
sensors

Article

Toward Flexible and Efficient Home Context Sensing:
Capability Evaluation and Verification of
Image-Based Cognitive APIs †

Sinan Chen 1,* , Sachio Saiki 1, Masahide Nakamura 1,2

1 Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan;
sachio@carp.kobe-u.ac.jp (S.S.); masa-n@cs.kobe-u.ac.jp (M.N.)

2 RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
* Correspondence: chensinan@ws.cs.kobe-u.ac.jp; Tel.: +81-78-803-6295
† This paper is an extended version of the conference paper: Sinan, C.; Sachio, S.; Masahide, N. Evaluating

Feasibility of Image-Based Cognitive APIs for Home Context Sensing. In proceedings of the ICSPIS 2018,
Dubai, UAE, 7–8 November 2018.

Received: 26 December 2019; Accepted: 02 March 2020; Published: 6 March 2020
����������
�������

Abstract: Cognitive Application Program Interface (API) is an API of emerging artificial intelligence
(AI)-based cloud services, which extracts various contextual information from non-numerical
multimedia data including image and audio. Our interest is to apply image-based cognitive APIs to
implement flexible and efficient context sensing services in a smart home. In the existing approach
with machine learning by us, with the complexity of recognition object and the number of the defined
contexts increases by users, it still requires directly manually labeling a moderate scale of data for
training and continually try to calling multiple cognitive APIs for feature extraction. In this paper, we
propose a novel method that uses a small scale of labeled data to evaluate the capability of cognitive
APIs in advance, before training features of the APIs with machine learning, for the flexible and
efficient home context sensing. In the proposed method, we exploit document similarity measures
and the concepts (i.e., internal cohesion and external isolation) integrate into clustering results, to see
how the capability of different cognitive APIs for recognizing each context. By selecting the cognitive
APIs that relatively adapt to the defined contexts and data based on the evaluation results, we have
achieved the flexible integration and efficient process of cognitive APIs for home context sensing.

Keywords: smart home; contexts; cognitive API; image; document similarity; internal cohesion;
external isolation; clustering

1. Introduction

With the rapid progress of ICT and Internet of Things (IoT) technologies, research and
development of smart homes have been actively conducted. In smart homes, it is common to use
ambient and/or wearable sensors such as temperature, humidity, motion, and accelerometer in
order to retrieve contexts of users and homes for achieving various value-added services such as
References [1–3]. In recent years, Artificial Intelligence (AI) and cloud computing technologies have
brought enormous development potentiality for smart home services. With the progress of emerging
deep learning, retrieving the informative features of home contexts is not limited to conventional
sensors data [4,5], but includes multimedia data such as the research in References [6–8]. Using
multimedia data, such as image and audio, for home context sensing is promising for value-added
smart services, since the multimedia data contain richer information than the conventional sensor
data. However, recognizing multimedia data generally requires massive computation. It was thus
unrealistic for general households to install and maintain such a complex and tedious system at

Sensors 2020, 20, 1442; doi:10.3390/s20051442 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9898-7370
http://dx.doi.org/10.3390/s20051442
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1442?type=check_update&version=2

Sensors 2020, 20, 1442 2 of 15

home. In recent years, a cognitive service provides the capability to understand multimedia data
based on sophisticated machine-learning algorithms powered by big data and large-scale computing
resources. Typical services include image recognition [9], speech recognition [10], and natural language
processing [11]. A cognitive service usually provides cognitive APIs (Application Program Interface),
with which developers can easily integrate powerful recognition features in their own applications.
We consider that cognitive APIs make full use of multimedia data. Therefore, they have great potential
to improve smart homes since the user would no longer need to maintain a complex and tedious
system. Although various kinds of cognitive APIs exist and have been researching such as [12–14],
we especially focus on image recognition APIs in this paper. An image recognition API receives
an image from an external application, extracts specific information from the image, and returns
the information as a set of words called tags. The information of interest varies between services.
For example, Microsoft Azure Face API [15] estimates age, sex, and emotional values from a given
human face image. IBM Watson Visual Recognition [16] recognize items in the image such as home
appliances, furniture, and tools.

