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Abstract: Recently, the rapid development of the Internet of Things (IoT) has led to an increasing
exponential growth of non-scalar data (e.g., images, videos). Local services are far from satisfying
storage requirements, and the cloud computing fails to effectively support heterogeneous distributed
IoT environments, such as wireless sensor network. To effectively provide smart privacy protection for
video data storage, we take full advantage of three patterns (multi-access edge computing, cloudlets
and fog computing) of edge computing to design the hierarchical edge computing architecture,
and propose a low-complexity and high-secure scheme based on it. The video is divided into three
parts and stored in completely different facilities. Specifically, the most significant bits of key frames
are directly stored in local sensor devices while the least significant bits of key frames are encrypted
and sent to the semi-trusted cloudlets. The non-key frame is compressed with the two-layer parallel
compressive sensing and encrypted by the 2D logistic-skew tent map and then transmitted to the
cloud. Simulation experiments and theoretical analysis demonstrate that our proposed scheme can
not only provide smart privacy protection for big video data storage based on the hierarchical edge
computing, but also avoid increasing additional computation burden and storage pressure.

Keywords: smart privacy protection; hierarchical edge computing; color video; low computation
complexity; cloud storage

1. Introduction

Cloud computing was introduced in Search Engine Strategies 2006 in order to tackle the constraints
of the Internet of Things (IoT) in management, storage, computing and processing, and was formally
defined by National Institute of Standards and Technology [1]. Since then, this prominent computing
infrastructure has always drawn attentions of increased individuals, enterprises and researchers with
its affordable prices, powerful communication facilities, abundant computing and storage resources [2].
These advantages make it possible to offer more services (e.g., cloud storage [3], smart monitoring and
forecasting [4]) by integrating plentiful connected sensor devices.

However, cloud computing cannot efficiently support big multimedia data storage in distributed
IoT environments because of the following reasons [5]. First, the mobile sensor application facilities
require real-time response, location awareness and mobility, but cloud computing fails to satisfy these
demands due to being far away from local sensor devices. Second, cloud computing processes huge
amounts of raw data directly, which results in inevitable service delays and process blocking. Third,
cloud services face substantial unprecedented challenges with exponential rise of user volume. In order
to better address the above issues, edge computing [6,7], a new decentralized paradigm, was proposed
to extend cloud computing to the edge of networks. This popular technology contains seven features,
that is, dense geographical distribution, mobility support, location awareness, context-awareness, low
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latency, proximity and heterogeneity so that it can improve the efficiency and quality of cloud services
and be suitable for strict and smart application scenarios [8].

Generally speaking, edge computing includes three patterns, that is, multi-access edge computing
(MEC) [9,10], cloudlets [11] and fog computing [12]. To be brief, MEC is an emergency model that
uses mobile base stations as sensor nodes to handle delay-sensitive and context-aware applications.
Different from set-top-boxes, road-side units, routers, gateways and other resource-limited devices,
cloudlets have powerful CPU and rich storage spaces. Fog computing is regarded as a scenario in
which a large number of heterogeneous and decentralized base stations and access points act as fog
nodes to communicate and cooperate with each other and perform information processing and storage
operations in the absence of the third-party. The overall architecture of edge computing is shown in
Figure 1. The outermost layer is the local facilities which are formed by plentiful mobile sensor devices
such as smart transportation, medical treatment and wearable services. Original data can be generated
or sampled here and transmitted to the middle layer for the next process. The middle layer is the edge
layer which contains numerous edge nodes with computing and storage capabilities. It exists for the
purpose of providing transient data storage and computing offloading for users and simultaneously
alleviating the cloud burden. The central layer is the cloud server which supports further huge data
processing and storage.
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Figure 1. The overall architecture of edge computing.

