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Abstract: The use of wearable body sensors for health monitoring is a quickly growing field
with the potential of offering a reliable means for clinical and remote health management. This
includes both real-time monitoring and health trend monitoring with the aim to detect/predict health
deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a
qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis
and analysis have pointed out a number of shortcomings in prior research. Major shortcomings
are demonstrated by the majority of the studies adopting an observational research design, too
small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age,
gender, patient/healthy). These aspects need to be considered in future research work.

Keywords: health monitoring; IoT; physical activity monitoring; qualitative synthesis; remote health
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1. Introduction

The use of wearable body sensors for health monitoring as a means for supporting clinical
and remote health monitoring in real-time and to provide health trend monitoring with the aim
to predict/prevent health deterioration has the potential to lower the burden on the healthcare
system and thereby reduce healthcare costs. The number of available wearable and wireless body
sensors and systems are rapidly growing. Simultaneously, research on more energy-efficient and more
accessible/smaller sensors for acquiring data as well as research on automatic data analysis of the Big
Data, which the sensor-based systems are expected to generate, is being conducted. This advanced
data analysis has the potential of generating personalized diagnoses and providing recommendations
on treatments at a personalized level. While a promising area, we argue that the data collected
for generating advanced data analysis algorithms need to come from participants representing the
expected users of these systems.

This systematic review provides a qualitative synthesis of the articles retrieved on using wearable
body sensors for health monitoring. We analyze the articles from many perspectives including author
affiliations in countries, publication years, context of use, sensor category, research methodology,
sample sizes, and participant demographics (i.e., age, gender, patient/healthy). This analysis
has identified a number of shortcomings in prior research with respect to both sample size,
but also to participant demographics where the latter strongly affects the validity of the results.
These shortcomings need to be considered in future research, not only for understanding the user
experience, but also to ensure that the advanced data analysis algorithms can reason on data which are
representative and valid for the expected users of the systems.
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2. Methodology

Following the requirements of MDPI Sensors, a systematic review following the PRISMA
guidelines [1] was conducted. A total of seven databases were searched, including: Web of Science
Core Collection, MEDLINE, Scopus, ScienceDirect, Academic Search Elite, ACM Digital Library,
and IEEE Xplore.

The searches were conducted on 24–25 April 2019. The search phrases resulting in the
identification, and addition to an EndNote database, of related articles are shown in Table 1. During the
search, the keywords were changed in order to broaden or narrow the number of articles found using
the previous search phrase. For example, “Ecare” or “mHealth” or “ehealth” was replaced with “care”
or “Health” in the second search in Web of Science Core Collection. The same search phrase was used
for MEDLINE but it resulted in thousands of hits in SCOPUS. Several additional searches aiming
at limiting the number of hits were conducted resulting in "care" or "Health" being replaced with
the original search phrase "ecare or mhealth or ehealth" and the exclusion of "feedback" and "pilot
application". The search phrase used for Scopus resulted in no hits in Science Direct. Therefore, two
less narrow searches were conducted. Variations of these phrases were used in Academic Search Elite,
ACM Digital Library and IEEE Xplore.

Table 1. An overview of search phrases and databases used during article retrieval.

Database Search Phrase Number of Articles

Web of Science Core Collection ALL FIELDS: ((“body sensor" or “wireless body
sensor” or “wireless wearable technology” or
“biomedical sensor” or “IoT”) and (“Ecare” or
“mHealth” or “eHealth’) and (“Social impact” or
“Compliance” or “Acceptance” or “Clinical trial”
or ‘Pilot test” or ‘Human input” or “Feedback” or
“Pilot application” or “Human in the loop”))

7

Web of Science Core Collection ALL FIELDS:((“body sensor” or “wireless body
sensor” or “wireless wearable technology” or
“biomedical sensor" or “IoT”) and (“care" or
“Health”) and (“Social impact” or “Compliance”
or “Acceptance” or “Clinical trial" or “Pilot
test” or “Human input” or “Feedback” or “Pilot
application" or “Human in the loop”))

142

MEDLINE (Web of Science) TOPIC: ((((((“body sensor”) OR “wireless body
sensor”) OR “wireless wearable technology”) OR
“biomedical sensor”) OR “IoT”) AND (“care”)
OR “Health”)) AND ((((((((“Social impact”) OR
“Compliance”) OR “Acceptance”) OR “Clinical
trial”) OR “Pilot test”) OR “Human input”) OR
“Feedback”) OR “Pilot application") OR “Human
in the loop")) Timespan: All years. Indexes:
MEDLINE.

