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Abstract: Mixed pixels commonly exist in low-resolution remote sensing images, and they are
the key factors hindering the classification of land covers and high-precision mapping. To obtain
the spatial information at the subpixel level, subpixel mapping (SPM) technologies, including the
pixel-swapping algorithm (PSA), that use the unmixed proportions of various land covers and allocate
subpixel land covers have been proposed. However, the PSA often falls into a local optimum solution.
In this paper, we propose a SPM method, the PSA_MSA algorithm, that combines the PSA and
the modified simulated annealing algorithm to find the global optimum solution. The modified
simulated annealing algorithm swaps subpixels within a certain range to escape the local optimum
solution. The method also optimizes all the mixed pixels in a randomized sequence to further
improve the mapping accuracy. The experimental results demonstrate that the proposed PSA_MSA
algorithm outperforms the existing PSA-based algorithms for SPM. The images with different spatial
dependences are tested and the results show that the proposed algorithm is more suitable for images
with high spatial autocorrelation. In addition, the effect of proportion error is analyzed by adding it
in the experiments. The result shows that a higher proportion error rate leads to larger degradation
of the subpixel mapping accuracy. Finally, the performance of PSA_MSA algorithm with different
ranges of selection on subpixel-swapping is analyzed.

Keywords: remote sensing image; subpixel mapping; simulated annealing algorithm;
pixel-swapping algorithm

1. Introduction

Remote sensing technologies have been increasingly used in many areas, such as environmental
monitoring, agricultural production, and resource exploration. The spatial resolution and spectral
resolution of spectral imaging systems are mutually restricted. To obtain a higher spectral resolution,
the spatial resolution of a spectral imaging system has to be sacrificed [1]. As a result, the spatial
resolution of spectral imaging systems is lower than that of panchromatic imagers. In images with low
spatial resolutions, one image pixel might include several different types of land cover [2—6]. These land
covers have different spectral characteristics. A pixel containing only one type of land cover is called
a pure pixel. Otherwise, it is called a mixed pixel. To obtain the end-member information, spectral
unmixing algorithms that can determine the proportion of different land covers in the mixed pixels have
been proposed, including the linear mixture model [7,8], the fuzzy c-means classification model [9,10],
and the neural network model [11,12]. Although proportional images can show the proportions of
different land cover types in mixed pixels and provide a better understanding of the features contained
in the mixed pixels, they still cannot provide the spatial distributions of the determined classes.
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However, in many applications, high spatial resolution images of land covers classifications are
highly desired. To achieve high-resolution results, Atkinson [13] proposed the subpixel mapping
(SPM) algorithm, which predicts subpixel spatial distributions of land covers by using the proportion
information. The SPM uses the proportion information of land cover types to determine the spatial
distributions of those land covers in low-resolution spectral images. Consequently, since SPM can
obtain the locations of various land covers at the subpixel level, it can improve the spatial resolution of
spectral images. Various SPM algorithms based on spatial dependence theory [14-18] and the neural
network model [19-24] have been proposed in the past twenty years. Among them, the pixel-swapping
algorithms (PSA) based on spatial dependence theory is the main algorithm in SPM due to its accurate
and understandable properties. The PSA was first proposed by Atkinson [13,25] to maximize the
spatial correlation of the subpixels by exchanging the classes of the subpixels. At present, research on
the PSA is constantly proposed. Makido and Shortridge [26] discussed the influence of PSA settings on
SPM. Luciani and Chen [27] tested the impact of the image and class structure of the input imagery on
the accuracy of the outputs from the PSA. Their work validated the known positive correlation between
spatial autocorrelation and PSA accuracy and demonstrated that the class proportion differences and
mixed pixel quantities were positively and negatively related to PSA accuracy, respectively. Studies
have also been performed to improve the mapping accuracy of the PSA. Mertens et al. [28] introduced
a subpixel/pixel attraction model (SAM) that determines the spatial relationship between subpixels
and pixels. Shen [29] used the PSA to optimize the output of the SAM to improve the mapping
accuracy. Su et al. [30] proposed a method that combines the PSA and contouring approaches to
enhance SPM. This method also considered the influence of the number of neighboring subpixels
and the downscale factor on the accuracy of SPM. Li et al. [31] used plurality voting to select the
class label for each subpixel from the multiple SPM outputs available. Peng et al. [32] applied the
simulated annealing algorithm into the pixel-swapping algorithm to optimize the objective function
(PSA_SA). Wu et al. [33] proposed a double-calculated spatial attraction model (DSAM) which applied
symmetrical patterns to initialize the subpixel assignment and to optimize the reconstruction through
subpixel exchanges. He also analyzed the influence of the reconstruction scale, image spatial resolution,
and pixel spatial relationships on the SPM accuracy. These algorithms combined different algorithms
to improve the mapping accuracy based on PSA but the problem of PSA easily settling for the local
optimal solution [34] has not been fully addressed.

In order to improve this problem, a pixel-swapping algorithm based on the modified simulated
annealing algorithm (PSA_MSA) is proposed in Section 2 of this paper. After adding the simulated
annealing (SA) algorithm, the PSA_MSA algorithm only exchanges subpixels in a specific range.
Simulation experiments have been performed to compare the mapping accuracy of the proposed
PSA_MSA algorithm with the accuracy of other algorithms: PSA, PSA simulated annealing (PSA_SA),
and DSAM. Among them, the PSA is the classical subpixel swapping algorithm, the PSA_SA is a PSA
with SA algorithm and the DSAM is the latest algorithm based on subpixel swapping. The effect of the
proportion of error on the accuracy of subpixel mapping is also discussed.