The main contribution of this paper is to propose a novel method that uses a small scale of labeled
data, to evaluate the capability of cognitive APIs in advance, before training features of the APIs with
machine learning, for the flexible and efficient home context sensing. We generally divide the t (the
total number of labeled data) into three levels: (1) large scale (t > 10,000), (2) moderate scale (10,000
≥ t ≥ 1000), (3) small scale (t ≤ 100). In the existing home context sensing approach with machine
learning [17,18], with the complexity of recognition object and the number of the defined contexts
increase by users, it still requires directly manually labeling a moderate scale of data for training and
continually try to calling multiple cognitive APIs for feature extraction. However, for each defined
home context, according to different capabilities by cognitive APIs, there will be a difference among
difficult-to-train data. That is, the individual contexts with low recognition accuracy by the different
APIs, which requires us to make a capability evaluation of each cognitive API and defined context in
advance before manually labeling a lot of data. Using the proposed method, one can understand the
coverage and limitation of different APIs towards specific home contexts for flexible integration. Also,
one can reduce unnecessary data manual labeling and calling cognitive APIs for an efficient process.

The previous version of this paper was published as a conference paper [19]. Changes made to
this version are most significantly the addition of clustering algorithms and the model construction
based on the former. In the proposed method, we first capture images of different contexts. Afterward,
we send the image to the cognitive API to retrieve tags from the images. Finally, integrating the
internal cohesion and external isolation concepts into the clustering results, we evaluate the capability
of the APIs by checking if the tags can sufficiently characterize(or distinguish) the context shown in
the original image. Our key idea of evaluation is to integrate document similarity measures [20–22],
the concepts (i.e., internal cohesion and external isolation [23–26]) into results of clustering [27,28],
to see how the capability of different cognitive APIs for recognizing each context. More specifically,
we evaluate the clustering algorithm results, with respect to the internal cohesion and external isolation.
That is, we see if cluster belonging to the same (or different) context(s) are associated with similar tags
(or dissimilar tags, respectively). Based on the evaluation results, we produced a flexible and efficient
way to select the high capability APIs for building a high accuracy model with machine learning.

Based on the proposed method, we have experimented with the smart home space of our
laboratory. Follow the proposed steps, we have completed the capability evaluation and verification of
cognitive APIs. The experimental results showed that the five of seven contexts recognition accuracy
reached 100%, the remaining difficult contexts also well within the response range of evaluated
results. This fully shows the reliability of our proposed method. The remainder of this paper is
organized as follows. Section 2 introduces the related work of cognitive APIs from recent years.
Section 3 produces a complete description of the proposed method. The experimental evaluation
and verification of image-based cognitive APIs for home context sensing are presented in Section 4,
followed by conclusions in Section 5.

Sensors 2020, 20, 1442 3 of 15

2. Related Work

To retrieve contexts of users and homes for achieving various value-added services, simplify the
process and improve the quality of the original is significant. As described in the introduction, with the
kind and number of the home context increase from one house to another, it is always a key difficult
issue to simplify the model and achieve a more efficient process. In this section, we introduce some
related works in the smart home field from recent years around the above issues.

Tax et al. [29] provide a novel algorithm to extract those relevant parts of the data for support
counting, only consider specific parts of the datasets instead of the full dataset, which allows speed up
the counting of the support of a pattern. Unlike their approach, we use all dataset made by labeling
selected by manually that applies into machine learning algorithms. The core of this paper is to present
a method that by evaluating, in order to help the user to know how to select original data better in
advance. The research in Reference [30] proposes a distributed service-oriented architecture (D-SOA)
for a smart-home system, which improved communication efficiency, reduction in network load,
and response time. Comparing with their approach, we got the same achievements, by reducing the
process to call the low-capability APIs for specific contexts. Xu et al. [31] proposed the software-defined
smart home platform, which flexibly adapts to the great difference between family scenes and user
demands. We are also focusing on this key point. Unlike their research, we use a fixed-point camera
rather than smart devices with an interface for our study, in order to reduce the complexity of system
operation by the user. However, for the implementation, the number and setting position of the
camera is a big issue. The research in Reference [32] concerned with the use of traffic classification
techniques for inferring events taking place within a building, in order to improve security and privacy
concerns of the smart homes. In our study, the security and privacy all depend on each cloud service
environment of cognitive APIs. Due to the local system does not save any images and information
of users, to reduce the unnecessary APIs calling can significantly improve this issue by the proposed
method in this paper. Stojkoska et al. [33] present a three-tier Internet of Thing based hierarchical
framework for the smart home using fog computing. Although local computation is cheaper operation
than communication, it is difficult to retrieve rich and full feature values for fine-grained home context
sensing in a short time. It might make simple problems become complicated. To simplify the process
of using cloud computing, and improve the quality of the labeled data is the core of this paper.

3. Methodology

This section describes the previous method of this paper [19], emphatically presents the proposed
method in this paper, and discusses the related techniques.

