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Abstract: Unsupervised change detection approaches, which are relatively straightforward and
easy to implement and interpret, and which require no human intervention, are widely used in
change detection. Polarimetric synthetic aperture radar (PolSAR), which has an all-weather response
capability with increased polarimetric information, is a key tool for change detection. However, for
PolSAR data, inadequate evaluation of the difference image (DI) map makes the threshold-based
algorithms incompatible with the true distribution model, which causes the change detection results
to be ineffective and inaccurate. In this paper, to solve these problems, we focus on the generation of
the DI map and the selection of the optimal threshold. An omnibus test statistic is used to generate
the DI map from multi-temporal PolSAR images, and an improved Kittler and Illingworth algorithm
based on either Weibull or gamma distribution is used to obtain the optimal threshold for generating
the change detection map. Multi-temporal PolSAR data obtained by the Radarsat-2 sensor over
Wuhan in China are used to verify the efficiency of the proposed method. The experimental results
using our approach obtained the best performance in East Lake and Yanxi Lake regions with false
alarm rates of 1.59% and 1.80%, total errors of 2.73% and 4.33%, overall accuracy of 97.27% and
95.67%, and Kappa coefficients of 0.6486 and 0.6275, respectively. Our results demonstrated that the
proposed method is more suitable than the other compared methods for multi-temporal PolSAR data,
and it can obtain both effective and accurate results.

Keywords: change detection; omnibus test statistic; Kittler and Illingworth (K&I); Weibull distribution;
gamma distribution; PolSAR

1. Introduction

Change detection is an important remote sensing technology that is used to identify the changes of
the Earth’s surface through multi-temporal images of the same geographical area observed at different
times [1]. On the one hand, due to the impact of environmental factors and social development, changes
occur all the time. On the other hand, as a result of the development of satellite systems, a huge number
of remote sensing images can now be acquired to detect these changes. Owing to the explosive increase
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in remote sensing data, how to detect changes accurately is an active research topic [2]. In this context,
multi-temporal remote sensing images of the same region proved particularly useful in the applications
of change detection, including urban planning [3,4], agricultural research [5,6], disaster detection [7,8],
and wetland detection [9,10]. As one of the effective means in change detection, synthetic aperture
radar (SAR) systems have more advantages than optical sensors, due to their ability to acquire periodic
images, regardless of weather or daylight.

Unsupervised change detection methods [11,12] have the advantage of a simple design, and
they involve the following steps: (1) data preprocessing, (2) production of the difference image (DI),
and (3) analysis of the DI. The main techniques used in the first step are radiometric calibration,
image co-registration [13], and speckle filtering [14]. Precise preprocessing is vital to improve the
accuracy of the change detection results. After the preprocessing, the quality of the DI map and the
choice of threshold algorithm are closely linked to the results of the unsupervised change detection.
In the second step, many different approaches, both pixel-based and object-based, can be used to
produce a DI map, and they each have their own respective advantages and disadvantages [15].
The pixel-based approaches are easy to design and quick to process. As such, they are widely used in
generating DI maps [16]. In contrast, the object-based approaches combine the pixels of homogeneous
regions, which can preserve the detailed information [17,18]. However, these methods require many
parameters to be set. Parameter testing is a key factor that influences the performance of DI maps, and
it results in the object-based approaches being inefficient. In order to design a suitable and efficient
approach, pixel-based methods are the focus in our research. To date, many different approaches were
developed for producing DI maps, such as the log-ratio technique [19,20], the neighborhood-based ratio
technique [21], feature fusion [22,23], Markov random field-based models [24,25], principal component
analysis [26], Kullback–Leibler divergence method [27], and time-series analysis on Google Earth
Engine [28,29]. However, these methods only use single/dual polarization SAR data. In consideration
of the special distribution of SAR backscattering [30] and using more channel information, the test
statistic method with maximum likelihood estimation (MLE) [31], change detection matrices with
Wishart distance [32], Kennaugh element framework [33], and the Hotelling–Lawley trace statistic [11]
can apply the covariance (or coherence) matrix to obtain DI maps and fit for detecting the abrupt
changes. As an extension of the test statistic, the omnibus likelihood ratio test statistic approach, which
can be applied in dual-/quad-pol acquisitions [34,35], proved particularly useful in multi-temporal
change detection, and it can detect both abrupt changes and steady increased changes [35]. In this
paper, multi-temporal covariance (or coherence) matrices are still satisfied with a Wishart distribution
and used by the omnibus likelihood ratio test statistic approach to produce an accurate DI map. Finally,
in order to choose the threshold accurately and efficiently, a number of methods were developed based
on automatic threshold selection [31,36,37]. Compared with these methods, the Kittler and Illingworth
(K&I) algorithm is based on Bayesian theory, and it determines the optimal threshold by minimizing
the classification error. This approach has a solid mathematical foundation and is widely used in
image processing. However, one problem that should be noted is that the pre-assumed distribution
model for the DI has a great impact on the effectiveness of the K&I algorithm. In the previous studies
of change detection, the DIs were usually generated from single-channel SAR images, and Gaussian,
generalized Gaussian, Rayleigh, or exponential distribution models were assumed for the statistical
property of the DI [38–40]. However, as soon as a DI map is generated by the omnibus likelihood
ratio test statistic method with four channels of polarimetric synthetic aperture radar (PolSAR) data,
the statistical property of the DI is changed. In order to obtain accurate change detection results, a
more appropriate distribution model should be adopted and, consequently, new versions of the K&I
algorithm need to be developed. Weibull and gamma distributions are widely used in analyzing the
statistical characterization of SAR data [41], and they are applied in image segmentation [42], texture
analysis [43], deformation modeling [44], classification [45], and target detection [46]. However, to
our knowledge, Weibull or gamma distribution was not previously applied to describe the statistical
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behaviors of a change detection DI map. Therefore, in order to obtain a precise threshold, Weibull or
gamma distribution is used to modify the K&I algorithm.