2. Materials and Methods

2.1. Principles of the PSA

We begin with a brief introduction of the principle behind and the functions of the PSA. The PSA
constantly exchanges classes of subpixels to ensure that the subpixels from the same object have the
largest spatial correlation. The PSA consists of three steps. Some symbols are shown in Figure 1.

Step 1. Calculate the gravitational value which reflects the spatial correlation of a mixed pixel.
For a subpixel p; ; located at (i, j), its gravitational value can be calculated as follows:

N
Ap,; = Zk:1 Az (pij Pr) 1)
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where Ay, ; is the gravitational value of p; j, N is the number of neighboring subpixels, Ay is the weighting
function of distance, and z(pi,j, px) is the And operation function.
The total gravitational value of a mixed pixel P, j, can be obtained by summing the gravitational

values of all its subpixels p; ;.
S S
Apy, = Zi:l Z =1 @
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Figure 1. Spatial correlations of the subpixels in the pixel-swapping algorithm (PSA) (S = 4). (a) Mixed
pixels, (b) high-resolution image, (c) subpixels in P, j.

Step 2. Exchange the classes of the subpixels within the mixed pixel. For all subpixels of category 1,
the subpixels with the lowest gravitational value are set to 0; for all subpixels of category 0, the subpixels
with the lowest gravitational value are set to 1.

Step 3. Based on Equation (5), calculate the new total gravitational value of the mixed pixel. If the
new gravitational value increases, then a subpixel-swapping result is retained. Otherwise, the locations
of different land cover subpixels will return to the previous state.

Repeat step 1 to step 3 until the total gravitational value (Equation (5)) of the mixed pixel does not
increase. The corresponding SPM results are considered to be the best localization results.

The current swapping method of the PSA is relatively simple, yet it is likely to fall into a local
optimum solution of the objective function. To solve this problem, we introduce a SA algorithm to
obtain the global optimum solution during subpixel swapping.

2.2. PSA with Simulated Annealing (SA)

The SA algorithm, which is used for solving optimization problems, was first proposed by
Kirkpatrick et al. [35]. It is based on a strong analogy between the issue of solving optimization
problems and the physical annealing of solids, which leads a system to its lowest energy state. Thus,
the SA algorithm has the ability to escape from the local optimum solution [36,37].

A simulated annealing process includes the following steps: (1) select an objective function and
set the starting temperature (simulated melting point), (2) simultaneously reduce the temperature
and decrease the energy of the objective function, and (3) repeat step (2) until the target temperature
reaches the ideal temperature and the objective function converges to the minimum value.
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Peng 32 directly applied the conventional SA algorithm to the swapping process of the PSA,
and we refer to this algorithm as the PSA_SA. Peng used the spatial correlation to calculate the objective
function used in the SA algorithm. The spatial correlation coefficients are calculated as follows:

al 6P"Pk
i,j
Apij = Z N 3)

=
—_

where N is the number of neighboring subpixels of each subpixel, while 6y, p, is the And
operation function.

The final target optimization function of one mixed pixel is the summation of the spatial correlation
coefficient of each subpixel within this mixed pixel and is defined as:

APy = Zis:l Z]S':l Apij )

The subpixel swapping process of PSA_SA is as follows: Randomly exchange the classes
of subpixels in a mixed pixel, and calculate the new target optimization function Ap,,” and the
corresponding AAp,,=Ap,,” — Ap,,. If AAp,, > 0, the exchanged positions of subpixel land covers
would be retained, and Ap,, = Ap,,". If AAp,, <0, calculate the acceptance probability ¢ = exp(-Ap, ,/T)
at the current SA temperat{lre T,and compai‘e ¢ with a random number #, which is in the range of (b,l).
If € > r, then the exchanged result would also be retained. Otherwise, the location of subpixels will
return to the previous state.

Unlike the PSA, the PSA_SA contains an added SA algorithm, which has shown a great tolerance
to local optima convergence and is often called a global optimizer that accepts deteriorated solutions
with a certain probability in subpixel swapping [38]. Thus, the PSA_SA should be able to help mixed
pixels to get rid of the problem of the local minimum in the process of increasing their gravitational
value through subpixel swapping. However, the constant random exchange in the SA algorithm makes
it difficult to use the subpixels of various land cover types to establish a reasonable spatial distribution.
Therefore, the accuracy of the PSA_SA is not ideal, which will be demonstrated in the experimental
results in Section 3.

2.3. PSA Based on the Modified Simulated Annealing Algorithm (PSA_MSA)

According to Atkinson, the purpose of the PSA is to maximize the spatial dependence, which is
“the likelihood that observations close together are more alike than those that are further apart” 25,
for subpixels of different land covers in a mixed pixel. To achieve this goal, his proposed PSA swaps
the subpixels corresponding to the two types of land covers that have the smallest gravitational values.
Peng’s method merely swaps two randomly selected subpixels from all the subpixels of different land
covers. Although this method considers the spatial dependence among the subpixels, the swapping
range in this method is too wide and therefore cannot obtain sufficiently accurate results within a
limited number of interactions.