3.1. Previous Method

Since the existing APIs are trained for general-purpose image recognition, they may not be of
practical use in the specific configuration of smart homes. In the previous version of this paper,
we presented a method that evaluates and compares the capability of multiple image recognition
APIs using a few image data, for a given set of home contexts. Figure 1 depicts the essential part of
the previous method. In the figure, {c1, c2, · · · , cm} represent a given set of home contexts. For each
context, we collect n images at home, then send the images to cognitive APIs. Finally, we evaluate the
performance of the APIs, by analyzing the output tags. More specifically, the previous method consists
of the following five steps:

Step 1: Acquiring images
A user of the proposed method deploys an image capturing device (e.g., USB camera) in the

target space, and configures the device to take snapshots of the space periodically with an appropriate
interval.

Step 2: Defining home contexts to recognize

Sensors 2020, 20, 1442 4 of 15

The user defines a set C = {c1, c2, ..., cm} of home contexts to be recognized by the cognitive API,
such as “Dining”, “Cleaning”, “Nobody” and so on.

Step 3: Selecting representative images
For each context ci ∈ C, the user manually selects representative n images IMG(ci) =

{imgi1, imgi2, ..., imgin} that well expose ci, from all images obtained in Step 1. Note, the user needs to
select images on different days as possible, to avoid overfitting the data. To evaluate the capability
of cognitive APIs, the user can first select a small scale of image data (Generally, n ≤ 10 for keeping
m× n with a small scale range). The specific number depends on the situation.

Step 4: Calling cognitive API
The user designates a set API = {api1, api2, · · · , apiq} of cognitive APIs to be evaluated. There are

many cognitive APIs that extract tags from images. For every ci ∈ C, imgij ∈ IMG(ci), and apik ∈
API, apik(imgij) is invoked, and a set Tag(imgij, apik) = {w1, w2, w3, ...} of output tags is obtained.
Tag(imgij, apik) represents a recognition result for cognitive API apik for an image imgij belonging to a
context ci. The size of Tag(imgij, apik) varies for imgij and apik. Since there are m contexts, n images
for each context, and q APIs, this step creates totally m× n× q sets of output tags.

����

����

����

���������	
�

�����
�����	��

���	��

����	�	������

�����
���
����

����	�	������

�

�

�

�

�

�

�

��� ��� ���

���������������� ��

��� ��� ���

���������������� ��

��� ��� ���

���������������� ��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1. The flow from context label setting to analysis of results.

Step 5: Analyzing output tags

Step 5-1: Encoding output tags
The vector is a numerical representation of the document, where each component of the vector
refers to a tag. It shows the presence or importance of that tag in the document. More specifically,
regarding every set Tag(imgij, apik) of output tags as a document corpus, the user can extract
features from each document, by converting every set Tag(imgij, apik) into a document vector
V(imgij, apik) = {v1, v2, ...}, using a document vectorizing technique, such as TF-IDF [34],
Word2Vec [35], Doc2Vec [36], GloVe [37], fastText [38] and so on. Listing 1 shows an example of
encoding output tags by the TF-IDF method with python.
Step 5-2: Document similarity measure
Regarding each document vector in

⋃
ij V(imgij) of each apik, the method calculates the similarity

or distance, which is denoted as ‘≈’, between any two of documents using a certain method of
the document similarity measure. Regarding the calculation of document similarity, there exists
a variety of methods in the field of natural language processing, such as Cosine Similarity [39],
Euclidean Distance [40], Pearson Correlation Coefficient [41] and so on.
Step 5-3: Analyzing document similarity
For each apik, the user evaluates the performance of apik of context recognition, with respect

Sensors 2020, 20, 1442 5 of 15

to internal cohesion and external isolation. The internal cohesion represents a capability that
apik can produce similar output tags for images in the same context. That is, for ci ∈ C,
we evaluate Tag(imgij, apik) ≈ Tag(imgij′ , apik). On the other hand, the external isolation
represents a capability that apik can produce dissimilar output tags for images in different
contexts. That is, for cx 6= cy, we evaluate Tag(imgxj, apik) 6≈ Tag(imgyj′ , apik).