Above all, we propose a novel change detection method based on the omnibus likelihood
ratio test statistic and improved K&I algorithm using the Weibull or gamma distribution in this
paper. The appropriate DI map is generated by an omnibus likelihood ratio test statistic from the
multi-temporal covariance (or coherency) matrix. Moreover, to estimate the distribution properties
of the DI map, statistical histogram curve-fitting is utilized to determine the distribution model.
Furthermore, Weibull or gamma distribution is used to improve the K&I algorithm, as well as obtain
the optimal threshold. Finally, an accurate change detection map is generated using the DI map and
the optimal threshold.

The rest of this paper is organized as follows: the principle and detailed procedures of the
proposed method are described in Section 2. Section 3 introduces the case study. Section 4 provides
the experimental results and analyses. Potentials and limitations of the proposed method are briefly
discussed in Section 5. Finally, our conclusions are drawn in Section 6.

2. Materials and Methods

2.1. The Model of PolSAR Data

Fully polarimetric information is used in the proposed method, which can be expressed by
Equation (1) when the target reciprocity condition is satisfied.

Ω = [Shh,
√

2Shv, Svv]
T

, (1)

where h and v represent horizontal and vertical polarization, respectively. The scattering vector Shv
represents the vertical transmitting and horizontal receiving polarizations. T denotes the transpose
operation.

After multi-look processing, as an example of a covariance matrix, the backscattered information
matrix of the ground target follows a Wishart distribution and can be expressed as follows:

X =
〈
Ω ·Ω∗T

〉
=

〈
|Shh|

2 ShhS∗hv ShhS∗vv
ShvS∗hh |Shv|

2 ShvS∗vv
SvvS∗hh SvvS∗hv |Svv|

2


〉
. (2)

After image preprocessing, the co-registered and equal-sized PolSAR images from the same
geographical region can be represented by Xt1 (i, j), Xt2 (i, j), . . . , Xtn (i, j) at time t1, t2, . . . , tn,
respectively. Because of the different data obtained over a long time interval, we can assume that the
temporal PolSAR measurements (Xt1, Xt2 . . . Xtn) are independent and can be expressed as follows:

Xt1 ∈W(p, m1, ΣXt1)

Xt2 ∈W(p, m2, ΣXt2)
...

Xtn ∈W(p, mn, ΣXtn)

, (3)

where p represents the matrix dimension of Xt1, Xt2, . . . , Xtn, and m1, m2, . . . , mn represents the number
of looks of Xt1, Xt2, . . . , Xtn, respectively. The probability density function (PDF) of the Xti is expressed
by Equation (4). ΣXti denotes the dispersion matrix of the i-th PolSAR image and is calculated by
Equation (5).

f (Xti) =
1

υp(mi)

∣∣∣ΣXti

∣∣∣−mi
|Xti|

mi−p exp
{
−tr

[
Σ−1Xti

]}
, (4)
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where υp(mi) = πp(p−1)/2
p∏

j=1
Γ(mi − j + 1).

ΣXti =
1

mi
Xti. (5)

2.2. The Proposed Method

2.2.1. Omnibus Test Statistic

When a change occurs in the time interval [t1, tn], we need to check these changes by comparing
the PolSAR measurements. The omnibus test statistic [35], which has proved useful in detecting both
discontinuous jump and steady increased changes, is introduced in this section.

Comparing Xt1, Xt2, . . . , Xtn, when these dispersion matrices satisfy ΣXt1 = ΣXt2 = . . . = ΣXtn,
this means that the ground targets in these regions at different dates show the characteristic of being
unchanged, and they can be defined by the null hypothesis (H0). In contrast, when these dispersion
matrices satisfy ΣXti , ΣXtj and i, j denote the arbitrary time, this means that at least one change
happened in these regions, and it can be defined by the alternative hypothesis (H1).

