts until the end when the toe of the opposite side leaves the ground. In the
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whole process, the sole of the moving side touches the ground completely, accounting for about
10% of GC;

(3) In the middle stage of the supporting phase: from the moment when the toes on the opposite
side are off the ground, and to the moment when the trunk is directly above the supporting leg,
accounting for about 19% of GC;

(4) The end of the supporting phase: form the moment when the supporting side heel leaves the
ground to the moment when the opposite side heel follows the ground, accounting for about 19%
of GC;

(5) The earlier period of oscillation: from the moment when the opposite foot follows the ground to
the moment before the toes on the supporting side leave the ground, accounting for about 12%
of GC;

(6) Early swing phase: from the moment when the foot is off the ground to the moment when the
knee reaches the maximum bending state, accounting for about 13% of GC;

(7) Middle swing phase: from the moment when the knee joint reaches the bending state to the
moment when the calf swings to the place where it is perpendicular to the ground, accounting for
about 12% of GC;

(8) End of swinging phase: from the moment when the calf is perpendicular to the ground to the
moment when the heel touches the ground again, accounting for about 13% of GC.
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Then the gait phases recognition method is as follows: according to the analysis of pedestrian gait
characteristics, the tri-axial virtual accelerometer and gyroscope information of each GC is divided
into eight data samples according to the percentage of different gait phases. The data samples and
corresponding gait phases are imported into the above VGG-LSTM hybrid model as input and output,
respectively, for training, thus the network model can accurately identify the eight gait phases. Specially,
when the neural network identifies the zero-velocity phase shown in Figure 9, the zero-velocity phase
can be determined as follows:

ξ2 =

{
1 zero-velocity phase
0 others

(13)

where ξ2 represents the zero-velocity discriminant result at the moment k. In order to avoid the
problem that a single detection algorithm cannot accurately determine a pedestrian’s complex gait,
the logical “and” operation is carried out between the two discriminant results ξ1 and ξ2, then ξ is
used to represent the final zero-velocity detection result:

ξ = ξ1&ξ2 (14)
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4.1.3. The Accuracy of Zero-Velocity Detection Algorithm

In order to verify the detection accuracy of the zero-velocity interval detection algorithm,
three groups of data are collected in the gaits of horizontal walking, upstairs, downstairs, upslope,
downslope and fast walking. For each group, 100 steps are taken for each gait. The reference for the
zero-velocity interval is captured by the high-precision visual system simultaneously. The formula of
zero-velocity interval detection accuracy is:

Acc = 1−
|Ttest − Ttrue|

Ttrue
(15)

here Ttest is the period of detected zero-velocity interval, and Ttrue is the period of actual zero-velocity
interval captured by visual system. The proposed algorithm is compared with double threshold
zero-velocity interval detection algorithm [29] and adaptive threshold zero-velocity interval detection
algorithm [30] the comparison results are shown in the Table 1.

Table 1. The comparison results of zero-velocity interval detection accuracy.

Gait Types
The Zero-Velocity Interval Detection Accuracy

Double Threshold
Algorithm

Adaptive Threshold
Algorithm Proposed Algorithm

Horizontal walking 98.7% 98.9% 99.3%
Upstairs 98.3% 98.5% 98.8%

Downstairs 98.2% 98.3% 98.7%
Upslope 98.5% 98.7% 99.1%

Downslope 98.3% 98.6% 99.0%
Fast walking 97.6% 98.0% 98.5%

The number of walking steps can be also detected by zero-velocity intervals, the accuracy of step
number detection is shown in Table 2.

Table 2. The comparison results of zero-velocity interval detection accuracy.

Gait Types Actual Step Numbers Detected Step Numbers The Accuracy of Detection

Horizontal walking 500 500 100.0%
Upstairs 500 500 100.0%

Downstairs 500 500 100.0%
Upslope 500 500 100.0%

Downslope 500 500 100.0%
Fast walking 500 496 99.2%

4.2. Design of the Kalman Filter

The process of using ZUPT to assist SINS can be divided into two states: (1) Non-zero velocity
state: the system cannot obtain the velocity error observation, and Kalman filter only updates partly;
(2) Zero velocity state: the velocity error observations are obtained, Kalman filter fully updates, and the
estimated value of system error is fed back and compensates SINS [31]. The Kalman filter based on the
virtual foot inertial navigation system is as follows:

4.2.1. State Equation

The inertial navigation system error model consists of inertial navigation platform error angle
model, velocity error model, position error model and inertial instrument error model.

Inertial navigation platform error angle equation:

.
ϕ= δωn

in +ϕ×ωn
in + εn (16)
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where E, N and U marked below the angles represent the east, north and upward directions of the
geographic coordinate system respectively.

Velocity error equation:

δ
.

V =
.