Listing 1: Example of encoding output tags by the TF-IDF method with python

from sk learn . f e a t u r e _ e x t r a c t i o n . t e x t import T f i d f V e c t o r i z e r
import numpy as np
import pandas as pd

for api in [" API_name "] :
tags = np . array (tags_ labe l s_pd [api])
c o n t e x t s = np . array (tags_ labe l s_pd [" l a b e l s "])
v e c t o r i z e r = T f i d f V e c t o r i z e r (use_ idf=True)
v e c s _ t f i d f = v e c t o r i z e r . f i t _ t r a n s f o r m (tags)
np . s e t _ p r i n t o p t i o n s (p r e c i s i o n =3)
np . s e t _ p r i n t o p t i o n s (threshold=np . i n f)
t f i d f _ v e c t o r s = v e c s _ t f i d f . toarray ()
feature_names = v e c t o r i z e r . get_feature_names ()
feature_names = l i s t (feature_names)
feature_names . append (" l a b e l s ")

vectors_pd = pd . DataFrame (t f i d f _ v e c t o r s)
vectors_pd = vectors_pd . round (3)

labels_pd = pd . DataFrame (c o n t e x t s)
v e c t o r s _ l a b e l s _ p d = pd . concat ([vectors_pd , labels_pd] , a x i s =1)

v e c t o r s _ l a b e l s _ p d . columns = [feature_names]

v e c t o r s _ l a b e l s _ p d

3.2. Proposed Method

As follow-up studies [17,18] continue, our work is not limited to simply evaluating the capability
of cognitive APIs, but more focus on the implementation of a flexible and efficient process for home
context sensing. As we mentioned in Section 1, we are struggling to understand the coverage and
limitation of different APIs towards specific home contexts, and reduce unnecessary data manual
labeling and calling cognitive APIs process. Based on Step 1 to Step 5-1 in the previous method, changes
made to this version are most significantly the addition of the new Step 5-2 and 5-3, for evaluating the
capability of cognitive APIs, and presents the Step 6-1 to Step 6-4 for building model to verifying the
evaluation results. The following explains the proposed new steps in detail.

Step 5: Analyzing output tags

New Step 5-2: Clustering document vectors
The user first randomizes the order of all document vectors

⋃
ij V(imgij) of each apik along with

the corresponding labels, then split them into the non-labeled document vectors and the known
labels. After that, the user applies a clustering algorithm W into the randomized non-labeled
document vectors of each apik. The algorithm W include k-means [27], Partitioning Around
Medoids (PAM) [42], Clustering Large Applications (CLARA) [43] and so on. This step is a process
of automatic classification, which requires the user to define the number of clusters to classify in

Sensors 2020, 20, 1442 6 of 15

advance. By using the clustering algorithm, it returns the integer labels corresponding to the
different clusters in the results. Listing 2 shows an example of applying k-means++ algorithm into
document vectors with python. Further more, an example of the clustering results in cross-tab is
shown in Figure 2a, which produced by integrating the known labels and the returned integer
labels. The evaluation key is the number of all labels more concentrated in the different classes of
both rows and columns, the better the classification effect. Since the naive clustering algorithm
cannot show the classification effect well to a small scale of data in general, the new Step 5-3
improves it.

Listing 2: Example of applying k-means++ algorithm into document vectors with python

from sk learn . metr i cs . pairwise import c o s i n e _ s i m i l a r i t y
from sk learn . c l u s t e r import kmeans
import numpy as np
import pandas as pd

random_vectors_labels_pd = v e c t o r s _ l a b e l s _ p d . sample (f r a c =1)
random_vectors_np = random_vectors_labels_pd . i l o c [: , : − 1] . values
random_labels_np = random_vectors_labels_pd . i l o c [: , − 1 :] . values

kmeans . e u c l i d e a n _ d i s t a n c e s = c o s i n e _ s i m i l a r i t y
model = kmeans (n _ c l u s t e r s =len (sorted (l i s t (s e t (random_labels_np)))) ,
i n i t = ’k−means++ ’)
model_output_labels_np =
model . f i t _ p r e d i c t (non_labels_random_vectors_pd)

model_output_labels_pd = pd . DataFrame (model_output_labels_np ,
columns =[’ Assignments ’])
random_labels_pd = pd . DataFrame (random_labels_np , columns =[’ l a b e l s ’])

labe ls_concat_pd = pd . concat ([random_labels_pd ,
model_output_labels_pd] , a x i s =1)
r e s u l t _ c r o s s t a b _ p d = pd . c r o s s t a b (labe ls_concat_pd [’ assignments ’] ,
labe ls_concat_pd [’ l a b e l s ’])

r e s u l t _ c r o s s t a b _ p d

New Step 5-3: Analyzing clustering results
From the results of automatic classification of each apik, the user evaluates the recognition
capability of ci(ci ∈ C). The core of the evaluation method is to integrate the internal cohesion
and external isolation concepts into the clustering results. Specifically, Listing 3 shows an example
of the key method for evaluating the capability of cognitive APIs with python. Further more,
an example of the process for evaluating the capability of cognitive APIs shown in Figure 2,
including a calculation formula and the principles. As the evaluation description of this step,
refer to the cross-tab of Figure 2b, the capability evaluation method includes two points:
(1) The maximum value in each row shows the capability of apik for the row ci. Note, it cannot
conduct the evaluation using this score if no maximum value in that row.
(2) The more there are other values in the row or column of the maximum value of each row,
the lower the capability of apik for ci of the row where the maximum value is.
Here, cd(cd ∈ C) with low scores may be regarded as difficult-to-train contexts.