25

Scopus ALL( body sensor OR wireless body sensor
OR wireless wearable technology OR biomedical
sensor ) AND ( ecare OR mhealth OR ehealth )
AND ( Social impact OR compliance OR acceptance
OR Clinical trial OR Pilot test ) Limiting to English

187

ScienceDirect Title, abstract, keywords: “wearable sensors” and
health and impact. Limited to review articles,
research articles, conference abstracts, case reports.

13
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Table 1. Cont.

Database Search Phrase Number of Articles

ScienceDirect Title, abstract, keywords: “body sensor” and health
and impact. Limited to review articles, research
articles, conference abstracts, case reports.

5

Academic Search Elite Free text search: “body sensor” and health and
impact English.

8

Academic Search Elite Free text search: “body sensor” and health and
acceptance

3

ACM Digital Library (+“body sensor” +and +health +and +impact) 12
IEEE Xplore “body sensor” and health and impact 81
IEEE Xplore “body sensor” and health and trial 12

Article Selection, Inclusion and Exclusion Criteria

The search resulted in 495 articles. Thereafter, the articles were screened in several steps using
EndNote:. Thirty duplicated articles were eliminated and 288 articles were excluded after reviewing
each title and abstract individually. Abstracts and articles retrieved that did not match the main
research question were excluded from further consideration. For example, we excluded articles on
studies using solely environmental exposure sensors or smart home sensors.

Then, pdf copies of all remaining articles were downloaded. Copies of abstracts, introductions
and conclusions were extracted to OneNote after which an additional screening was conducted.
The eligibility criteria for inclusion in the review were:

• Articles should be published as a journal article or in conference proceedings.
• Articles should consider wearable technology and monitoring.
• Articles should present results from studies where sensor data were collected using humans.

Alternatively, the articles present information on a system where the user trial is planned for but
not conducted yet.

• Articles should be in English.

Overviewing the remaining 177 articles, it was found that the number of publications relating
to some health conditions, henceforth called article categories, was low. Therefore, no articles were
excluded based on publication year. In addition, we excluded the numerous review articles from
further analysis as they cannot be considered original research, i.e., the review articles retrieved were
excluded since they do not directly report on a conducted study of people or on the planning of such
a study. Publications that met the inclusion criteria, and therefore, considered for further reviewing
were 73. The study selection process is depicted in Figure 1.
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Figure 1. The article selection process.

3. Qualitative Synthesis

Inspired by Kekade et al.’s review from 2018 [2], we conducted a qualitative synthesis of the
73 included research articles. They were published between 2010 and 2019, i.e., spanning approx.
9.5 years, among which one article was published in 2010, two in 2011, seven in 2012, two in 2013,
seven in 2014, twelve in 2015, nine in 2016, fourteen in 2017, fourteen in 2018 and five before
April 24th 2019, see Figure 2. In average, 7.6 articles were published per year during the period
2010–2018. The authors of the 73 research articles were affiliated in 32 countries representing six
continents (Africa, Asia, Australia, Europe, North America and South America). See Figure 3 and 4
for further information on which countries authors are affiliated in and the number of publications
per country with affiliated authors. The articles were sorted into the following article categories:
Asthma/COPD, Cardiovascular diseases, Diabetes and nutrition, Gait and fall, Neurological diseases,
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Physical activity recognition, Rehabilitation, and Stress and sleep. All articles not directly related to
any of the aforementioned article categories were sorted into an article category named Additional.
Figure 5 depicts the category-wise distribution of the selected articles. Studying the distribution of
articles related to health and physical activity monitoring respectively, it can be seen that 47 % of
the articles were related to health (Asthma/COPD, Cardiovascular diseases, Diabetes and Nutrition,
Neurological diseases, and Stress and sleep). As much as 39 % of the articles were related to physical
activity monitoring (Gait and fall, Physical activity recognition, and Rehabilitation). It is unclear why
such a large portion of the articles were related to physical activity monitoring. Possible reasons
include that it is easier to monitor physical activity using sensors whereas measures relating to health,
e.g., vital signs, need to be provided in a more timely manner.