V
c
−Vn = f n

×ϕ+∇n
− (2δωn

ie + δωn
en) ×Vn

− (2ωn
ie +ω

n
en) × δV + δg (17)

Position error equation: 
δ

.
L =

δvN
RM+h

δ
.
λ = δvE

RN+h sec L + vE
RN+h sec L tan LδL

δ
.
h = δvU

(18)

Random constant error model of inertial devices:

.
ε = 0 (19)

.
∇ = 0 (20)

Therefore, the 15-dimensional state equation of the system can be expressed as Equation (21):

.
X(t) = F(t)X(t) + G(t)W(t) (21)

where F is the state coefficient matrix, G is the error coefficient matrix, W is the system white noise
vector, X is the error state vector, which is given by Equation (22):

X =
[
ϕE ϕN ϕU δvE δvN δvU δL δλ δh εx εy εz ∇x ∇y ∇z

]T
(22)

4.2.2. Observation Equation

The velocity observation equation is shown in Equation (23):

Zv(t) =


vIN − 0
vIE − 0
vIU − 0

 = Hv(t)X(t) + Vv(t) (23)

where Vv is the observation white noise vector, Hv is the observation matrix, which is shown as follows:

Hv =

[
03∗3

...diag
[

1 1 1
]...03∗9

]
(24)

The ZUPT and Attitude Matching modes of the pedestrian navigation system can be adjusted
according to the available observed data:

1. Non-zero velocity state: no error observation, Kalman filter only updates partly, the system has
no feedback of error estimation;

2. Zero-velocity state: both the velocity and the attitude error are available, and the error
observation is:

Z(t) = [Zv(t)] (25)

The specific meaning of each physical quantity in Equations (16)–(25) and the process of
discretization of the system model are shown in [32].
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5. Experiment

To verify the feasibility of the proposed method in practical application, Xsens MTI-300 IMUs are
installed on the left thigh and the back of the left foot, respectively. A portable computer is used for
real-time data collection and navigation algorithm calculation, and thus a prototype of the pedestrian
navigation system can be formed.

Indoor and outdoor navigation experiments are carried out to analyze the positioning performance
and error characteristics. The indoor routine is about 240 m, while the outdoor routine is about 360 m.
In the first group of experiment, the pedestrian walks in the conventional walking pace with a velocity
of about 1.0 m/s. The total indoor walking time is about 240 s, and the total outdoor walking time
is about 360 s accordingly. The second group of experiment adopts the fast walking pace with a
velocity of about 2.5 m/s, and the indoor walking time is about 100 s, and the outdoor walking time
is about 140 s accordingly. Figure 10a,b show the virtual and actual IMU gyroscope X-axial output
and accelerometer Y-axial output under normal gait conditions of 1 m/s, respectively, and Figure 10c,d
are virtual and actual IMU gyroscope X-axis output and accelerometer Y-axis output under fast gait
conditions of 2.5 m/s, respectively. The performance comparison of the pedestrian navigation method
is shown in Figure 11.
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outputs with a walking velocity of 1 m/s; (c) X axis virtual and actual gyroscope outputs with a walking
velocity of 2.5 m/s; (d) Y axis virtual and actual accelerometer outputs with a walking velocity of 2.5 m/s.
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Figure 11. Performance verification experiments of pedestrian navigation methods: (a) Indoor
pedestrian navigation experiment route; (b) Comparison of indoor curves by different pedestrian
navigation methods; (c) Outdoor pedestrian navigation experiment route; (d) Comparison of outdoor
curves by different pedestrian navigation methods.

Figure 11a,c are the pedestrian navigation experiment routines in an indoor and outdoor
environment, respectively.

Figure 11b,d are the performance comparison curves of indoor and outdoor pedestrian navigation
respectively, including:

(1) Curve (a) is calculated from actual foot IMU at a conventional walking pace, the navigation
method is assisted by the ZUPT algorithm, and the indoor positioning error of the scheme is 1.5 m,
accounting for about 0.6% of the total length of the walking distance; the outdoor positioning
error is 2.4 m, accounting for about 1.0% of the total length;

(2) Curve (b) is calculated from actual foot IMU at a fast walking pace, and the navigation method
is assisted by ZUPT algorithm. In the later stage of walking, the extremum of angular velocity
of human foot is greater than 600 (◦)/s, and the extremum of acceleration is greater than 10 g.
Therefore, in the case of over-range of IMU, neither indoor nor outdoor conventional ZUPT
algorithm assisting methods can achieve better navigation performance;

(3) Curve (c) is calculated from a virtual foot IMU built on the lower limb at a fast walking pace and
the navigation method adopted is assisted by the ZUPT algorithm. It can be seen from the curves
that the method proposed in this paper can realize navigation and positioning function at a fast
walking pace, and will not be significantly affected by the over-range of IMU. However, there are
training errors in the neural network model. To be specific, the indoor positioning error of the
scheme is 4.8 m, accounting for about 1.3% of the total length of the walking distance; the outdoor
positioning error is 7.6 m, accounting for about 2.1% of the total length of the walking distance.
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It can be concluded from the comparative analysis of the above experimental results that
high-precision navigation and positioning function can be achieved by using the actual foot IMUs
combined with a ZUPT algorithm under conventional walking pace conditions.

In the case of fast walking pace, the movement of human lower limb is close to or even beyond
the range of the sensor component, and the lower limb may also experience shock, vibration and other
phenomena, which makes it impossible to effectively realize the ZUPT algorithm and hence navigation
and positioning. In contrast, in terms of fast walking pace, the navigation and positioning method
based on virtual foot IMU and ZUPT algorithm can achieve relatively accurate pedestrian navigation
and positioning.

6. Conclusions

This paper proposed a novel navigation method based on the construction of a virtual foot IMU
and pedestrian gait feature assistance. In this method, based on the VGG-LSTM neural network
model, the nonlinear mapping relationship between inertial information from human foot and leg
is established and then the construction of virtual foot IMU and VINS is realized. On the basis of
the periodic characteristics of accelerometer and gyroscope output of virtual foot IMU, as well as
the judgment of foot characteristic phases in the output of neural network model, the zero-velocity
detection with multiple conditions is carried out. The experimental results show that the integrated
method of error modifying proposed in the paper can effectively slow down the accumulation of
positioning error in the gait types that exceed inertial sensors measuring range.
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