The joint densities of omnibus test statistics based on MLE can be expressed by f (ΣXt1, ΣXt2, . . . ,
ΣXti, ε), where the parameter ε is the set of the probability function. Furthermore, the omnibus test
statistic (Q) using the likelihood ratio is expressed by Equation (6).

Q =
maxθ∈H0L(ε)
maxθ∈ΩL(ε)

=
L
(
Σ̂
)

n∏
i=1

LXti

(
ΣXti

) , (6)

where L(�) and f (�) are the likelihood function and frequency function, respectively, and Ω = H0∪H1.
When combined with Equations (3) and (5), Σ̂ can be expressed as follows:

Σ̂ =
1

n∑
i=1

mi

n∑
i=1

Xti. (7)

If we assume that ΣXt1 = ΣXt2 = . . . =ΣXtn =Σ, and Equation (4) is input into Equation (6), then Q
can be expressed as follows:

Q =

|Σ̂|
−

n∑
i=1

mi

n∏
i=1

Γp(mi)

n∏
i=1
|Xti|

mi−p exp
{
−tr

[
Σ−1

(
n∑

i=1
Xti

)]}
n∏

i=1

(
1

Γp(mi)

∣∣∣ΣXti

∣∣∣−mi
|Xti|

mi−p exp
{
−tr

[
Σ−1Xti

]}) . (8)

When combined with Equation (7) and assuming m1 = m2 = . . . = mn = m, Equation (8) can be
simplified as follows:

Q =

{
npn

∏n
i=1|Xti|

|Xti|
n

}m

. (9)

After a logarithm operation, the DI map (d) with the omnibus test statistic can be denoted by
Equation (10).

d =
2p2
− 4pm− 1

2p
(pn ln n +

n∑
i=1

ln|Xti| − n ln

∣∣∣∣∣∣∣
n∑

i=1

Xti

∣∣∣∣∣∣∣). (10)
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2.2.2. The K&I Algorithm Based on Weibull or Gamma Distribution

(a) Statistical Distribution Model of the DI Map

After generating the DI map from the multi-temporal PolSAR images, an automatic thresholding
method is introduced. To obtain good change detection results, an appropriate thresholding algorithm
is needed to separate the DI into the changed and unchanged classes. We recommend the K&I algorithm,
which obtains the optimal threshold value by minimizing the classification error [38]. As the statistical
distribution function is considered in this algorithm, it is best to establish which distribution model is
most compatible with the DI map. Typically, Gaussian and generalized Gaussian distribution models
are used in remote sensing imagery. Due to the impact of speckle noise, the negative exponential
model is widely used in SAR imagery [47]. Furthermore, the Weibull distribution can be compatible
with PolSAR data over a wide resolution range, and the PDF involves a scale parameter θ and a shape
parameter γ, as follows:

p(X) =
γ

θ
Xγ−1 exp

(
−

Xγ

θ

)
, X > 0. (11)

The gamma distribution is also a two-parameter distribution model, which can degenerate to an
exponential or chi-squared distribution in some circumstances. Moreover, this distribution model is fit
for PolSAR imagery with a medium resolution. The PDF of the gamma distribution involves a rate
parameter θ, a shape parameter γ, and a gamma function Г(γ), as follows:

p(X) =
θγXγ−1e−θX

Γ(γ)
, X ≥ 0. (12)

A visual way to determine if the distribution model is suitable or not is distribution function
fitting. After we make the distribution function fit in some homogeneous areas via MLE operation, we
can observe the goodness of fit by comparing it with the statistical histogram. The homogeneous areas
can be lakes or vegetation areas. Moreover, as one of important types of surface coverage, urban area
was also selected to analyze its distribution property.

(b) The K&I Algorithm Based on Weibull or Gamma Distribution

In order to obtain a precise threshold, both Weibull and gamma distributions are separately used
to modify the K&I algorithm. As an extension of Bayesian theory, the traditional K&I thresholding
method can be expressed as shown in Equation (13),

J(T) =
L−1∑
dl=0

h(dl)c(dl, T) where c(dl, T) =
{
−2 ln P(ωu|dl, T), dl ≤ T
−2 ln P(ωc|dl, T), dl > T

(13)

where L, T, and h(dl) denote the numbers of possible gray levels, the threshold, and the histogram
of the DI map, respectively. J(�) and c(�) denote the criterion function and cost function, respectively.
Under the condition of dl and the threshold T, P(ωi|dl,T) (i = u,c) denotes the posterior probability of
unchanged (u) and changed (c) classes, respectively.