In this research, based on the spatial dependence principle, we propose a PSA based on the
modified simulated annealing algorithm. Figure 2a shows a mixed pixel with two kinds of land
cover. Several subpixels with small gravitational values in the corresponding land cover form a group,
and two groups of these subpixels are shown as slashed blocks in Figure 2b. In the proposed method,
the SA algorithm randomly selects only one pixel from each group and swaps their classes. Figure 2c,d
show two possible swapping results. This method constrains the subpixels, which are randomly
swapped by SA, to subpixels with small gravitational values within their own classes.
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Figure 2. Interpretation of the PSA_MSA algorithm. (a) Original image, (b) randomly selected subpixels
for swapping, (c¢) Swapping result 1, (d) Swapping result 2.

The procedure of the proposed PSA_MSA algorithm following various steps: Figure 3 illustrates
the process of optimizing mixed pixels from step 1 to step 3 in the form of a flow chart.

Initial sub-pixel position, 7start, =0, iter

!

‘ Current sub-pixel position

!

‘ i=itl
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Figure 3. Flow chart of the modified simulated annealing algorithm.

Step 1. Initialization

According to the proportions of land cover in the mixed pixels, the subpixels with corresponding
classes are randomly allocated in each mixed pixel. Calculate the total attractiveness of each mixed pixel
by using either Equation (2) or Equation (4). Equation (2) considers the distance between the central
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subpixel and neighboring subpixels as the weight function, while Equation (4) treats neighboring
subpixels with the same weighting value. We denote the algorithms based on Equations (2) and (4) as
PSA_MSA1 and PSA_MSAZ2, respectively.

In the SA algorithm, set the values of the parameters such as the attenuation factor (a), the number
of iterations (iter), the initial temperature Tstart, and the final temperature Tstop. The cooling function is
defined by Tj;41 = Ty X a, where g is the number of cooling times which reflects the number of iterations
and Ty = Tstart-

Step 2. Use the SA algorithm to randomly swap the selected subpixels

According to the principle of spatial relevance, we can only swap subpixels with low attractiveness.
Therefore, a constraint is applied to the SA algorithm by selecting subpixels that need to be swapped
with attractiveness values within a certain range.

The low attractiveness range of is defined as follows:

First, the subpixel gravitational values of two opposing classes are calculated separately. Here,
we use M and N to represent two opposing classes. There are [ subpixels in class M and S X § — [
subpixels in class N.

Then, the gravitational values of M-class subpixels are sorted from smallest to largest: Ayg, < A,
<... <Apm, <... <Ap, (m <[; some subpixels may have the same gravitational value). Moreover,
the gravitational values of N-class subpixels are sorted from smallest to largest: Ax, <An, <... <A,
<... <An, (n <Sx S —1). In this research, the low attractiveness range for class M is [0, Ay, ], and the
low attractiveness range for class N is [0, An,]. Then, the swapping process can be expressed by the
following formula:

{ randomly select p;j = N {Ap, . < A, Ipi; = M} )
randomly select p; ; = M {A, i< AN, lpij = N}

where Ap,.,j is the attractiveness of subpixel p; ; calculated by either Equation (1) or (3).

Calculate the new total objective function values A pﬂ/b/ and AE=A pa’b/ - Ap,,- If AE > 0, the new
positions of the subpixels will be stored. If AE < 0, compute the acceptance probability ¢ = exp(Ap,,” —
Apu,b )/T; at the current MSA T,,. If € > r, where r = rand (0,1), the new position of the subpixels will still
be accepted. Otherwise, the locations of the subpixels will return to the previous state.

Step 3. Cooling system

Once step 2 is accomplished, i = i + 1. If i = iter, the system will be cooled by the cooling function:
Tq+1 = Tq X a.

Repeat steps 2 and 3. The optimization of one mixed pixel will be stopped when Tj41 < Tstop-
All mixed pixels will be optimized via steps 1 to 3.

Step 4. Randomly optimize the mixed pixels a second time

The traditional PSA sequentially optimizes the mixed pixels, as shown in Figure 4a. However,
the experimental results show that sequential optimization may limit the accuracy of SPM, which may
be due to repeated one-directional optimization. To change the optimization direction, we randomly
adjusted the order of the mixed pixels, as shown in Figure 4b and optimized the mixed pixels again
following the same procedures described in steps 2 and 3. The experimental results in Section 3.4 show
that randomly optimizing the mixed pixels again is better than sequentially optimizing them.
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Figure 4. Different mixed pixel selection methods: (a) Sequential and (b) Stochastic.

Step 5. Winner-takes-all strategy

Since the SA algorithm uses binary optimization, only one type of land cover is optimized at a
time. In each iteration, only the subpixels of one land cover type are set to 1 (p;; = 1), and the p;; for all
the other subpixels are set to 0. To optimize all the land covers, steps 1 to 4 are repeated. After all
land covers are optimized with the initial input proportional image, the corresponding class-specific
attractiveness of the subpixels is calculated. Thus, each subpixel stored the attractiveness values
corresponding to different types of land covers. Comparing the attractiveness values of all kinds of
land covers within a subpixel, the subpixel will be classified according the land cover that has the
largest attractiveness value 15.

3. Experiments and Analysis

To evaluate the proposed PSA_MSA algorithm, four different types of experiments were performed.
Considering that SPM is only an image processing technology for proportion images, all tested images
were classified and processed from high-resolution images. A mean filter is used to degrade these
high-resolution images into low-resolution images with mixed pixels. The size of the mean filter is
set to S X S, where S is the reconstruction scale. Thus, other errors can be avoided when generating
proportion images, so that the reconstruction results are reliable and the positioning accuracy of
different SPM methods are true and authentic. In the first three experiments, the PSA, the PSA_SA,
and the DSAM were selected for comparison. In the fourth experiment, the influence of errors on
the process of proportion acquisition in the SPM_MSA algorithm is tested. In the last experiment,
the impact of the random optimization procedure of the PSA_MSA algorithm is discussed.