However, various security issues have always been potential threats to the cloud storage. Each
user has his/her own data ranging from GB’s to TB’s and the local storage fails to achieve this huge
demand alone. Thus, deploying a low-complexity and high-secure cloud storage service has become
an inevitable trend. In other words, the cloud provider who supports smart edge computing-based
IoT applications with higher security degrees will attract more individuals. In this paper, we propose a
novel distributed compressive video sensing (DCVS) coding [13] and the hierarchical edge computing
architecture-based scheme to offer a low-complexity and high-secure big video data storage service.
Our main contributions can be summarized as follows.

• We make full use of the respective advantages of MEC, cloudlets and fog computing to design the
hierarchical edge computing architecture to support distributed IoT application environments.

• The most significant bits (MSB) of the key frame (KF) are completely controlled by users so that
our proposed scheme has higher degrees of security. Meanwhile, the least significant (LSB) bits of
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KF are directly encrypted via MSB to avoid unnecessary computation burden of edge computing
and extra storage pressure of local sensor devices.

• The two-layer parallel compressive sensing is used to compress the non-key frame (NKF) so as to
minimize the storage burden on cloud services.

The remainder of this paper is organized as follows. Section 2 briefly provides necessary and
basic relevant knowledge. Section 3 describes the scheme of smart privacy protection for big video
data storage based on the hierarchical edge computing in detail. Section 4 evaluates performance of
the proposed scheme from both experiments and theory and Section 5 draws a brief conclusion.

2. Related Work

2.1. Bit Adaptive Diffusion

Diffusion can significantly change statistical characteristics of the input plain-frame and spread
the influence of each bit to the cipher-frame. The principle is to diffuse the corresponding pixel of
the current frame through the value of the key stream [14]. In order to achieve high communication
efficiency of hardware in cloud computing, we adopt bit adaptive diffusion by bit-wise XOR operation.
It can be defined as

Ai,j =


Oi,j ⊕OI,J ⊕ Si,j, i f i = 1, j = 1,
Oi,j ⊕ AI,j−1 ⊕ Si,j, i f i = 1, j 6= 1,
Oi,j ⊕ Ai−1,j ⊕ Si,j, i f i 6= 1,

(1)

where ⊕ is the bit-wise XOR operation. S is the key stream with the same size (I × J) and data format
as the original frame O. The inverse operation in the decryption process can be expressed by

Oi,j =


Ai,j ⊕OI,J ⊕ Si,j, i f i = 1, j = 1.
Ai,j ⊕ AI,j−1 ⊕ Si,j, i f i = 1, j 6= 1.
Ai,j ⊕ Ai−1,j ⊕ Si,j, i f i 6= 1.

(2)

2.2. Parallel Compressive Sensing

Compressive sensing (CS) has two promising advantages: compress and sample simultaneously;
the sampling rate is much lower than the Nyqvist-Shannon criterion. Both of them facilitate CS to
be used in relevant fields widely since its emergence [15]. However, the multidimensional signal has
to be transformed to the 1D signal before compression so that the required measurement matrix is
tremendous. In order to reduce computation complexity and storage space, the characteristics of 2D
signals are combined with the theory of CS to be parallel CS (PCS) [16] is suggested. The mathematical
expression is as follows

yi = Φxi, (3)

where xi is the i column of an original 2D signal and yi is the i column of the measurement value via
linear projection of the measurement matrix Φ.