The traditional K&I method assumes that the class-conditional distribution follows a Gaussian,
generalized Gaussian, Rayleigh, or exponential distribution, but this assumption cannot accurately
reflect the distribution of the DI map. After we analyzed the statistical property of the DI, we found
that it was more compatible with the two-parameter distribution models, i.e., Weibull or gamma
distributions, which is later confirmed in the experimental part. In order to improve the threshold
selection, an improved model based on Weibull or gamma distribution is used to describe the statistical
behaviors of the changed and unchanged classes in the DI. We, therefore, propose a new and improved
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version of the K&I algorithm. If we assume that the distribution model is a Weibull distribution, by
combining Equations (11) and (13), the new criterion function can be shown as follows:

J(T) =
T∑

dl=0
h(dl)

{
− ln Pu − ln

(γu
θu

dl
γu−1 exp

(
−

dl
γu

θu

))}
+

L−1∑
dl=T+1

h(dl)
{
− ln Pc − ln

(γc
θc

dl
γc−1 exp

(
−

dl
γc

θc

))} (14)

The symbols θu, γu, θc and γc are the scale and shape parameters of Pu(dl| u, T) and Pc(dl| c, T),
respectively, which are the Weibull distribution functions estimated with the pixels in the DI map by
MLE. After expanding the above equation, the criterion is changed to

J(T) =
T∑

dl=0
h(dl)(dl

γu /θu) −
T∑

dl=0
h(dl) ln

(
dl
γu−1

)
− Pu ln(Pu·γu/θu)+

L−1∑
dl=T+1

h(dl)(dl
γc /θc) −

L−1∑
dl=T+1

h(dl) ln
(
dγc−1

)
− Pc ln(Pc·γc/θc)

(15)

When the gamma distribution is considered, we can generate another criterion function by
combining Equations (12) and (13). Following the same operation as above, the K&I algorithm based
on a gamma distribution is as follows:

J(T) =
T∑

dl=0
h(dl)

(
θudl − ln

(
dl
γu−1

))
− Pu ln(Pu·θu

γu /Γ(γu))

+
L−1∑

dl=T+1
h(dl)

(
θcdl − ln

(
dl
γc−1

))
− Pc ln(Pc·θc

γc /Γ(γc))
(16)

In the application of this algorithm, we firstly calculate the statistical histogram of the DI. We then
compute criterion J(T) at each histogram level. Finally, we choose the histogram level where criterion
J(T) is the minimum as the optimal threshold, i.e., T*= argmin{J(T): T = 0, 1, . . . , L − 1}. In change
detection, the area is marked as a changed one if its pixel value is higher than the optimal threshold in
the DI.

2.2.3. The Workflow of the Proposed Method

The entire steps in the proposed approach can be demonstrated as follows:

• Step (1): The preprocessing that involves co-registration and removal of speckle noise for the test
data is firstly conducted. In this study, the precision of the co-registration was less than one pixel,
and the refined Lee filter [47] was used to suppress the speckle noise.

• Step (2): The omnibus test statistic method is used to generate the DI map from PolSAR images at
different dates.

• Step (3): Statistical histogram curve-fitting is utilized to determine the function distribution model
in homogeneous and unchanged regions. Weibull and gamma distributions are separately applied
to improve the K&I algorithm.

• Step (4): The pixels in position (i, j) at different dates should be determined as unchanged or
changed. If dij < T, the index of this pixel is equal to zero, which denotes that the pixels in this
position are similar or unchanged. Otherwise, the corresponding pixels are deemed as different
or changed, and the index is equal to one. After completing the indexes of all the pixels in the
multi-temporal images, the change detection map is produced. Figure 1 shows the detailed
algorithm flowchart.
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Figure 1. Flowchart of the proposed method.

2.3. Evaluation Criterion

For the quantitative evaluation, the false alarm (FA) rate, the total errors (TE), the overall accuracy
(OA), and the Kappa coefficient are used to verify the performance of the proposed method. When the
ground truth is available, these indicators can be expressed as follows:

FA = FP
Nu

, TE = FP+FN
N

OA = TP+TN
N , Kappa = OA−Pe

1−Pe

Pe = (TP+FN)(TP+FP)+(FP+TN)(FN+TN)

N2

N = Nc + Nu

, (17)

where true positives (TP) denote the number of changed points which are detected correctly, true
negative (TN) denotes the number of unchanged points which are detected correctly, false positives (FP)
denote the number of unchanged points which are detected incorrectly, and false negatives (FN) denote
the number of changed points which are detected incorrectly. Moreover, the numbers of changed
points and unchanged points are denoted by Nc and Nu, respectively.