Sensors 2020, 20, 1442 7 of 15

(b) Final results with internal cohesion and external isolation concepts(a) Clustering results with k-means++ algorithm

Degree of internal cohesion

SUM(Column values)

P

Degree of external isolation

SUM(Row values)

P
= P’

P

Figure 2. Example of the process for evaluating the capability of cognitive Application Program
Interfaces (APIs).

Listing 3: Example of the key method for evaluating the capability of cognitive APIs with python

import numpy as np
import pandas as pd
import seaborn as sns

sum_row_values = r e s u l t _ c r o s s t a b _ p d . sum(a x i s =1)
sum_column_values = r e s u l t _ c r o s s t a b _ p d . sum(a x i s =0)

f i n a l _ r e s u l t s _ l i s t = []
for i in range (len (r e s u l t _ c r o s s t a b _ p d)) :
t h i s _ r o w _ r e s u l t s = []
this_row = r e s u l t _ c r o s s t a b _ p d . i l o c [i : i + 1 , :]
sum_this_row_values = f l o a t (sum_row_values [i])
for j in range (len (r e s u l t _ c r o s s t a b _ p d)) :
t h i s _ v a l u e = this_row . i l o c [: , j : j +1]
t h i s _ v a l u e = f l o a t (t h i s _ v a l u e . values)
sum_this_column_values = f l o a t (sum_column_values [j])
i f t h i s _ v a l u e != 0 :
t h i s _ v a l u e = ((t h i s _ v a l u e /sum_this_row_values)
∗ (t h i s _ v a l u e /sum_this_column_values))
e lse : pass
t h i s _ r o w _ r e s u l t s . append (round (th i s_va lue , 1))
f i n a l _ r e s u l t s _ l i s t . append (t h i s _ r o w _ r e s u l t s)
f i n a l _ r e s u l t s _ p d = pd . DataFrame (f i n a l _ r e s u l t s _ l i s t ,
index= r e s u l t _ c r o s s t a b _ p d . index ,
columns= r e s u l t _ c r o s s t a b _ p d . columns)

sns . load_datase t (’ i r i s ’)
p l t . f i g u r e ()
sns . heatmap (f i n a l _ r e s u l t s _ p d , cmap=" YlGn " , annot=True , cbar=True)

Step 6: Selectively building Model
In this Step, based on the evaluation results in Step 5, the user can select high-capability APIs,

for improving the difficult-to-train contexts in the built model, and produce an efficient process.

Sensors 2020, 20, 1442 8 of 15

Step 6-1: Preparing labeled image data
Follow Step 1 to Step 3 in Section 3.1, the user collects and labels a moderate scale of image data
required for building a model with machine learning (Generally, n′ ≥ 10n). The user also selects the
original image data with more prominent features for the previously known difficult-to-training
contexts cd (cd ∈ C), which may bring a buffer value to the accuracy of other contexts.
Step 6-2: Selecting high-capability APIs to call
As a addition in Step 4 in Section 3.1, the user first determine the difficult-to-train contexts cd,
and to select multiple high capability APIh = {api1, api2, ..., apig} (APIh ∈ API, g < p) from
evaluation results of the new Step 5-3. The selection approach as follows.
(1) The user can select APIh(g = 1) that with maximum total scores of contexts, to ensure the
built model with high overall accuracy.
(2) The user can also select APIh(g = 2) with high complementarity of context evaluation results,
to ensure the built model with high average accuracy.
The approach (2) for home context sensing in most cases better than the (1), because of too much
or too little will have an effect on the accuracy, efficiency, and complexity. Therefore, to select the
small number of high-capability APIs rather than reduce the dimension of features can produce
more applicable features related to ci, for improving the process efficiency.
Then, for every ci ∈ C, imgij ∈ IMG(ci), and apik′ ∈ APIg, apik′(imgij) is invoked, and a
set Tag(imgij, apik′) = {w1, w2, w3, ...} of output tags is obtained. Tag(imgij, apik′) represents a
recognition result for apik′ for an image imgij belonging to a context ci. The size of Tag(imgij, apik′)

varies for imgij and apik′ . Since there are m contexts, n′ images for each context, and g APIs,
this step creates totally m× n′ × g sets of output tags.
Step 6-3: Encoding and combining features
Follow Step 5-1 in Section 3.1, regarding every set Tag(imgij, apik′) of output tags as a
document corpus, the user can first extract features from each document, by converting
every set Tag(imgij, apik′) into a document vector V(imgij, apik′) = {v1, v2, ...} (see Listing 1).
Then, for each imgij, the user combines all V(apik′) into

⋃
V(imgij, apik′).