Figure 2. Number of articles per year. * only the articles published prior to 24 April 2019 are counted.

Sixty research articles reported on studies conducted with people at some level, these are reported
in Table 2. We categorized the sensors according to the sensor categories used in [2], namely, physical
activity, vital signs, electrocardiography (ECG) and other. Studies reporting on devices measuring
movement or activity were classified under the sensor category physical activity. Vital signs include the
parameters: blood pressure (BP), body temperature (BT), respiratory rate (RR), heart rate (HR)/pulse,
and peripheral oxygen saturation (SpO2). Studies measuring ECG were classified under ECG. Finally,
studies using sensors for diabetes, swallowing, etc., or a combination of sensors from several sensor
categories were classified under the sensor category other. The sensor categories physical activity and
other include 23 studies each, vital signs includes three studies, and ECG includes ten studies reported
upon in seven research articles.

Similarly to Kekade et al. 2018 [2], we also assessed the studies’ reporting of research design
(Table 2), and the reported participant demography, i.e., number of participants, age, gender and
the distribution of healthy participants and patients (see Sections 3.1–3.4 and Table 3). Many studies
presented the participant demographics poorly, or not at all [3–12]. Rather than excluding these
from the tables, we indicate missing information with a “-”. However, we question the fact that all
these studies were accepted for publication without providing any information on the participants.
Our findings are further discussed in Section 4.
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Figure 3. Number of authors affiliated in each country. Authors are calculated for each article, i.e., an
author may be calculated more than once and in more than one country.

Figure 4. Number of articles per country. Papers with several authors may be counted for several
countries.
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Table 2. List of articles reporting on conducted studies. —indicates that information is missing.

Author, Year Ref. Article Category Research Design No. of Participants Sensor Category

Bonnevie et al. 2019 [13] Asthma/COPD Observational 104 Vital signs
5

Caulfield et al. 2014 [14] Asthma/COPD Observational 10 Physical activity
Estrada et al. 2016 [15] Asthma/COPD Observational 1 Other
Katsaras et al. 2011 [16] Asthma/COPD Randomized control 48 Other

Naranjo-Hernández et al. 2018 [17] Asthma/COPD Observational 2 Vital signs
9

Huang et al. 2014a [18] Cardiovascular diseases - 225 ECG
Huang et al. 2014b [19] Cardiovascular diseases Case-control 84 ECG
Javaid et al. 2018 [20] Cardiovascular diseases Observational 60 Other

Li et al. 2019 [3] Cardiovascular diseases Observational 16 Other
Raad et al. 2015 [21] Cardiovascular diseases - 30 ECG

- 2
Simjanoska et al. 2018 [22] Cardiovascular diseases Observational 16 ECG

3
25
7 Dataset ECG

Susič and Stanič 2016 [23] Cardiovascular diseases - 13 ECG
Al-Taee et al. 2015 [24] Diabetes and nutrition - 22 Other

Alshurafa et al. 2014 and Alshurafa et al. 2015 [25,26] Diabetes and nutrition Observational 10 Other
20

Dong and Biswas 2017 [27] Diabetes and nutrition Observational 14 Other
Onoue et al. 2017 [28] Diabetes and nutrition Randomized control 101 Physical activity

Atallah 2012 [29] Gait and fall Observational 34 Physical activity
Godfrey et al. 2014 [30] Gait and fall Observational 24 Physical activity

Lee et al. 2015 [31] Gait and fall Observational 11 Physical activity
Liang et al. 2012 [32] Gait and fall Observational 8 Physical activity
Liang et al. 2018 [33] Gait and fall Observational 18 Physical activity

Paiman et al. 2016 [34] Gait and fall Observational 2 Other
Tino et al. 2011 [35] Gait and fall Observational 3 Other

Williams et al. 2015 [36] Gait and fall Observational 5–6 Physical activity
Wu et al. 2013 [4] Gait and fall Observational 7 Physical activity
Wu et al. 2019 [37] Gait and fall Observational 15 Physical activity

Zhao et al. 2012 [38] Gait and fall Observational 8 Physical activity
Zhong et al. 2019 [39] Gait and fall Observational 56 Physical activity
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Table 2. Cont.