3. Case Study

3.1. Study Area and Background

As a central city in China, the city of Wuhan is located in the eastern part of Hubei province and
lies in the middle reaches of the Yangtze River (Figure 2). It belongs to the north subtropical monsoon
climate zone, and it has abundant rainfall. There are many rivers and lakes in Wuhan, which account
for one-quarter of the total city area. Due to urbanization and population growth, Wuhan is one of the
most rapidly developing cities in China. As a result, how to detect changes accurately is important for
both regional economic development planning and dynamic monitoring. Because of the construction
of the East Lake Greenway and the 50-year return period rainfall that occurred between 2015 and 2016,
changes in urban facilities and inundation detection are the emphasis of this research. Compared with
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optical sensors, SAR sensors are a better solution to detect these changes in the scenario of constant
rainfall. Two PolSAR images of Wuhan from this period were, thus, used to monitor the changes in
urban facilities and those caused by inundation.

Figure 2. Location of the research area.

3.2. Datasets and Image Preprocessing

Because this flooding event happened suddenly and receded rapidly, the timing of SAR data
acquisition is extremely critical. Thanks to the C-band Radarsat-2 sensor (with a repeat cycle of 24
days), we acquired near-real-time PolSAR data on 6 July 2016. Furthermore, the archived pre-event
PolSAR data were used to detect changes caused by urbanization and inundation in Wuhan. Table 1
shows the parameters of the experimental datasets.

Table 1. Detailed parameters of the test datasets.

Date of
Observation Beam Mode Pixel Spacing (m)

Azimuth × Range
Incidence Angle

(◦) Swath Width (km)

25 June 2015 FQ21 5.12 × 4.73 40.16–41.58 25 × 25
6 July 2016 FQ27 4.86 × 4.73 45.23–46.69 25 × 25

In order to ensure the precision of the change detection results, the preprocessing of the
experimental datasets included radiometric calibration, image co-registration, and speckle filtering,
all of which were completed using two free open-source software packages (NEST and PolSARpro).
After the preprocessing, the pixel values at the different dates were directly related to the radar
backscattering coefficients and had the same original resolution. Moreover, for the co-registered images,
speckle noise was removed by refined Lee filtering based on a 7 × 7 window.

4. Results and Analyses

The Pauli-RGB images (|Shh – Svv| for red (R), |Shv| for green (G), and |Shh + Svv| for blue (B)) of
Wuhan in 2015 and 2016 are shown in Figure 3. In order to verify the efficiency of the proposed method,
the regions labeled by the two red boxes (region 1 is East Lake and region 2 is Yanxi Lake) in Figure 3a
were selected to provide a detailed assessment. These regions cover urban areas, water bodies, forest,
and other urban facilities.
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Figure 3. Radarsat-2 polarimetric synthetic aperture radar (PolSAR) images acquired on (a) 25 June
2015, and (b) 6 July 2016.

To establish which distribution model is most compatible with the data, three typical surface
features were chosen to analyze the statistical distribution of the DI map: water, a vegetated area, and
an urban area. The exact regions are shown in Figure 3b. The statistical histograms of the chosen
regions in the DI map are shown in Figure 4. In addition, distribution models based on Rayleigh,
exponential, Gaussian, Weibull, and gamma distributions are denoted by the different color curves in
Figure 4, and these curves were fitted by the MLE method with pixels in these regions. In Figure 4, it
is apparent that the Weibull distribution (red curve) and gamma distribution (green curve) are more
suitable than the other function distributions in the water region (Figure 4a), urban region (Figure 4b),
and vegetated region (Figure 4c).

Figure 4. The statistical histograms and distribution function fitting in (a) a water area, (b) an urban
area, and (c) a vegetated area.

4.1. Analysis of the Urban Facilities Changes for East Lake from 2015 to 2016

The first research region was East Lake, for which the image size was 800 × 500 pixels. The land
cover of this region is mainly greenway, urban areas, water bodies, and grassland. Due to the
greenway re-construction that took place in this period, we focus on a detailed assessment of this
area. The Pauli-RGB images at the different dates and the reference data are shown in Figure 5.
Furthermore, the reference map was produced by field surveys conducted and visual interpretation
from Google Earth.
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Figure 5. Radarsat-2 PolSAR images of East Lake (region 1) acquired on (a) 25 June 2015, and (b) 6 July
2016. (c) The ground reference map (white denotes change and black denotes non-change).

The two DI maps generated by the log-ratio method using single-channel SAR information and the
omnibus test statistic method using fully polarimetric information are shown in Figure 6. Both of these
methods have high values in changed regions. However, the DI map based on the log-ratio method also
has a high response in the unchanged areas, which increases the difficulty of distinguishing changed
and unchanged regions. Unlike the log-ratio method using single-channel SAR data, the omnibus test
statistic method employs more polarimetric information to obtain the DI map, which results in a low
response in the unchanged areas. Therefore, the contrast between unchanged and changed regions
when using the proposed method is more obvious than for the log-ratio method. It is obvious from
Figure 6a, b that the proposed method can obtain a DI map that is more stable and precise.