Certainly, the another approach is to combine all Tag(imgij, apik′) into
⋃

Tag(imgij, apik′) in first,
then converting them to document vectors. However, in this way, it could have influenced
encoding results if there are the same tags output by APIh. We do not think that it means the
features are highlighted in the related imgij.
Step 6-4: Building a model and Verifying results
For each context ci, the user split

⋃
V(imgij, apik′) into training data and test data. The user first

applies a supervised machine learning algorithm A into the training data and corresponding
labels for building a model M. The algorithm A include Support Vector Machine (SVM) [44], Neural
Network (NN) [45], Decision Tree [46] and so on. Then, using the test data, the user evaluates
the built model M, by checking the output ci with the labeled test(ci). The more M outputs the
correct contexts, the M is more accurate.
As the verification approach, the user can verify if the capability of the selected APIs the same as
expected, by checking the accuracy of overall, average, context-wise and so on. The user can also
check if the difficult-to-training contexts cd evaluated from the new Step 5-3 indeed difficult to
recognize, and if the accuracy of them is improved.

4. Experimental Evaluation and Verification

This section introduces an experiment conducted for evaluating the capability of cognitive APIs,
and verifying the evaluation results, to produce a flexible and efficient process of home context sensing.

4.1. Experimental Setup

In this experiment, we set the target space to be a smart home space, which is a part of our
laboratory. For Step 1, we install a USB camera to acquire images of the daily activities of members of

Sensors 2020, 20, 1442 9 of 15

the laboratory. We develop a program that takes a snapshot with the USB camera every five seconds,
and the images are cumulated in a server for nine months. In Step 2, we define seven contexts: “Dining
together”, “General meeting”, “Nobody”, “One-to-one meeting”, “Personal study”, “Play games”,
and “Room cleaning”. The representative images of each context and USB camera in this experiment
is shown in Figure 3.

Dining together General meeting Nobody One-to-one meeting

Personal study Play games Room cleaning USB camera

Figure 3. The representative images of each context and USB camera in this experiment.

4.2. Evaluating Capability of Cognitive APIs

In Step 3, for each context, we selected 10 representative images considered to expose the
context well. The selection is done by visual inspection so that the 10 images are chosen from
different dates and times as possible. In Step 4, the images are sent to the five different APIs:
Microsoft Azure Computer Vision (Azure) API [47], IBM Watson Visual Recognition (Watson) [16],
Clarifai API [48], Imagga REST (Imagga) API [49], and ParallelDots API [50]. The total 350 sets of
output tags (= 7 contexts × 10 images × 5 APIs) are obtained. The Step 5-1 to Step 5-3 have conducted
in python by us (see Listing 1, Listing 2, and Listing 3). In the new Step 5-1, we used Term Frequency -
Inverse Document Frequency (TF-IDF) [34] to encode each set of output tags to a vector. In the new
Step 5-2, we applied all document vectors into cosine similarity [21] and k-means++ [51] algorithms,
producing a process of automatic classification. In the new Step 5-3, as the capability evaluation, for the
clustering results of each API, we calculated the scores of each context with internal cohesion and
external isolation concepts into the cross table. We also calculated the total score of each context and
API for making a more detailed analysis in the table.

4.3. Building a Model to Verify

Based on the evaluation results of the new Step 5-3, we implemented to selectively building
model. In Step 6-1, follow Step 1 to Step 3, we selected 100 representative images for each context.
Especially, we selected the original images of the difficult-to-train context with more prominent
features. In Step 6-2, we selected two APIs with most high-capability (i.e., Clarifai API and Imagga
API), and respectively sent the representative images to them for obtaining the output tags. In Step 6-3,
we respectively encoded the output tags to document vectors with the TF-IDF method, and combined
all document vectors for each image. In Step 6-4, for each context, we split all document vectors into
half, as training data and test data. We first applied the Multi-class Neural Network algorithm into the
training data using Microsoft Azure Machine Learning [52]. Then, we using the test data to evaluating
the recognition accuracy of the build model. We compared the capability of the selected high-capability
APIs, and the accuracy of difficult-to-training contexts, with the evaluation results of the new Step 5-3.