Author, Year Ref. Article Category Research Design No. of Participants Sensor Category

Giuberti et al. 2015 [40] Neurological diseases Observational 24 Physical activity
Gong et al. 2015, Gong et al. 2016 [41,42] Neurological diseases Case-control 41 Physical activity

Kuusik et al. 2018 [43] Neurological diseases Observational 51 Physical activity
Sok et al. 2018 [44] Neurological diseases Observational 13 Physical activity

Stamate et al. 2017 and Stamate et al. 2018 [45,46] Neurological diseases Observational 12 Other
Castro et al. 2017 and Rodriguez et al. 2017 [5,6] Physical activity recognition Observational 3 Other

Doron et al. 2013 [7] Physical activity recognition Observational 65 Other
20

Rednic et al. 2012 [47] Physical activity recognition Observational 17 Physical activity
Xu et al. 2014 [8] Physical activity recognition Observational 14 Other
Xu et al. 2016 [9] Physical activity recognition Observational 4 Other

3 Physical activity
5
6

Argent et al. 2019 [48] Rehabilitation Observational 15 Physical activity
Banos et al. 2015 [49] Rehabilitation Observational 10 Other

Lee et al. 2018 [50] Rehabilitation Case-control 30 Physical activity
Timmermans et al. 2010 [51] Rehabilitation Observational 9 Physical activity

Whelan et al. 2017 [52] Rehabilitation Observational 55 Physical activity
Xu et al. 2017 [53] Rehabilitation Observational 6 Other
Lin et al. 2012 [54] Stress and sleep Case-control 18 (6/12) Physical activity

Nakamura et al. 2017 [55] Stress and sleep Observational 4 Other
Parnandi and Gutierrez-Osuna 2017 [56] Stress and sleep Randomized control 25 Other

Uday et al. 2018 [57] Stress and sleep Observational 10 Other
Umemura et al. 2017 [58] Stress and sleep Case-control 54 Other

Velicu et al. 2016 [10] Stress and sleep Observational - -
Ayzenberg and Picard 2014 [59] Additional Crossover 10 Other

Pagán et al. 2016 [60] Additional Observational 2 Other
Rawasdeh et al. 2017 [61] Additional Observational 55 ECG

Seeger et al. 2012 [11] Additional - - Other
Wannenburg and Malekian 2015 [12] Additional Observational 4–8 Vital signs

Wu et al. 2018 [62] Additional Observational 20 ECG
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Table 3. Demographic information on conducted studies. - indicates that information is missing.

Ref. Article Category No. of Participants Age Group Age Statistics Male Female Patient Healthy

[13] Asthma/COPD 104 57–70 64 67 (64%) 37 (36%) 104
5 50–66 62 - - 5

[14] Asthma/COPD 10 61.5 ± 5.7 5 5 10
[15] Asthma/COPD 1 - - 1 1
[16] Asthma/COPD 48 - - 48 48
[17] Asthma/COPD 2 36 and 42 2 2

9 55–76 64 ± 6.6 6 3 9
[18] Cardiovascular diseases 225 - - - - 225
[19] Cardiovascular diseases 84 - - - - 1 group 1 group
[20] Cardiovascular diseases 60 - 26.9 ± 6.1 28 32 60
[3] Cardiovascular diseases 16 - - - - - -
[21] Cardiovascular diseases 30 20–23 - - - -

2 - - - - 2
[22] Cardiovascular diseases 16 16–72 - - - - -

3 25–27 - - - - -
25 20–73 - - - 14 11
7 20–74 - - - 7

[23] Cardiovascular diseases 13 - 50.6 ± 9 8 5 13
[24] Diabetes and nutrition 22 - - - - 22
[25,26] Diabetes and nutrition 10 20–40 8 2 - -

20 20–40 12 8 - -
[27] Diabetes and nutrition 14 - - 9 5 14
[28] Diabetes and nutrition 101 - 57.1 ± 12.5 56 45 101
[29] Gait and fall 34 - 28.22 ± 12.77 21 13 34
[30] Gait and fall 24 (12/12) 20–40 32.5 ± 4.8 7 5 12

65.0 ± 8.8 5 7 12
[31] Gait and fall 11 - 27.6 ± 4.3 11 11
[32] Gait and fall 8 - 23 ± 3.45 8 8
[33] Gait and fall 18 - 25 ± 3.24 12 6 18
[34] Gait and fall 2 28 and 24 - 1 1 2
[35] Gait and fall 3 40–70 - - - - -
[36] Gait and fall 5–6 (1/5) 27 - 1 - -

21–36 27 4 1 - -
[4] Gait and fall 7 - - - - - -
[37] Gait and fall 15 20–27 - - - 15
[38] Gait and fall 8 - 28.5 ± 4.3 - - 8
[39] Gait and fall 56 (28/28) - 24.6 ± 2.7 14 14 28

>55 66.1 ± 5.0 18 10 28
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Table 3. Cont.