2.3. Researches on Relevant Privacy-Protection Schemes

Lyu et al. proposed a privacy-preservation system for fog-based aggregation in Smart Grid with
differential privacy so as to enable the intermediate fog nodes to safely collect data from connected
smart meters [17]. Wang et al. presented a three-layer privacy preserving cloud storage scheme in
cloud computing to resist possible attacks from the inside of cloud servers [18]. Xue et al. designed
verifiable security fine-grained access control in vehicular cloud computing to share latency-sensitive
data [19]. Gu et al. provided a dynamic method to protect user privacy during communications
between users and multiple fog nodes and meanwhile discussed the payoff and privacy loss in time of
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the process [20]. Wang et al. proposed an effective dual-chaining watermark scheme for data integrity
protection in smart campus IoT applications, and this smart meteorological Internet of Things system
can effectively authenticate the integrity of the data with free distortion at low cost [21]. Wang et al.
proposed an edge-based model for data collection to provide a general privacy preservation service
via the differential privacy algorithm [22]. Wang et al. designed a scheme that attempts to preserve a
balance in user privacy, data integrity in edge-assisted IoT devices and the computational cost through
a balanced truth discovery approach and a proposed enhanced technique [23]. He et al. proposed a
distributed privacy preserving scheme for random linear network coding in smart grid that offers
a data confidentiality privacy preserving feature and efficiently thwarts traffic analysis [24]. Xie et
al. designed a new efficient privacy preserving compressive data gathering scheme, which exploits
homomorphic encryption functions in compressive data gathering to thwart the traffic analysis/flow
tracing and possess message flow un-traceability and message content confidentiality [25]. Gu et al.
presented a scheme for the privacy protection of location data mining based on the differential privacy
mechanism, which protects highly frequent accessing location data or location preference of user by
distorting accessing frequencies [26]. It is worth affirming that the above researches have achieved
great contributions of privacy protection based on the cloud computing in different aspects.

However, to the best of our knowledge, this study is the first to take full advantage of MEC,
cloudlets and fog computing to design the hierarchical edge computing architecture and propose a
smart and low-complexity privacy protection scheme for big video data storage based on it. Besides,
the cloud space does not mean unlimited storage resources so that we also consider compression.

2.4. Researches on Relevant Edge Computing Schemes

Bonomi et al. argued that the features of fog computing make it suitable for many critical Internet
of Things services and applications, namely, connected vehicle, smart grid, cloud computing and
wireless sensors networks [27]. Hu et al. showed that MEC enables innovative service scenarios that
can ensure enhanced personal experience and optimized network operation, and satisfy the demanding
requirements for ultra-low latency and stimulating innovation [28]. A novel vision of mobile computing
liberates mobile devices from severe resource constraints by enabling resource-intensive applications to
use cloud computing free of jitter, congestion and failures [29]. Unfortunately, longer communication
delay is a fundamental obstacle. Rather than relying on a distant “cloud”, it is better to address a
mobile device’s resource poverty through the nearby resource-rich edge computing.

Mora-Gimeno et al. presented a security model for the externalization of application execution in
multi-tier MEC environments, which produces a minimal overhead, especially for computationally
intensive applications [30]. Lee et al. designed a hierarchical MEC architecture in which MEC servers
are arranged in a hierarchical way to provide users with rapid content delivery, higher computing
performance, and efficient use of server resources [31]. Dong et al. studied a dynamic and decentralized
resource-allocation strategy based on the evolutionary game theory to deal with task offloading to
multiple heterogeneous edge nodes and central clouds among multi-users, which could achieve one
evolutionary equilibrium, and meet users’ quality-of-service requirements under resource constraints
of edge nodes [32]. Lee et al. proposed the MEC-based mobility management scheme that arranges
MEC server as the concept of Zone so that mobile users can continue to receive content and use server
resources efficiently even when they move [33].

The above researches related with the edge computing schemes can be classified as the three-level
architecture, including the local individual layer, the edge computing layer and the cloud computing
layer. Specifically, the edge computing layer is refined as the MEC layer. However, although MEC
brings computing power and storage resources to the edge of the mobile network, limited computation
resources of mobile edge nodes may not be sufficient to serve excessive offloading tasks exceeding the
computation capacities of themselves. Further, we can take advantage of the lower latency of MEC to
distinguish KF from NKF in real time while receiving the video. Meanwhile, all frames are encrypted
or compressed by fog computing, which has relatively stronger computing resources compared with
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MEC. In addition, considering the local storage resources are limited and individuals do not want the
key information of the video to be stored by completely un-trusted cloud, we use the independent
encoding - joint decoding DCVS coding to divide the video data into three parts. MSB of KF is stored by
local devices while LSB of KF is transmitted to the semi-trusted cloudlets. The rest, NFK, which must
be reconstructed better via referring to KF, should be stored to the cloud after a series of processing.
This is why we design a novel hierarchical edge computing architecture to provide smart private
protection for big video data storage with low latency.