The overall accuracy is evaluated in terms of the percentage of correctly classified subpixels
(PCC) and the classic Kappa coefficient [39]. The larger the PCC and Kappa values are, the more
subpixels that are correctly classified and the better the reconstruction result. According to Merterns,
the improved PCC’ and Kappa’ “are identical to PCC and Kappa except that they are calculated only
for mixed pixels” [40]. The subpixels in pure pixels all belong to the same class and will undoubtedly
increase both values of PCC and Kappa. Thus, the improved PCC’ and Kappa’ can better reflect the
performance of different SPM methods than the original PCC and Kappa, respectively. Therefore,
we also use the improved PCC’ and Kappa’ to evaluate the performance.

3.1. Artificial Shapes

In the first experiment, three different artificial shapes, as shown in Figure 5a, were used to test the
algorithms. The reconstruction scale S was set to 10. In the SPM method based on SA, the parameters
are set as follows: Tstart = 10 X S =10 X 10, iter =5, a = 0.8, and Tstop = 0.01. In the PSA_MSA model,
u and v, which determine the range of subminimum attractiveness, were both set to 2. The results
of the different algorithms are shown in Figure 5b—f. The corresponding evaluation criteria of the
different methods are summarized in Table 1. It is obvious that the reconstruction results from directly
using a conventional SA swapping algorithm are not as good as expected. This finding shows that the
completely random character of the conventional SA algorithm does not fit the SPM problem very well.
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Comparing the results of the PSA and those obtained by the modified SA algorithms, the modified SA
algorithms obtain much better results, regardless of the type of shape in the image: circle, star, or letters.
The PSA_MSA1 and PSA_MSA? algorithms are based on our MSA algorithm with objective functions
given by Equation (2) and Equation (4), respectively. The performances of these two algorithms are
relatively close. The resulting images with letters show that the objective function based on Equation
(4) is more suitable for more sophisticated mixed pixels with finer geometrical details and shapes than
is the objective function based on Equation (2).

Figure 5. Comparison of the results from different SPM models for artificial shapes at a reconstruction
scale of 10: (a) the reference image, (b) the PSA results, (c) the PSA_SA algorithm results, (d) the DSAM
algorithm results, (e) the PSA_MSAT1 algorithm results, and (f) the PSA_MSA?2 algorithm results.

Table 1. Accuracy results (%) from different models for images with artificial shapes (S = 10).

PCC Kappa Improved PCC’ Improved Kappa’

PSA 99.56 98.91 90.65 81.25

PSA_SA algorithm 99.52 98.82 89.80 79.55

Circle DSAM 99.72 99.31 94.07 88.11
PSA_MSAT algorithm 99.91 99.77 98.03 96.05
PSA_MSA2 algorithm 99.90 99.75 97.88 95.75

PSA 99.33 98.01 89.13 7791

PSA_SA algorithm 99.20 97.64 87.10 73.83

Star DSAM 99.65 98.96 94.29 88.41
PSA_MSAT1 algorithm 99.88 99.63 97.98 95.91
PSA_MSA2? algorithm 99.85 99.56 97.56 95.06

PSA 98.44 87.66 88.25 76.51

PSA_SA algorithm 98.10 84.91 85.64 71.29

Letters DSAM 99.20 93.69 93.95 87.89
PSA_MSAT1 algorithm 99.73 97.86 97.94 95.88
PSA_MSA2 algorithm 99.75 98.00 98.08 96.15

3.2. Artificial Land Images

To demonstrate the spatial positioning ability of our algorithm on SPM, we applied the above
algorithms to an artificial image containing four land cover types. The 450 X 450 artificial land image
is shown in Figure 6a. Different shapes and boundaries are included in the artificial land image.
The reconstruction scales were set to 8, 10, and 12. The parameters of the SA-based algorithms are
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the same as in Section 3.1. Figure 7a—e show the mapping results of the PSA, the PSA_SA algorithm,
the DSAM algorithm, the PSA_MSAT1 algorithm, and the PSA_MSA2 models at S = 12. It is obvious
that the PSA_MSA1 and the PSA_MSA?2 models reflect the spatial resolution of different classes better

)

than the other three models did.

L 8

(c) (d)
[
0 proportion 100%

Figure 6. Proportional images of four classes with a scale of 12. (a) Reference image, (b) class 1,

(c) class 2, (d) class 3, (e) class 4.
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Figure 7. Comparison results of different SPM models for an artificial land image with a scale of 12.
(a) PSA result, (b) PSA_SA result, (c¢) DSAM result, (d) PSA_MSAL1 result, (e) PSA_MSA2 result.

d) (

Class 4

The PCC, Kappa, improved PCC’, and Kappa’ values for different algorithms at the three
reconstruction scales are summarized in Table 2. The larger the reconstruction scale is, the lower the
accuracies of these methods because the mixed geometries are more complicated as the reconstruction
scale increases; consequently, the uncertainty of the positioning process is inevitable.

Table 2. Accuracy results (%) from different models for an artificial land image.