Ref. Article Category No. of Participants Age Group Age Statistics Male Female Patient Healthy

[40] Neurological diseases 24 31–79 65.9 ± 12.3 17 7 24
[41,42] Neurological diseases 41 (28/13) - 40.5 ± 9.4 25% 25% 28 13

- 39.3 ± 10.3 47% 53%
[43] Neurological diseases 51 - - - - 51
[44] Neurological diseases 13 22–50 - 9 4 13
[45,46] Neurological diseases 12 - - - - 12
[5,6] Physical activity recognition 3 - - - - - -
[7] Physical activity recognition 65 - - - - - -

20 - - - - - -
[47] Physical activity recognition 17 - - 10 7 - -
[8] Physical activity recognition 14 - - - - - -
[9] Physical activity recognition 4 - - - - - -

3 - - - - 3
5 - - - - 5
6 - - 3 3 - -

[48] Rehabilitation 15 - 63 ± 8.32 6 9 15
[49] Rehabilitation 10 21–37 - 8 2 - -
[50] Rehabilitation 20 - 54.4 ± 10.1 - - 20

10 53.8 ± 11.4 - - 10
[51] Rehabilitation 9 - 60.7 5 4 9
[52] Rehabilitation 55 - 24.21 ± 5.25 37 18 55
[53] Rehabilitation 6 - 72.5 ± 6.0 3 3 - -
[54] Stress and sleep 18 (6/12) 19–22 overall - 5 1 - -

11 1 - -
[55] Stress and sleep 4 25–36 - 4 4
[56] Stress and sleep 25 19–33 - 15 10 - -
[57] Stress and sleep 10 - - - - 10
[58] Stress and sleep 54 (26/28) - 22 - - 54

- 21 - - - -
[10] Stress and sleep - - - - - - -
[59] Additional 10 25–35 30.8 ± 4.2 9 1 10
[60] Additional 2 - - 2 2
[61] Additional 55 18–22 - 50% 50% - -
[11] Additional - - - - - - -
[12] Additional 4–8 (4/4) - - - - - -

- - - - - -
[62] Additional 20 - - - - 20
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Figure 5. Category-wise distribution of the selected articles. Number of articles for Additional = 10,
Asthma/COPD = 6, Cardiovascular diseases = 8, Diabetes and nutrition = 5, Gait and fall = 15,
Neurological diseases = 8, Physical activity recognition = 7, Rehabilitation = 7, Stress and sleep = 7.

For completeness, the remaining 13 articles not listed in Table 2 and 3 were distributed over
eight article categories: Asthma/COPD [63], Cardiovascular diseases [64], Gait and fall [65–67],
Neurological diseases [68], Physical activity recognition [69], Rehabilitation [70], Stress and sleep [71],
and Additional [72–75]. Six articles report on systems where studies are upcoming [63,64,72–75].
One of them [64] is a continuation of the study reported in [23]. Three articles report on studies
using datasets [66,67,69]. Two articles report on qualitative studies of observational and/or interview
nature [68,70]. The continuation of the qualitative study [70] is reported upon in [48]. The evaluation
in [65] is not clearly presented and the system developed in [71] uses wearable body sensors only to
collect ground truth data for a contactless sleep monitoring system. Therefore, [71] was excluded from
further qualitative analysis.