3. Description of the Proposed Scheme

The overall scheme of using the hierarchical edge computing architecture to protect big video
data storage privacy is shown in Figure 2. Firstly, local devices transmit video streams to the edge
layer through wireless communication. Then, the raw videos are processed by the group of pictures
(GOP) selection in MEC. The separated KF and NKF are encrypted and compressed respectively in
fog computing. Significant and sensitive KF after processing are stored in local devices and cloudlets
equally. The remainders are sent to the cloud server via wire communication. Both procedures and
algorithms adopted in our proposed scheme will be described in detail as follows. It is worth noticing
that we adopt color videos as objects to better fit the actual environment.

MEC

GOP Selection

Key 

Frames

Non-Key 

Frames

Cloud Server

Combination

Subtraction

Fog Computing

Bit Adaptive Diffusion

MSB

LSB

Cloudlets

The First Layer

Parallel Compressive Sensing

The Second Layer

Parallel Compressive Sensing

Scramble

First Layer

Second Layer

Third Layer

Forth Layer

Fifth Layer

Edge Computing

Local 

Devices

Figure 2. The overall scheme of privacy protection for big video data storage based on the hierarchical
edge computing.

3.1. GOP Selection

Video is not a simple combination of pictures, and there are strong correlations among frames.
That is, the selection of KF often determines the whole recovery performance of NKF from the same
GOP. Thus, GOP selection has profound significance for video sampling. However, service objects of
the cloud consist of intelligent users, ocean monitoring and so on, as shown in Figure 1, so we have to
combine actual scenarios and computation costs to distinguish KF from NKF .

• Fixed GOP values: If a certain scenario needs to analyze complex or important videos, the small
values should be selected to ensure reconstruction performance, while the large values could be
considered to reduce the overall sampling rate of videos and handle massive data.

• Adaptive GOP selection: In order to improve encoding efficiency and decoding performance,
the adaptive GOP selection based on the perceptual hash algorithm was applied for DCVS [34].
Though the computation complexity of this algorithm is relatively high, the accuracy of selecting
KF is raised substantially.
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In a word, we should make a concrete analysis of concrete conditions. MEC receives the video
stream from the nearest local devices and then the separated KF and NKF are transmitted to different
layers of fog computing.

3.2. Encoding and Decoding of Key Frames

Take 1st frame of “News(CIF)” as an example. The whole scheme of encoding KF is shown
in Figure 3. The first layer of fog computing receives KF and separates the RGB three-layer of a
color frame bit by bit all alone. These bit-layers can be denoted by

{
Xi

Kj

}
where i ∈ {1, 2, . . . , 8},

j ∈ {R, G, B}, e.g., X1
KR is the first bit-layer of the R layer in the KF. As the operation of the RGB

three-layer are the same so that we describe the R layer in particular.

Combination

Bit Adaptive DiffusionBits Merge

Local 

Individuals

K
X

KG
X

KB
X

KR
X

MSB

KR
X

LSB

KR
X

LSB

KR
X̂

sU

KR
X

ser

Bits Merge

Combination

Cloudlets

KR
X

Combination

Bit Adaptive DiffusionBits Merge

MSB

KG
X

LSB

KG
X

LSB

KG
X̂

sU

KG
X

ser

Bits Merge

Combination

Cloudlets

KG
X

Combination

Bit Adaptive DiffusionBits Merge

MSB

KB
X

LSB

KB
X

LSB

KB
X̂

sU

KB
X

ser

Bits Merge

Combination

Cloudlets

KB
X

Cloudlets

First 

Layer

Second Layer

Figure 3. The encoding of key frame (KF) in fog computing.