PCC Kappa Improved PCC’  Improved Kappa’

PSA 97.64 96.80 91.21 88.15

PSA_SA algorithm 97.36 96.43 90.17 86.75

5=8 DSAM 98.44 97.89 94.19 92.17
PSA_MSAT algorithm 99.10 98.78 96.64 95.48

PSA_MSA2 algorithm 99.09 98.76 96.59 95.41

PSA 96.40 95.12 89.32 85.55

PSA_SA algorithm 95.61 94.06 87.00 82.42

5=10 DSAM 97.77 96.89 93.38 91.05
PSA_MSAT1 algorithm 98.85 98.44 96.58 95.38

PSA_MSAZ2 algorithm 98.80 98.38 96.46 95.21

PSA 95.15 93.43 88.14 84.02

PSA_SA algorithm 93.46 91.14 84.00 78.45

5=12 DSAM 97.08 96.05 92.86 90.38
PSA_MSAT algorithm 98.41 97.85 96.12 94.77

PSA_MSA2 algorithm 98.48 97.94 96.28 94.99
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At the same reconstruction scale, the PCC, Kappa, and improved PCC’, Kappa’ values from the
PSA, the PSA_SA and DSAM algorithm were lower than the values from the PSA_MSA1 and the
PSA_MSA2? algorithms, which illustrates that the PSA_MSA algorithm performed better than the other
three algorithms. Taking S = 12 as an example, the improved Kappa’ value from the PSA_MSA1
and the PSA_MSA?2 algorithms reached 94.77 and 94.99, respectively. The improved Kappa’ value
from the PSA_MSA1 was 12.79%, which is 20.80% higher than that of the PSA and the PSA_SA
algorithm. Additionally, it is 4.86% higher than that of DSAM as well. Meanwhile, the improved
Kappa’ value from the PSA_MSA?2 algorithm was 13.06%, which is 21.08% higher than that of the PSA
and the PSA_SA algorithm. In addition, it is 5.10% higher than that of DSAM as well. Comparing
the results of the PSA_MSA1 and the PSA_MSA2 algorithms, the PSA_MSAT1 algorithm performs
slightly better than the PSA_MSA?2 algorithm at low reconstruction scales. As the reconstruction
scale increases, the PSA_MSA?2 algorithm performs slightly better than the PSA_MSA1 algorithm.
This finding further confirms that Equation (4) is more suitable for low-resolution images with more
sophisticated geometries than Equation (2).

To further show that the proposed PSA_MSA algorithm is superior to PSA, PSA_SA, and DSAM,
we generated a synthetic data set which contains 108 artificial land images of size 240 x 240 and four
kinds of classes, including various shapes. The reconstruction scales were set to 8, 10, and 12. Using
PCC’ and Kappa’ as evaluation indexes, the results are plotted as curves in Figures 8 and 9. Equations
(6) and (7) are used to compare the accuracies of PSA_MSA1 and PSA_MSA2 with those of PSA,
PSA_SA, and DSAM, respectively. In this experiment, num = 108.

salgorithmy salgorithmy
wum PCC; PCC’”

; - % 100%
i=1 salgorithmy
PCC”.
APCC’ = : Q)
num
algorithm, algorithmyp
num Kappa'; —Kappa’; % 100%
i=1 Kappa,a.\lgorithmz o
AKappa’ = rllum (7)
] 1 PSA PSA SA ——-DSAM
***** PSA_ MSAI1 s PSA MSA2

’?\" A '\Wm»‘ Wil L
B R TS

————— PSA_ MSA1 - PSA MSA2

0.7 . 0.7 . . . . .
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Figure 8. The improved PCC’ values (%) of different algorithms for the synthetic data set. (a) S =38,
(b) S=10, (c) S=12.
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Figure 9. The improved Kappa’ values (%) of different algorithms for the synthetic data set. (a) S =8,
(b) S=10,(c) S =12.

As shown in Tables 3 and 4, the larger the reconstruction scale is, the better the performance
of PSA_MSA compared to those of PSA, PSA_SA, and DSAM. The results further confirmed that
PSA_MSA achieves a better accuracy than PSA, PSA_SA, and DSAM in SPM.

Table 3. Comparison results (APCC’ %) of different SPM models for the synthetic data set.

Algorithm; Algorithm, §=8 §=10 §$=12
PSA 7.54 9.04 10.21

PSA_MSA1 PSA_SA 11.01 14.12 16.23
DSAM 0.45 0.67 1.24

PSA 7.21 8.99 10.14

PSA_MSA2 PSA_SA 10.68 14.07 16.15
DSAM 0.15 0.63 1.17

Table 4. Comparison results (AKappa’ %) of different SPM models for the synthetic data set.

Algorithmy Algorithm; §=8 §=10 §$=12
PSA 12.14 14.82 17.00

PSA_MSA1 PSA_SA 18.14 23.87 28.14
DSAM 0.72 1.07 1.95

PSA 11.61 14.73 16.86

PSA_MSA2 PSA_SA 17.58 23.78 27.98
DSAM 0.24 0.99 1.83

3.3. Real land Image

In this section, to further demonstrate the advantages of the PSA_MSA algorithm, two real land
images are selected as the experimental objects. One is a highly developed area with high spatial
autocorrelation and is marked as real land imagel, while the other, which is marked as real land
image?2, is a region with low spatial autocorrelation that has not been highly developed.
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Real land imagel is a remote sensing image of Nanjing, Jiangsu Province. The image was taken by
the Landsat 8 satellite, which was launched in 2013. The 30-m reference image was taken on October
9,2017, and contains a total of 396 x 396 pixels. After the image was processed by using K-means
classification [33,41], three different classes which shown in Figure 10a were obtained: water, vegetation
and soil. Real land image?2 is a remote sensing image of Ningbo, Zhejiang Province. The 30-m reference
image was taken by the Landsat 8 satellite on August 24, 2017, and contains a total of 398 x 398 pixels.
The data can be downloaded from the following website: http://www.gscloud.cn/. The S X S mean
filter was used to degrade these two high-resolution images. The reconstruction scale was set to 8 and
10. The parameters of the SA-based algorithms are mentioned in Section 3.1.