3.1. Research Methodology

Table 2 reports on the four research designs identified while analyzing the research articles:
case-control, crossover, randomized control and observational. Articles categorized as adopting a
case-control research design are prospective and include studies with two groups. In most articles, one
group is a healthy control group and the other a group sharing an illness. However, in this review,
also articles comparing the measures for two distinct groups (e.g., non-shift workers in rural and
urban areas) have been categorized as adopting a case-control research design. Articles categorized
as adopting a randomized-control research design have participants with the same background
being randomly assigned to one of two study conditions. One article has been categorized as a
crossover study [59], the participants have experienced both study conditions but in randomized
order. The articles categorized as being observational are typically conducted in a controlled fashion
during which data are collected. In this review, the majority of the articles were categorized as being
observational. A few articles adopted a case-control [19,41,42,50,54] or randomized control research
design [16,28,56]. For some articles [11,18,21,23,24,58], information provided on how the experiments
were conducted was not sufficient for determining the research design adopted.
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Studying the number of participants included in the studies, we first summarized the number
of participants in the cases where an article reported on several smaller studies. It can be seen
from Figure 6 that 57% of the studies were conducted with up to 20 participants and that 30% were
conduced with 10 or fewer participants. Only 40% of the studies were conducted with 21 or more
participants (22% collected 21-50 participants, 13% had 51–100 participants leaving 5% with more than
100 participants).

Looking more closely into each article category, Figure 7 shows that the majority of the studies
within the categories Asthma/COPD, Gait and fall, Physical activity recognition, Rehabilitation, Stress
and sleep, and Additional were conducted with up to 20 participants. The studies with more than
100 participants fall within the categories Asthma/COPD, Cardiovascular diseases, and Diabetes
and nutrition. Studies with 51–100 participants were conducted within the categories Cardiovascular
diseases, Gait and fall, Neurological diseases, Rehabilitation, Stress and sleep, and Additional.

To make technical validations that a sensor is working, a small number of participants can be
accepted. However, to be used in clinical investigations, power calculations taking the research
question into account should be used to decide the number of needed participants.

Figure 6. Distribution of the number of participants per included study. - denotes studies which did
not provide information on number of participants.
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Figure 7. Distribution of the number of participants per article category. - denotes studies which did
not provide information on number of participants.

3.2. Age Distribution

Information on the participants’ age was provided in 35/60 (58.3%) of the articles reporting on
data collection studies with people (Table 3). Another two articles [21,23] provided the information on
age for only one of the study groups. A very limited number of studies were conducted with people
where µage > 65 [40,53] or µage > 60 [13,14,48,51]. Two studies [30,39] were conducted with one young
group and one group where µage > 65, whereas µage > 60 for one of the groups in [17]. Two articles
report on studies with large age ranges where some participants exceed 65 years of age (16–72 and
20–73 in [22], and 40–70 in [35]).

Studying the articles from an article category perspective, none of the studies reporting on the
categories Cardiovascular diseases, Diabetes and nutrition, Other or Stress and sleep was conducted
with participants where µage > 60. The categories Asthma/COPD, Gait and fall, Neurological diseases,
and Rehabilitation include some studies with this age group. None of the studies within the Physical
activity recognition category report on the participants’ age.

3.3. Gender Distribution

Information on the participants’ gender was provided in 33/60 (55%) of the articles reporting on
data collection studies with people (Table 3). Three more articles [9,13,23] reported on studies with
more than one group but not the gender for all groups.

Studying the articles from an article category perspective, all Asthma/COPD studies except [13]
provided full information on gender distribution. The latter, [13] also reports on a study with a subset
of the participants without providing information on gender. Regarding cardiovascular diseases
studies, only [20,23] provided full information on gender distribution. Another 20 want to participate
in screening although the study described in [23] is not approved yet by an ethical committee. All but
one study within Diabetes and nutrition report on gender. The majority of the studies within Gait and
fall contain information on gender. More than half (57%) of the articles on Neurological diseases and
50% of the articles on Other present information on gender. Regarding the category Physical activity
recognition, only one article [47] provides full information on gender. Another article, [9] provides
information on gender for one of their four sub-studies. The majority (80%) of the Rehabilitation
studies and 50% of the Stress and Sleep studies provide gender information.

Studying the articles from a gender distribution perspective, the vast majority of the participants
in the studies reporting on Asthma/COPD are men. For Cardiovascular diseases, [20] had a rather
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even gender distribution, [23] reported on gender in a study aiming at validating a measurement
protocol and for evaluating the usability and acceptance level of an ICT equipment. The majority of
the participants were men. A similar pattern is observed for Diabetes and nutrition, Gait and fall,
Neurological diseases, Other, Rehabilitation and Stress and sleep. Women are only in majority for one
of the groups in the Gait and fall study [30], and the Rehabilitation studies [41,42,48].