The MSB
{

X1
KR, X2

KR, X3
KR, X4

KR
}

and LSB
{

X5
KR, X6

KR, X7
KR, X8

KR
}

of the original R layer are
respectively combined to generate the 1D plane XMSB

KR and XLSB
KR . Then XLSB

KR and the copied XMSB
KR are

transmitted to the second layer of fog computing. Perform bit adaptive diffusion with XMSB
KR by

X̂LSB
KR (r.c) =


XLSB

KR (r.c)⊕ XLSB
KR (4M, N)⊕ XMSB

KR (r, c) , i f r = 1, c = 1,
XLSB

KR (r.c)⊕ X̂LSB
KR (N, c)⊕ XMSB

KR (r, c) , i f r = 1, c 6= 1,
XLSB

KR (r.c)⊕ X̂LSB
KR (r− 1, c)⊕ XMSB

KR (r, c) , i f r 6= 1,
(4)

where r (r ∈ [1, 4M]) is the abscissa and c (c ∈ [1, N]) is the ordinate. M and N are the width and the
length of the KF XK respectively.

Then, the binary matrix XMSB
KR and the encrypted X̂LSB

KR are merged bit by bit in the first layer and
the second layer of fog computing respectively to obtain XUsers

KR and ciphertext XCloudlets
KR . Specifically,
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the binary matrix merges each 8 bits into a new pixel as shown in Figure 4. Then send XUsers
KR to local

devices and send XCloudlets
KR to cloudlets simultaneously.

Figure 4. The visual representation of merging a binary matrix to a pixel matrix.

As encoding of KF only involves encryption, decoding is the inverse process of encoding. In brief,
XUsers

KR and XCloudlets
KR are obtained from local devices and cloud servers respectively at first, and then

the original LSB are decrypted with the MSB binary stream. Finally, combine MSB with LSB to generate
KF. Thus it can be seen KF, as the key information of the video, is further divided into two parts.
The most important part of KF is directly stored in local devices, and meanwhile regarded as the key
to encrypt the least important part. Considering the local storage resources are limited and individuals
do not hope to transmit any data of KF to the un-trusted cloud, we could store LSB of KF with the help
of cloudlets in order to obtain higher level of security.

3.3. Encoding and Decoding of Non-Key Frames

To further improve the security level and achieve better accuracy of the NKF reconstruction,
we do not directly perform coding but extract deviations between NKF and KF of the same GOP at
first in the first layer of fog computing. Then taking the 2nd frame of “News(CIF)” as an example,
as shown in Figure 5, the process of the first layer PCS is to compress the RGB three-layer of deviations
independently in the third layer of fog computing. It can be represented visually as follows

Ydeviations
NR = ΦNR Xdeviations

NR ,
Ydeviations

NG = ΦNG Xdeviations
NG ,

Ydeviations
NB = ΦNB Xdeviations

NB ,
(5)

where
{

Xdeviations
Nj |j ∈ {R, G, B}

}
is the RGB three-layer of the original deviations between KF and

NKF, and
{

Ydeviations
Nj |j ∈ {R, G, B}

}
is the corresponding measurement values. Let us discuss the

generation of the measurement matrix
{

ΦNj |j ∈ {R, G, B}
}

. To ensure the better reconstruction
performance and satisfy the easier implementation of hardware simultaneously, the deterministic
binary block diagonal matrix (DBBD) [35] is adopted here. Moreover, considering the level of security,
we select different sampling rates to compress each layer of deviations. Then convert Ydeviations

N to a 1D
plane Ŷdeviations

N and transmit it to the forth layer of fog computing. The process of the second layer
PCS is to compress Ŷdeviations

N with ΦDBBD to obtain ŶN . For a certain NKF, the total sampling rate is

Γ = [(γR + γG + γB)÷ 3]× γ, (6)

where γR, γG, γB denote the sampling rate of the RGB three-layer respectively and γ is that of Ŷdeviations
N .