Sensors 2020, 20, 1442 10 of 15

4.4. Results

Figure 4 shows the capability evaluation results of five cognitive APIs in this experiment.
Among the five evaluation results, the contexts that with relatively good stability include the results in
“Play games” of Watson API, “Dining together” of Imagga API, and “Nobody” of Paralleldots. Because
in the above results that other values are not in the row or column of the maximum value of that row.
In contrast, the contexts that with relatively bad stability (i.e., difficult-to-training contexts) include the
results in “Play games” of Clarifai API and ParallelDots API, “Room Cleaning” of Watson API, Clarifai
API, and Imagga API. Table 1 shows the maximum value in each row of the capability evaluation
results of each API from Figure 4. From the total score of each API, the APIs that with relatively
good capability include Imagga API and Clarifai API. In contrast, the APIs that with relatively bad
capability include Watson API and ParallelDots API. From the total score of each context, the contexts
that easily to be recognized include “Nobody” and “General meeting”. In contrast, the contexts that
difficult to be recognized include “Room cleaning” and “Play games”. Figure 5 shows the results
by combining features of the selected APIs (Clarifai and Imagga APIs). From the main results of the
metrics, the overall accuracy reached around 0.977, and the average accuracy reached around 0.993.
From the results of the confusion matrix, the contexts that with accuracy reached 100% include “Dining
together”, “General meeting”, “Nobody”, “One-to-one meeting”, and “Personal study”. The accuracy
of “Play games” was 96.1%, and “Room Cleaning” was 88.2%. The result of the built model reached
the same as we expected. Especially, it verified that the difficult-to-train contexts evaluated from the
new Step 5-3 indeed difficult to recognize, but the accuracy of them to a large extent was improved.

Capability Evaluation Results of Azure API Capability Evaluation Results of Watson API

Capability Evaluation Results of Clarifai API Capability Evaluation Results of Imagga API

Capability Evaluation Results of ParallelDots API

Figure 4. The capability evaluation results of five cognitive APIs in this experiment.

Sensors 2020, 20, 1442 11 of 15

Table 1. The maximum value in each row of the capability evaluation results of each API from Figure 4.

Context Names Azure API Watson API Clarifai API Imagga API ParallelDots API Total

Dining together 0.5 0.4 0.6 0.7 0.4 2.6
General meeting 0.4 0.4 0.7 0.4 0.6 2.5
Nobody 0.5 0.6 0.6 0.7 0.6 3
One-to-one meeting 0.5 0.2 0.4 0.6 0.4 2.1
Personal study 0.6 0.4 0.4 0.2 0.4 2
Play games 0.2 0.4 0.1 0.4 0.1 1.2
Room cleaning 0.2 0.1 0.2 0.1 0.3 0.9

Total 2.9 2.5 3 3.1 2.8

Figure 5. The results by combining features of the selected APIs (Clarifai and Imagga).

4.5. Discussion

In this study, the factors that influence the home context sensing were many, which required
to be considered. More specifically, the main factors in the different home contexts: (1) the
position-change-degree of persons. (2) the number of persons existing. (3) the richness degree
of objects existing. The contexts defined by us in this experiment covered the difference of the above
(1) (2) (3) cases. In this way, we easily understand that the recognition accuracy of “Room cleaning”
was not good in Figure 5, because of the (1) (2). A snapshot only represents the contents in a moment,
which cannot retrieve more informative features on the time series. For another difficult home context
“Play games”, the difference was existing among the labeled data due to the above (2). In the play

Sensors 2020, 20, 1442 12 of 15

games every time, the number of persons with the difference between two to five. Further more, in the
results of Figure 4, we regard the maximum value of each row as the easy degree of that context to be
recognized. We have put them into Table 1 for easier to check. However, as Figure 4 shows, the other
values in the row or column of the maximum value of each row still inevitable in most situations.
They reflected the disturbance items for each context were existing, which should be also considered
in the final evaluation calculation. Such as letting the maximum values subtract the other values that
in the same row and columns, it might a good way.

5. Conclusions

In this paper, a method that uses a small scale of labeled data to evaluate the capability of image-based
cognitive APIs in advance, towards the flexible and efficient home context sensing, is proposed.
From experimental evaluation and verification, the high-capability APIs and difficult-to-train contexts
well within the response range of evaluated results, confirming the advantage that the predictability and
efficiency of feature extraction with cognitive APIs are improved by the proposed method.

The initial thinking of our study is to realize a system, where a simple edge system just capturing,
and pre-processing images are deployed at home. All heavy tasks of image recognition are delegated
to the cognitive service in the cloud. However, in the complex and different environments by one
household to another household, for the APIs with many difficult-to-training data, it is still a big
challenge that, how to rapidly and accurately obtain the more fine-grained evaluation results in
advance. We have tried some experiments to extract more valuable features from the return results of
each API, such as the score or confidence value of each output tag. However, the way has not been
found to utilize them, due to there existing the big difference in the range and distribution of that score
values by the different APIs. As future work, we will try to find the edge computing techniques with
image recognition for implementing a more smart home context sensing.