3.4. Tests on Patients and Healthy Users

Information on whether the participants were patients and/or healthy was provided in 39/60
(65%) of the articles (Table 3). An additional four studies, [9,21,22,38] present the distribution of
patients and/or healthy for some of the reported sub-studies. Two groups including 84 participants in
total were representing patients and healthy participants in [19]. Seven articles [13,17,19,23,41,42,50]
report on the conduction of studies with both patients and healthy. Two articles [9,22] contain results
from several sub-studies and while not providing patient/healthy information for all sub-studies,
claim to have used both patients and healthy participants during data collection. For several article
categories, many of the studies reported information on both patients and healthy users.

Studying the articles from a health perspective, i.e., looking particularly at the article categories
Asthma/COPD, Cardiovascular diseases, Diabetes and nutrition, Neurological diseases, and Stress
and Sleep, the reporting and/or use of patients/healthy participants varies. Almost all participants in
studies on Asthma/COPD and Neurological diseases were patients. Surprisingly, the Cardiovascular
diseases [20,23] were conducted solely with healthy participants while another [21] and three of the
sub-studies in [21,22] lack information on whether the participants were healthy or patients. Regarding
Diabetes and Nutrition, two works [24,28] were conducted with patients, one study [27] was conducted
with healthy participants while two articles [25,26] lack this information. Finally, regarding Stress and
sleep, none of the studies report on studies with patients. Three articles [55,57,58] were conducted
with healthy participants while the remaining three articles lack this information.

Studying the articles from a physical activity perspective, i.e., looking particularly at the article
categories Gait and fall, Physical activity monitoring and Rehabilitation. No information on whether
the participants were healthy or patients were provided in the articles falling under the Physical
activity monitoring article category. None of the studies within Gait and fall used patients. The picture
is mixed for the category Rehabilitation, two studies were conducted solely with patients [48,51]
whereas [50] reports on two sub-studies conducted with patients and healthy participants respectively.
One work [52] was conducted solely with healthy participants and two works [49,53] do not provide
this information.

4. Discussion and Conclusions

In this systematic review, we provide a qualitative synthesis on retrieved articles on using
wearable body sensors for health monitoring. The articles found were categorized as relating to:
Asthma/COPD, Cardiovascular diseases, Diabetes and Nutrition, Gait and fall, Neurological diseases,
Physical activity recognition, Rehabilitation, Stress and sleep, and Additional. Section 3 provided a
qualitative synthesis of the studies with respect to research methodology and participant demography,
i.e., number of participants, age, gender and the distribution of healthy participants and patients.
Using this information, we have identified a number of shortcomings. Below follows a discussion on
these shortcomings in relation to prior research.

There are many age-related health issues such as changing biological factors, the onset of illnesses
which are often chronic and the decline of cognitive abilities. For example, “fall prediction is a
challenging problem due to the combination of intrinsic and extrinsic fall risk factors that contribute
to a fall. Intrinsic factors include age, fall history, mobility impairments, sleep disturbances, and
neurological disorders", pp. 1 [76]. It is reported in [77] that 35% of non-institutionalized adults had
abnormal gait and that sleep disturbances are very common among older people. Further, chronic
conditions affect physical activity levels, and activities such as rising from a chair is demanding
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for older people [77]. It is clear that the whole motion pattern changes with age and the onset of
illnesses related to the human locomotor system. Yet, the majority of the studies focusing on gait
and fall in this review were simulations that include none or few old participants. This shortcoming
is also discussed in [76], “It is evident that existing systems have mainly been tested in laboratory
environments with controlled conditions and do not include frequent fallers and aging adults as test
subjects.[..] future work should focus on longitudinal studies of fall detection and prediction systems
in real-life conditions on a diverse group that includes frequent fallers, aging adults, and persons with
neurological disorders.” p.8 [76]. Not studying the sensor systems in real-life conditions affect the
validity of the results since the performance is not studied in realistic conditions. The low number of
studies with older people is also a shortcoming since age-related issues are not taken into consideration
to a sufficient degree.