100%

proportion

Figure 10. Proportional images of three classes with a scale of 8. (a) Reference image, (b) water, (c)
vegetation, (d) soil.

(1) Realland imagel

Figure 11a—f display the SPM results of the PSA, the PSA_SA, the DSAM algorithm, the PSA_MSA1
algorithm, and the PSA_MSA?2 algorithm at S = 8, respectively. Although there were some jagged
boundaries for different land covers, the SPM results of the MSA-based algorithms were better than the
results of other algorithms. To further demonstrate the superiority of the MSA-based algorithms, a local
area was selected and enlarged to show the mapping results. Obviously, the PSA_MSA algorithms
reconstructed the target image much more effectively than the other methods.

(2 (h) (i) 0] (k) 0]

. water |:| vegetation - soil

Figure 11. Comparison of the results from different SPM models for a real land image at a reconstruction
scale of 8: (a) the reference image, (b) the PSA results, (c) the PSA_SA results, (d) the DSAM algorithm
results, (e) the PSA_MSAT1 algorithm results, (f) the PSA_MSA?2 algorithm results, (g) the local details
in the reference image, (h) the local details in the PSA results, (i) the local details in the PSA_SA results,
(j) the local details in the DSAM algorithm results, (k) the local details in the PSA_MSA1 algorithm
results, and (1) the local details in the PSA_MSAZ2 algorithm results.


http://www.gscloud.cn/
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Table 5 summarizes the SPM results of various models. Both the PCC’ and Kappa’ values from the
PSA_MSAT1 and PSA_MSA? algorithms are much better than those values from the other algorithms.
Taking S = 10 as an example, the improved Kappa’ value from the PSA_MSA1 and PSA_MSA2
algorithms reached 71.42 and 71.44, respectively. The improved Kappa’ value from the PSA_MSA1
algorithm was 11.28%, which is 18.58% higher than that of the PSA and the PSA_SA algorithm.
Moreover, it is 4.54% higher than that of DSAM as well. Additionally, the improved Kappa’ value from
the PSA_MSA?2 algorithm was 11.31%, which is 18.61% higher than that of the PSA and the PSA_SA
algorithm. It is 4.57% higher than that of DSAM as well. The PSA_MSA?2 algorithm performed slightly
better than the PSA_MSAT1 algorithm in the case of complex mixing land cover pixels.

Table 5. Accuracy (%) results of different models for a real land image.

PCC Kappa  Improved PCC’  Improved Kappa’

PSA 89.56 84.33 81.38 70.45

PSA_SA algorithm 87.61 81.41 7791 65.00

5=8 DSAM 90.77 86.15 83.55 73.88
PSA_MSAT1 algorithm 91.66 87.49 85.14 76.46
PSA_MSAZ2 algorithm 92.03 88.05 85.80 77.49

PSA 85.59 78.38 77.37 64.18

PSA_SA algorithm 84.01 76.01 74.89 60.23

5=10 DSAM 87.26 80.89 79.99 68.32
PSA_MSAT1 algorithm 88.51 82.76 81.95 71.42

PSA_MSA2 algorithm 88.50 82.75 81.95 71.44

The SPM accuracy (improved PCC’) for each land cover type from the five methods is also listed
in Table 6. All land covers achieved the highest accuracy levels with the PSA_MSA algorithms.

Table 6. Improved PCC’ values (%) of different land covers for five methods.

S=8 PSA PSA_SA DSAM PSA_MSA1 PSA_MSA2
Water 84.85 82.06 86.61 90.02 90.60
Vegetation 79.80 75.78 82.55 83.75 84.24
Soil 81.25 77.95 83.11 84.29 85.11

S=10 PSA PSA_SA DSAM PSA_MSA1 PSA_MSA2
Water 82.60 78.89 84.48 87.31 87.68
Vegetation 7591 73.97 78.90 80.17 80.40
Soil 76.50 74.05 78.94 81.29 80.94

(2) Realland image2

We also used the K-means method to obtain three different classes in this image Figure 12a:
water, vegetation, and soil. The SPM results of the PSA, the PSA_SA, the DSAM algorithm,
the PSA_MSA1 algorithm and the PSA_MSA?2 algorithm at S = 8 are displayed in Figure 13a—e,
respectively. The accuracies of all the algorithms for real land image2 are lower than the result of
SPM for real land imagel. This shows that these algorithms are more suitable for images with high
spatial autocorrelation.
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100%

proportion

(b)

Figure 12. Proportion images of three classes with a scale of 8. (a) Reference image, (b) water,
(c) vegetation, (d) soil.

@ @

. water D vegelation - soil

Figure 13. Comparison of the results of different SPM models for an artificial land image with a scale
of 8. (a) PSA result, (b) PSA_SA result, (c) DSAM result, (d) PSA_MSAT1 result, (e) PSA_MSA2 result.