Figure 6. Difference image (DI) maps based on (a) the log-ratio method, and (b) the omnibus test
statistic using PolSAR data from the different dates of 25 June 2015 and 6 July 2016.
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The results of the comparison experiment based on the different methods are shown in Figure 7.
Because the contrast of the DI map obtained using the single-channel SAR data is not obvious, the
result obtained using the log-ratio and K&I method has many wrong detections in the unchanged
regions (e.g., water body). Comparing Figure 7a, e, the result based on the omnibus test statistic and
K&I method shows a better performance than the result of the log-ratio and K&I method. This proves
that using more polarization information from different channels of PolSAR can obtain a DI map that is
more accurate and has greater contrast. In order to show the effects of the different threshold selection
methods, the methods based on significance levels of 5% and 1%, the constant false alarm rate (CFAR)
algorithm, and the traditional K&I algorithm were used in the contrast experiment. The results of the
change detection (Figure 7b, c, d, e) demonstrate that using the traditional K&I method results in fewer
false alarms than the other methods. Although the traditional K&I method shows a better performance,
the Gaussian assumption only fits a symmetric distribution, and the DI map obtained using the fully
polarimetric information and omnibus test statistic method does not fit the symmetric distribution
assumption. The change detection maps based on the different distribution fitting methods for K&I are
shown in Figure 7e–h. Comparing Figure 7e, f, due to one more parameter being used, the K&I method
based on a generalized Gaussian distribution obtains fewer false detections in the East Lake area, and
it obtains more detail information in the greenway area than the K&I method based on a Gaussian
distribution. This proves that adding one more parameter in the Gaussian model can improve the
accuracy and efficiency of the change detection results. However, the generalized Gaussian assumption,
as an extension of the Gaussian distribution, is still designed for a symmetric distribution. Due to
this drawback, both the Gaussian and the generalized Gaussian distributions are not a good fit for
the DIs from PolSAR images. This results in the K&I method being unable to accurately extract the
optimal threshold. Comparing Figure 7f a, g, the result for the gamma distribution shown in Figure 7h
shows the best performance, with fewer false alarms and wrong detections than the other function
distributions. Moreover, the K&I method based on a Weibull distribution also performs better than the
Gaussian and generalized Gaussian distributions. This proves that, to generate a change detection
result with more accuracy and efficiency, choosing a suitable function distribution is more important
than adding more parameters. The quantitative evaluation of these different methods is given in
Table 2, where the proposed method shows the best performance in all four indicators (FA (%), TE (%),
OA (%), Kappa). This confirms that our method is superior to the other methods.

Table 2. Performance evaluation of the change detection for East Lake. FA—false alarm; TE—total
error; OA—overall accuracy.

Method FA (%) TE (%) OA (%) Kappa

Log-ratio and traditional K&I 6.55 7.03 92.96 0.4413
Omnibus test statistic with a 5% significance level 6.17 6.42 93.58 0.4857
Omnibus test statistic with a 1% significance level 4.59 5.04 94.96 0.5398

Omnibus test statistic and CFAR 6.53 6.84 93.16 0.4630
Omnibus test statistic and traditional K&I 3.96 4.51 95.49 0.5629

Omnibus test statistic and K&I based on a generalized
Gaussian distribution 3.00 3.77 96.23 0.5953

Omnibus test statistic and K&I based on a Weibull
distribution 2.25 3.18 96.82 0.6271

Omnibus test statistic and K&I based on a gamma
distribution 1.59 2.73 97.27 0.6486
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Figure 8 shows the effect of the gray level on the K&I algorithm based on different function
distributions. Because the generalized Gaussian distribution is similar to the Gaussian distribution and
uses only one more parameter, the generalized Gaussian distribution, the Weibull distribution, and
the gamma distribution were used to verify the performance of the proposed method. The different
function distributions are shown in Figure 8 by the green curve (generalized Gaussian distribution),
blue curve (Weibull distribution), and red curve (gamma distribution). In these figures, it can be
seen that the generalized Gaussian distribution obtains the best performance when the gray level is
equal to 2500, but the precision is lower than our method based on Weibull or gamma distribution.
Furthermore, Weibull distribution is easily affected by the different gray levels, and it obtains the best
performance when the gray level is equal to 2500. All the results indicate that the proposed method
with gamma distribution in different gray levels performs better than the K&I method with other
function distributions. The proposed method is also more stable.

Figure 7. Change detection results: (a) log-ratio and Kittler and Illingworth (K&I) algorithm; omnibus
test statistic with (b) a 5% significance level, and (c) a 1% significance level; (d) omnibus test statistic
and constant false alarm rate (CFAR) algorithm; omnibus test statistic and K&I based on (e) a
Gaussian distribution, (f) a generalized Gaussian distribution, (g) a Weibull distribution, and (h) a
gamma distribution.
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Figure 8. Curves of performance evaluation based on different gray levels: (a) false alarm rate; (b) total
errors; (c) overall accuracy; (d) Kappa coefficient.