There are many differences between the two genders. As a first example, we want to mention
the American Heart Association’s (AHA) scientific statement from 2016 [78] on acute myocardial
infarction (AMI) in women. “Sex differences occur in the pathophysiology and clinical presentation of
MI and affect treatment delays.”, p. 932 [78]. Further, AHA reports that the same perfusion therapies
are recommended despite the fact that the risk of bleeding or other complications is higher among
women. Further, women are being under-treated with guideline recommendations. This results in
increased readmission, re-infarction, and death rates during the first year after a myocardial infarction.
Cardiac rehabilitation is also underused and under-prescribed among women [78]. On the same lines,
the results of a cohort study [79] with almost 5000 patients µage > 65 who were admitted to 366 US
hospitals in the period 2003–2009, has found that women are less likely to receive optimal care at
discharge. Yet, only two of the studies retrieved within the category Cardiovascular diseases provide
information on the participants’ gender. This is not the only shortcoming for studies on Cardiovascular
diseases however. Several studies, or sub-studies, were conducted with very large age spans without
the provision of a mean age. Others were conducted with young people or lacks information on age.
Further, several works report on studies with healthy participants.

Hence, studies taking both genders into consideration, but also the age factor, are highly desired
in the category Cardiovascular diseases. Not including information on gender and/or not considering
gender/sex during data collection is a shortcoming regardless of the category to which a study belongs.
It is argued in [80] that there are areas were specific data on women is lacking while specific data on
men is missing in other areas.

Regitz-Zagrosek [80] outlines a number of differences between men and women. These include:
women more frequently having anemia, women suffering from coronary artery disease in average ten
years later than men, a higher frequency of boys having asthma in young ages while the frequency
changes to young adulthood, diabetes increasing the risk for coronary heart disease more among
women, and osteoporosis being more frequent in women but under-diagnosed in men. Osteoporosis
disease is characterized by a decreased bone mass density and a disrupted normal trabecular
architecture reducing bone strength [81]. Therefore, Osteoporosis increases the risk of fractures
after a fall but no symptoms of the disease are shown until a fracture occurs [80]. According to [81],
there are several factors relating to Osteoporosis which increases the risk of falling. These include the
fear of falling, which increases the risk of falling [82,83]. In addition, [81] reports on studies discussing
women with osteoporosis or low bone mass where fear of falling is associated with more falls [84], and
the confidence in balance is related to balance and mobility [85]. Further, [84] reports that an increased
thoracic kyphosis is associated with recent falls among women with Osteopororosis. I.e., women with
thoracic kyphosis were more likely to have had a recent fall. Thoracic kyphosis is an abnormal convex
curvature of the spine at chest height which is much more common among older women than men due
to estrogen losses [86]. All these works [81–85] date from 2004-2011, hence it is astonishing that some
articles retrieved within the article category Gait and fall have not reported information on gender and
that some other articles were conducted solely with men. Hence, we argue that future studies in the
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categories discussed in this article must take gender into consideration. This shortcoming was also
highlighted in [2].

Undoubtedly, healthy participants and patients differ in many aspects. Yet, only 65% of the
studies overall reported this information. A positive example here is the fact that the studies reported
upon in the category Asthma/COPD were conducted almost entirely with patients. This indicates
that the results in this area are reliable. On the contrary, none of the studies within Gait and fall,
or Stress and sleep have reported that the studies were conducted with patients. Also [76,77] have
previously discussed the shortcoming of not conducting studies with patients in the category Gait
and fall. Considering the research question for this review article, we question the fact that 35% of
the retrieved articles lack information on whether the participants were healthy or patients. We argue
that the use of healthy participants, or not providing this information, affect the validity of the study
results. Future studies need to consider the inclusion of patients to a further extent.

Studying the sample size in the reported studies, 56% of the articles report on studies conducted
with up to 20 participants, and only 20% of the articles report on studies conducted with 51 or more
participants. The distribution of numbers vary between categories. The majority of the studies reported
in the categories Asthma/COPD, Gait and fall, Physical activity recognition, Rehabilitation, and Stress
and sleep were conducted with up to 20 participants. We find the overall low number of participants a
shortcoming and recommend that future studies are conducted with larger study samples. However,
taking demographic factors, i.e., age, gender and healthy/patient into consideration is highly needed
prior to increasing the sample sizes in studies on health monitoring using wearable body sensors.
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