As seen in Table 7, if the land covers in the image are trivial and lack spatial correlation, then the
mapping accuracy of all algorithms based on spatial dependence theory will decrease. Although the
accuracies of all the algorithms decreased, it can be seen from Table 7 that both the improved PCC” and
Kappa’ values from the PSA_MSA1 and PSA_MSA? algorithms are still better than the values from
the other algorithms. However, it should be pointed out that if the spatial distribution of the image is
too scattered, then PSA_MSA will also fail. Thus, for the image with weak spatial correlation, it is
necessary to improve the accuracy of proportional image acquisition and introduce variation function
to subpixel mapping.

Table 7. Accuracy (%) results of different models for the real land image.

PCC Kappa  Improved PCC’  Improved Kappa’

PSA 85.90 58.06 79.64 49.94

PSA_SA algorithm 86.21 53.66 79.77 49.83

5=8 DSAM 87.15 62.12 81.53 54.35
PSA_MSAT algorithm 87.25 62.26 81.59 54.94
PSA_MSAZ2 algorithm 87.14 61.81 81.43 54.40

PSA 85.08 55.17 80.96 4947

PSA_SA algorithm 85.05 49.10 80.40 47.24

5=10 DSAM 85.58 56.69 81.59 50.90
PSA_MSAT1 algorithm 85.38 56.40 81.33 50.86

PSA_MSAZ2 algorithm 85.66 56.95 81.69 51.47

The SPM accuracies (improved PCC’) for each land cover type from the five methods are also
listed in Table 8. Vegetation achieved the highest accuracies with the PSA_MSA algorithm.
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Table 8. Improved PCC’ values (%) of different land covers types for the five methods.

5=8 PSA PSA_SA DSAM PSA_MSA1 PSA_MSA2
Water 44.23 37.41 50.38 49.87 48.80
Vegetation 90.02 90.43 90.20 90.91 90.94
Soil 55.91 56.00 58.73 60.28 59.73

5=10 PSA PSA_SA DSAM PSA_MSA1 PSA_MSA2
Water 36.51 30.12 39.72 40.23 40.39
Vegetation 91.23 91.60 90.57 91.22 91.64
Soil 54.49 51.71 57.36 55.73 55.90

3.4. Influence of Errors on the Process of Proportion Acquisition in the SPM_MSA Algorithm

It is unavoidable that there will be some errors in the process of obtaining end element proportions
caused by spectral unmixing. To further investigate the influence of proportion errors on the
PSA_MSA algorithm, we introduce a random error in the process of generating the proportional image,
which creates a certain number of errors between the proportional image applied to the PSA_MSA
algorithm and the actual proportional image. Real land imagel was selected as the test object. We added
5% and 10% random errors in the proportion image. Figure 14 shows proportion images with an
increase of 10% error and containing no pure pixels. The SPM result can be seen in Figure 15. Since the
proportion errors are added to each mixed pixel, PCC is equivalent to the improved PCC’ and Kappa
is equivalent to the improved Kappa’. Thus, PCC and Kappa are selected as the evaluation indexes for
comparison with the case of 0 error. Tables 9 and 10 summarize the subpixel mapping accuracies of the
different algorithms under different errors. It is not difficult to see that the subpixel mapping accuracies
of all the algorithms decrease with increasing errors. This shows that errors in the input data will
reduce the SPM accuracy. As shown in Figure 15, all the algorithms maximize the spatial correlations
of the proportion errors of different land covers existing in the mixed pixels, thereby aggregating them
and badly affecting the accuracy of the final subpixel mapping. Tables 9 and 10 show that the lower the
error of the proportion value is, the higher the accuracy of the PSA_MSA algorithm is. This shows the
effectiveness of the proposed PSA_MSA algorithm. In other words, if the accuracy of proportion data
can be improved, the advantage of PSA_MSA will be more obvious. Compared with PSA and PSA_SA,
both DSAM and PSA_MSA can provide SPM results with the best visual and numerical effects.

100%

proportion

Figure 14. Proportional images of three classes with a 10% error in the proportional image (S = 8).
(a) Water, (b) vegetation, (c) soil.
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. water D vegetation . soil

Figure 15. Comparison results of different SPM models for real land imagel with a 10% error in the
proportional image (S = 10). (a) PSA result, (b) PSA_SA result, (c) DSAM result, (d) PSA_MSAL result,
(e) PSA_MSA2 result.

Table 9. PCC values (%) with different numbers of errors for methods based on PSA.

PSA PSA_SA DSAM PSA_MSA1 PSA_MSA2

0 89.56 87.61 90.74 91.66 92.03

5=8 5% 88.23 86.45 89.50 89.81 89.94
10%  86.22 84.77 88.12 87.82 87.80

0 85.59 84.01 87.26 88.51 88.50

5=10 5% 84.42 82.88 85.89 86.10 86.63
10%  82.55 81.35 84.04 84.09 84.57

Table 10. Kappa values (%) with different numbers of errors for methods based on PSA.

PSA  PSA_SA DSAM PSA_MSA1 PSA_MSA2

0 84.33 81.41 86.11 87.49 88.05

5=8 5% 82.35 79.67 84.24 84.71 84.90
10%  79.32 77.15 82.18 81.72 81.69

0 78.38 76.01 80.89 82.76 82.75

5=10 5% 76.63 74.31 78.83 79.14 79.94
10%  73.83 72.01 76.05 76.12 76.85

3.5. Stochastic Optimization of Mixed Pixels in the PSA_MSA Algorithm

In step 4 of the proposed PSA_MSA algorithm, we optimized the mixed pixels in a random
sequence, which is called stochastic optimization. In traditional optimization, the mixed pixels are
sequentially processed by rows or columns, as shown in Figure 4a. Stochastic optimization can
change the optimization direction. To analyze the effect stochastic optimization for the PSA_MSA
algorithm, the two optimization methods were implemented in the secondary optimization phase of
the PSA_MSA algorithm, and the positioning accuracy results were compared. The iteration times for
the two optimization methods were the same, and the total optimizations accepted by a single mixed
pixel were also the same. Circles and stars were selected as the test objects. Table 11 shows the results
after setting the reconstruction scale to 8, and Table 12 shows the results after setting the reconstruction
scale to 10. Stochastic optimization can achieve a better SPM accuracy than sequential optimization.