4.2. Analysis of Inundation and Urban Facilities Changes for Yanxi Lake from 2015 to 2016

The second research region was Yanxi Lake, for which the image size was 600 × 600 pixels.
The land cover of this region is mainly urban areas, water bodies, and grassland. Due to the impact of
continuous heavy rainfall and construction, the main changes in this area were in the water areas and
urban areas. The Pauli-RGB images for the different dates and the ground reference data are shown in
Figure 9.

Figure 9. Radarsat-2 PolSAR images of Yanxi Lake (region 2), as indicated in Figure 3, acquired on (a)
25 June 2015, and (b) 6 July 2016. (c) Ground reference map.

The two DI maps generated by the log-ratio method using single-channel SAR information and the
omnibus test statistic method using fully polarimetric information are shown in Figure 10. Both of these
methods have high values in changed regions. However, the DI map based on the log-ratio method
also shows a high response in the unchanged areas, which increases the difficulty of distinguishing
changed and unchanged regions. Unlike the log-ratio method using single-channel SAR data, the
omnibus test statistic method uses more polarimetric information to obtain the DI map, which results
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in a low response in the unchanged areas. Therefore, the contrast between the unchanged and changed
regions is more obvious than when using the log-ratio method. Moreover, the visual performance
shown in Figure 10a,b proves that the proposed method can obtain a DI map that is more stable
and precise.

Figure 10. DI maps of region 2 based on (a) the log-ratio method, and (b) the omnibus test statistic for
the different dates of 25 June 2015 and 6 July 2016.

The results of the comparison experiment based on the different methods are shown in Figure 11.
Comparing Figure 11a, e, the results based on the omnibus test statistic and K&I method show a
better performance than the results of the log-ratio and K&I method. This again proves that using
more polarization information from different PolSAR channels can obtain a DI map that is more
accurate and has greater contrast. The results of the change detection (Figure 11b–h) show that using
the K&I method with different distribution results in fewer false alarms than for the other methods.
Moreover, the results based on the proposed method obtains fewer false detections in the Yanxi Lake
area, and it obtains more detailed information in the urban area. This again proves that, to produce a
change detection result with more accuracy and efficiency, choosing a suitable function distribution is
more important than adding more parameters. The quantitative evaluation for the different methods
is provided in Table 3, where the proposed method based on gamma distribution shows the best
performance in all four indicators (FA (%), TE (%), OA (%), Kappa). Moreover, Weibull distribution also
shows a better performance than the Gaussian and generalized Gaussian distributions. This confirms
that the proposed method is effective and shows a significant improvement in detecting the changes
caused by urbanization and inundation over the other methods.

Table 3. Performance evaluation of the change detection for Yanxi Lake.

Method FA (%) TE (%) OA (%) Kappa

Log-ratio and traditional K&I 6.69 7.97 92.03 0.5135
Omnibus test statistic with a 5% significance level 7.22 7.99 92.01 0.5358
Omnibus test statistic with a 1% significance level 5.37 6.57 93.43 0.5749

Omnibus test statistic and CFAR 6.70 7.92 92.08 0.5179
Omnibus test statistic and traditional K&I 4.86 6.19 93.81 0.5862
Omnibus test statistic and K&I based on a

generalized Gaussian distribution 3.82 5.52 94.48 0.6016

Omnibus test statistic and K&I based on a
Weibull distribution 2.68 4.78 95.22 0.6220

Omnibus test statistic and K&I based on a
gamma distribution 1.80 4.33 95.67 0.6275

Figure 12 shows the effect of the gray level on the K&I algorithm based on the different function
distributions. In the figures, it can be seen that the generalized Gaussian distribution obtains the best
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performance when the gray level is equal to 3000, but the precision is lower than the other function
distributions. The Weibull distribution is stable when the gray levels are above 1500. These results
indicate that the proposed method with gamma distribution performs better than the K&I method
with other function distributions for the case of different gray levels. Again, the proposed method is
also more stable than the other methods.

Figure 11. Change detection results: (a) log-ratio and K&I; omnibus test statistic with (b) a 5%
significance level, and (c) a 1% significance level; (d) omnibus test statistic and CFAR; omnibus test
statistic and K&I based on (e) a Gaussian distribution, (f) a generalized Gaussian distribution, (g) a
Weibull distribution, and (h) a gamma distribution.