Although we do not directly process the original NKF, the measurement matrix used to reduce
computation complexity and storage pressure is not secure, so the information after compression
needs to be further encrypted. Send ŶN to the fifth layer of fog computing and the steps of scramble
are shown below.
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Figure 5. The encoding of non-key frame (NKF) in fog computing.

1. Set initial values α0, β0 and a control parameter µ (α0, β0, µ ∈ (0, 1)).
2. Iterate H ×W + l rounds by 2D logistic-skew tent map with α0, β0, µ and discard first l iterated

values to avoid transient effects by


αi+1 = 4× βi × (1− βi) ,

βi+1 =

{
αi/µ, 0 < αi < µ,
(1− αi)/(1− µ), µ ≤ αi < 1,

(7)

where H ×W is the size of ŶN .
3. Discretize α, β and obtain two sequences α′, β′ (j ∈ [1, H ×W]),

 α′ j =
⌊

αj × 1014
⌋

mod H + 1.

β′ j =
⌊

β j × 1014
⌋

mod W + 1.
(8)

4. Rearrange α′, β′ into two matrices with the size [H, W] respectively.

5. Exchange the pixel ŶN (h, w) and ŶN

(
α′h,w, β′h,w

)
from the top left corner to the bottom right

corner in order where h ∈ [1, H], w ∈ [1, W], α′h,w and β′h,w are values in matrices α′, β′ respectively.

Finally, transmit the encrypted NKF to the cloud.
The decoding process of NKF is decryption-then-reconstruction. Decryption and encryption

are inter-reversible and the secret key α0, β0, µ must be unified. The total variation minimization by
augmented Lagrangian and alternating direction algorithm (TVAL3) [36] is used for reconstruction.
At last, the recovered deviations plus the decrypted KF can obtain the corresponding decoded NKF.

4. Simulation Results and Performance Evaluations

4.1. Experimental Results

In this paper, our proposed scheme is encoded and decoded by MATLAB 2016a programming
software. Hall(CIF), News(CIF) and Foreman(CIF) with different motion types are applied to simulate
our scheme reliably. Figure 6a,d show the original 1st KF and 2nd NKF of Hall(CIF), respectively.
Figure 6b denotes MSB of the KF and Figure 6c is LSB of that. Figure 6e is the encrypted NKF.
The first-layer PCS adopts γR = 0.3, γG = 0.25 and γB = 0.2 while the second-layer PCS employs
γ = 0.5. Figure 6f is the reconstructed NKF and the peak signal to noise ratio (PSNR) value reaches up
to 35.68. It can be seen that the reconstruction performance is satisfying with the overall sampling rate
0.125. Similarity, Figure 7 represents simulation results of KF and NKF in the first GOP of News(CIF),
and Figure 8 shows simulation results of KF and NKF in the first GOP of Foreman(CIF).
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(a) The original KF (b) MSB of the KF (c) LSB of the KF

(d) The original NKF (e) The encrypted NKF (f) The recovered NKF

Figure 6. The simulation results of Hall(CIF).

(a) The original KF (b) MSB of the KF (c) LSB of the KF

(d) The original NKF (e) The encrypted NKF (f) The recovered NKF

Figure 7. The simulation results of News(CIF).

(a) The original KF (b) MSB of the KF (c) LSB of the KF

(d) The original NKF (e) The encrypted NKF (f) The recovered NKF

Figure 8. The simulation results of Foreman(CIF).