Table 11. Accuracies (%) of two optimization methods for the PSA_MSA1 algorithm.

Circle Star

Improved PCC’  Improved Kappa’ Improved PCC’  Improved Kappa’

S=38 Sequential 97.63 95.25 96.70 93.15
B Stochastic 97.93 95.86 97.79 95.42
S=10 Sequential 97.89 95.77 97.85 95.64

Stochastic 98.03 96.05 97.98 95.91
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Table 12. Accuracies (%) of two optimization methods for the PSA_MSA?2 algorithm.
Circle Star
Improved PCC’  Improved Kappa’ Improved PCC’  Improved Kappa’
s_g Sequential 97.59 95.17 97.27 94.32
B Stochastic 97.75 95.50 97.31 94.41
S=10 Sequential 97.51 94.99 97.20 94.32
- Stochastic 97.88 95.75 97.56 95.06

4. Discussion

The primary different between the PSA_MSA method with the PSA_SA method is that the selection

range for the subpixels to be swapped is narrower in the PSA_MSA method. The results shown
in Section 3 demonstrate that the SPM positioning accuracy is significantly improved. In Section 3,
we randomly selected an M-class subpixel of in the gravitational range of [0, Ay, ] and an N-class
subpixel in the gravitational range of [0, Ay, ] for swapping. In fact, other low attractiveness ranges
can be selected, such as [0, Ay, ] and [0, An,] or [0, Ap,,] and [0, Ay, ]. To analyze the effect of the low
attractiveness range, six different low attractiveness ranges were selected for the PSA_MSA algorithm:
from [0, Apr, ] and [0, An, ] to [0, Ap,] and [0, An,], respectively. Therefore, in the experiments, m =n =
w(w=1,2,...,6). Circles and stars were selected as the test objects, and the SPM accuracies are shown
in Figures 16 and 17.
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0.08 —O— Circle:S=8 —©— Circle: S=8
) : O = Circle: =10 s 0.95 Circle: S=10
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Figure 16. Accuracies of the PSA_MSAI1 algorithm under different low attractiveness ranges. (a) PCC’
and (b) Kappa'.
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Figure 17. Accuracy of the PSA_MSA? algorithm under different ranges of low attractiveness. (a) PCC’
and (b) Kappa’'.

The above results demonstrate that the SPM accuracy is better when w = 2 or 3, which corresponds
to [0, Apm,] and [0, An,] and [0, Apg,] and [0, An, ], respectively. As the range of low attractiveness
widens, the SPM accuracy decreases. However, the optimal range for subpixel swapping might be

different in different scenarios. In this research, all the experiments in Section 3 are performed with
w=2.



Sensors 2020, 20, 1503 18 of 20

5. Conclusions

SPM methods can improve the spatial resolution of spectral images. The traditional PSA model is
prone to fall into a local optimum during subpixel swapping. To solve this problem, we proposed a
PSA_MSA method that uses SA to randomly swap two subpixels from two different classes. These two
subpixels are selected from subpixels with class-specific attractiveness values in certain low ranges.
This SA algorithm enables subpixel swapping to escape the local optimum solutions. Only the subpixels
with low class-specific attractiveness values may be selected for swapping. Two spatial correlation
models were applied to calculate the attractiveness coefficients and compare the mapping results.
Experiments were performed with different shapes and land cover images. Compared with other
models, such as the PSA, the PSA_SA, and the DSAM algorithm, the proposed PSA_MSA performed
better than the others did in the reconstruction of spectral images. The improved PCC’ and Kappa’
values also showed that the proposed PSA_MSA algorithm can generate higher accuracy SPM results
than the other algorithms. The PSA_MSA method involved random selection. The experiments also
confirmed that a randomized optimization sequence can also improve the mapping accuracy.

The effect of errors in the input proportion images were discussed. The results showed that the
larger values of proportion errors lead to low mapping accuracy of SPM algorithms. These proportion
errors are mistaken as wrong end-members by the algorithms. SPM algorithms will transform the
wrong proportion information of the end-members into spatial information. To reduce the effects
of the proportion errors, it is very important to obtain more accurate proportion information in the
spectral unmixing procedure. In addition, the PSA_MSA algorithm needs a large number of iterations
to obtain global solution. It is meaningful to look for an improved method to shorten the running time
of PSA_MSA algorithm. We are considering the following work in the future: First, we aim to study
the spectral unmixing algorithms and improve the estimation accuracy to reduce the errors in the
proportion images. Second, we aim to further optimize the mapping result, the spectral unmixing
procedure, and end-member mapping process while combining all three in an integrated framework.
Third, further analysis will be conducted regarding factors that may affect the performance of subpixel
mapping algorithms based on spatial dependence theory, such as the spatial resolutions of remote
sensed images, the number of end-members in a mixed pixel, and the scattering distribution of
the end-members.
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