Figure 12. Curves of the performance evaluation based on different gray levels: (a) false alarm rate; (b)
total errors; (c) overall accuracy; (d) Kappa coefficient.
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5. Discussion

In this section, the potentials and limitations of the proposed method are discussed. The proposed
method using multi-temporal PolSAR data has better performance than other methods. In order to
verify the usability of our approach, we made further experiments based on multi-temporal single
and dual polarization data in Yanxi lake. Single and dual polarization information extracted from
the complex target vector in Equation (1) are applied in the proposed method. The change detection
results in Yanxi Lake are shown in Figure 13. The results illustrate that the proposed method can
also be applied in single or dual polarization data. Moreover, the results of dual polarization data
based on Weibull (Figure 13b3, b4) or gamma distribution (Figure 13c3,c4) have good performance.
However, compared with the results of dual polarization, the results of single-channel SAR data
have more omission detection in Figure 13b1(2), c1(2). This proves that using more polarization
channel information can obtain more accurate change detection results. Comparing Figure 13b1(2),
c1(2), the results with single polarization data based on generalized Gaussian distribution have a
better performance in Figure 13a1(2). This proves that the symmetric distribution assumption is the
most compatible with DI map from the single polarization. Furthermore, quantitative evaluation of
results from different polarizations is provided in Figure 14 by the green curve (generalized Gaussian
distribution), blue curve (Weibull distribution), and red curve (gamma distribution). The proposed
method based on gamma distribution using quad polarization data shows the best performance in
TE, OA, and Kappa than others. Moreover, the accuracy (red curve) improves as the polarization
increases in Figure 14b–d. This confirms that using more channel information produces more stable and
precise results. In addition, the proposed method based on Weibull distribution (blue curve) with dual
polarization data has better performance (TE and OA) than single and quad polarization. Although
the Kappa is lower than that from quad polarization, the difference is small. These demonstrate that
the proposed method based on Weibull distribution is suitable in dual polarization. It proves that our
approach has great potential to be applied in Sentinel-1 data with dual polarization datasets.

Although the proposed method has a good performance in change detection and can be applied
in both single and dual polarization data, it still has some limitations. Firstly, the proposed method
can detect the water changes in two dimensions, but it cannot detect the water-level changes. To
solve this problem, external data are applied to improve the change detection accuracy. Secondly, the
proposed method can obtain the unchanged and changed information, but it cannot obtain the types
of land-cover changes. To solve this problem, classification techniques can be combined with our
method to get the types of land-cover changes. Thirdly, multi-temporal time-series observations are
ideal for detecting changes accurately. Because of limited data, our research only uses the bi-temporal
PolSAR data to detect the changes in urban facility and inundation. The application of the proposed
method based on time-series observations from different sensors (e.g., Sentinel-1) will be explored in
further work.
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Figure 13. Change detection results using the HH polarization based on omnibus test statistic and
K&I based on (a1) a generalized Gaussian distribution, (b1) a Weibull distribution, and (c1) a gamma
distribution; the VV polarization based on omnibus test statistic and K&I based on (a2) a generalized
Gaussian distribution, (b2) a Weibull distribution, and (c2) a gamma distribution; the (HH, HV)
polarization based on omnibus test statistic and K&I based on (a3) a generalized Gaussian distribution,
(b3) a Weibull distribution, and (c3) a gamma distribution; the (VV, VH) polarization based on omnibus
test statistic and K&I based on (a4) a generalized Gaussian distribution, (b4) a Weibull distribution,
and (c4) a gamma distribution.
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Figure 14. Quantitative evaluation of results from different polarizations: (a) false alarm rate; (b) total
errors; (c) overall accuracy; (d) Kappa coefficient.

6. Conclusions

In this paper, we showed that the combination of an omnibus test statistic using a covariance
matrix and the K&I method based on Weibull or gamma distribution can improve the performance
of change detection for multi-temporal PolSAR images. The proposed method for generating DI
maps is appropriate for PolSAR images, and it can obtain an accurate intermediate result. Due to
the solid mathematical fundamentals of Bayesian theory, the traditional K&I method shows better
performance than the other methods. This illustrates that the threshold selection method based on
K&I is stable and effective in change detection. After analyzing three typical land covers, i.e., water,
vegetation, and urban areas, in the difference image, we find that the variable in the difference image
more likely follows the Weibull or gamma distribution. Thus, we proposed the K&I change detection
algorithm based on Weibull or gamma distribution. Moreover, the proposed method can be applied to
single/dual/quad polarization data, while the different polarization data with different distributions
can generate stable and precise change detection results. Based on the proposed method, the changes
caused by urban development and inundation between 2015 and 2016 in Wuhan, China, were detected
accurately. Over the East Lake and Yanxi Lake regions where the reference map was available, our
proposed method obtained the best performance with FA of 1.59% and 1.80%, TE of 2.73% and 4.33%,
OA of 97.27% and 95.67%, and Kappa of 0.6486 and 0.6275, respectively. These confirmed that the
proposed method is superior to the other methods, and it is effective in detecting changes caused by
urbanization and inundation.
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