4.2. Theoretical Security Analysis

The security analysis of video data storage based on the hierarchical edge computing can be
analyzed from two aspects. From the perspective of KF, although the local individuals have full control
over the edge computing devices and can rely on the cloudlets to manage data, cipher-data are stored
to prevent an attacker who obtains the data by force. In the field of reversible data hiding, the LSB
layers of the cover image are usually replaced by significant information to ensure that no change in
the cover image is visible to the naked eye. It indicates that the important data of an image is located
in the MSB layers. Based on this principle, we divide KF into the MSB layers and LSB layers equally.
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Compared with the random matrix generated by the key to diffuse the LSB layers, directly regarding
the MSB layers as the key stream is far more secure and even does not need to provide the extra space
to store the key. Besides, two secret keys with only one bit difference can encrypt a certain frame
into two different cipher-frames by bit adaptive diffusion. So our secure scheme for KF has strong
capability of resisting famous attacks, such as differential attack and chosen-plaintext attack.

The NKF, which occupies a large part of videos, have to be stored in the completely untrusted
public cloud. So the privacy and compression should be considered at the same time. In order to
achieve the above goal without increasing computation complexity, we directly adopt the two-layer
PCS with controlled sampling rates. To be more specific, in the first compression process, the three-layer
RGB employs different sampling rates so that the correct composition proportion of the 1D plane
formed by combination could not be known absolutely. To further reduce the storage, the second
compression is adopted. Besides, instead of processing NKF directly, the main information is removed
by subtraction in order to avoid the sensitive data leakage. We also use 2D logistic-skew tent map to
encrypt measurement values further to improve the performance of privacy preservation.

In short, our proposed scheme not only provides effective and efficient privacy protection for big
video storage based on the hierarchical edge computing, but also does not add additional burden from
both computation and storage aspects of edge computing and the public cloud.

4.3. Computation Complexity

Table 1 shows that the average encoding time required for MSB is 0.106 s and for LSB is 0.841 s of
any KF in News(CIF). As part encoding stages of MSB and LSB can be carried out parallelly, the total
encoding time of KF is generally less than 0.7 s. Besides, the average decoding time of KF is about 1 s.
For NKF, as shown in Tables 2 and 3, the average run-time of the whole encoding is only 0.113 s, but
the decoding time is long due to higher iterative complexity of CS reconstruction. But the performance
of existing non-iterative reconstruction algorithm can be optimized to greatly reduce the run-time.
Most importantly, all frames of the video stream can be encoded simultaneously, that is to say, the total
encoding time of the video stream is no more than 1 s in our proposed scheme, which indicates that
our scheme has higher efficiency and low complexity.

Table 1. Average run-time (s/frame) performance of KF in our proposed scheme.

Encoding Decoding

MSB 0.106 0.123
LSB 0.841 0.905

Table 2. Average run-time (s/frame) performance of encoding NKF in our proposed scheme.

The First PCS The Second PCS Encryption

0.017 0.035 0.061

Table 3. Average run-time (s/frame) performance of decoding NKF in our proposed scheme.

Decryption The First Reconstruction The Second Reconstruction

0.05 29.09 31.72

4.4. Comparison

Table 4 shows the performance comparison among our proposed scheme and other relevant ones.
It can be clearly seen that the proposed scheme has its unique merits.
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Table 4. Compared with the relevant privacy protection schemes.

Schemes Produce Redundant Data Compression Complexity Application Scenarios

Ours No Yes Low Cloud storage
[17] No No Medium Date aggregation
[18] Yes No Low Cloud storage

5. Conclusions

In this paper, we take full advantage of three patterns (MEC, cloudlets and fog computing) of
edge computing to design the hierarchical edge computing. Based on this architecture, we further
propose a novel smart privacy preservation scheme for big video data storage. For KF, MSB are stored
directly in local sensor devices while LSB are encrypted by MSB and then sent to cloudlets. For NKF,
two-layer PCS and encryption are performed at first, and finally transmitted to the cloud service.
Experimental results and theoretical analysis prove that our proposed scheme is effective, efficient and
lower-complexity, which provides smart privacy-protection for video contents.
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