Author Contributions: Writing—original draft preparation, S.C.; writing—review and editing, S.C. and S.S.;
supervision, M.N.; validation, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was partially supported by JSPS KAKENHI Grant Numbers JP19H01138,
JP17H00731, JP18H03242, JP18H03342, JP19H04154, JP19K02973.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mai, T.; Morihiko, T.; Keiichi, Y. A Monitoring Support System for Elderly Person Living Alone through
Activity Sensing in Living Space and Its Evaluation. IPSJ SIG Notes 2014, 2014, 1–7.

2. Tamamizu, K.; Sakakibara, S.; Saiki, S.; Nakamura, M.; Yasuda, K. Capturing Activities of Daily Living for
Elderly at Home based on Environment Change and Speech Dialog. IEICE Tech. Rep. 2017, 116, 7–12.

3. Alam, M.A.U. Context-aware multi-inhabitant functional and physiological health assessment in smart
home environment. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 99–100.

4. Gochoo, M.; Tan, T.H.; Liu, S.H.; Jean, F.R.; Alnajjar, F.S.; Huang, S.C. Unobtrusive activity recognition of
elderly people living alone using anonymous binary sensors and DCNN. IEEE J. Biomed. Health Inform. 2018,
23, 693–702. [CrossRef] [PubMed]

5. Ni, Q.; Garcia Hernando, A.B.; la Cruz, D.; Pau, I. The elderly’s independent living in smart homes:
A characterization of activities and sensing infrastructure survey to facilitate services development. Sensors
2015, 15, 11312–11362. [CrossRef] [PubMed]

6. Sharmila.; Kumar, D.; Kumar, P.; Ashok, A. Introduction to Multimedia Big Data Computing for IoT.
In Multimedia Big Data Computing for IoT Applications: Concepts, Paradigms and Solutions; Tanwar, S.; Tyagi, S.;
Kumar, N., Eds.; Springer Singapore: Singapore, 2020; pp. 3–36. doi:10.1007/978-981-13-8759-3_1. [CrossRef]

http://dx.doi.org/10.1109/JBHI.2018.2833618
http://www.ncbi.nlm.nih.gov/pubmed/29994012
http://dx.doi.org/10.3390/s150511312
http://www.ncbi.nlm.nih.gov/pubmed/26007717
https://doi.org/10.1007/978-981-13-8759-3_1
http://dx.doi.org/10.1007/978-981-13-8759-3_1

Sensors 2020, 20, 1442 13 of 15

7. Singh, A.; Mahapatra, S. Network-Based Applications of Multimedia Big Data Computing in IoT
Environment. In Multimedia Big Data Computing for IoT Applications; Springer: Berlin/Heidelberg, Germany,
2020; pp. 435–452.

8. Talal, M.; Zaidan, A.; Zaidan, B.; Albahri, A.; Alamoodi, A.; Albahri, O.; Alsalem, M.; Lim, C.; Tan, K.L.;
Shir, W.; et al. Smart home-based IoT for real-time and secure remote health monitoring of triage and priority
system using body sensors: Multi-driven systematic review. J. Med. Syst. 2019, 43, 42. [CrossRef] [PubMed]

9. Microsoft Azure. Object detection - Computer Vision—Azure Cognitive Services | Microsoft Docs.
Available online: https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-
object-detection (accessed on 9 January 2020).

10. IBM Cloud. Speech to Text - IBM Cloud API Docs. Available online: https://cloud.ibm.com/apidocs/
speech-to-text/speech-to-text (accessed on 9 January 2020).

11. Google Cloud. Cloud Natural Language API documentation. Available online: https://cloud.google.com/
natural-language/docs/ (accessed on 9 January 2020).

12. Triemvitaya, N.; Butsri, S.; Temtanapat, Y.; Suksudaj, S. Sound Tooth: Mobile Oral Health Exam Recording
Using Individual Voice Recognition. In Proceedings of the 2019 4th International Conference on Information
Technology (InCIT), Bangkok, Thailand, 24–25 October 2019; pp. 243–248.

13. Alexakis, G.; Panagiotakis, S.; Fragkakis, A.; Markakis, E.; Vassilakis, K. Control of Smart Home Operations
Using Natural Language Processing, Voice Recognition and IoT Technologies in a Multi-Tier Architecture.
Designs 2019, 3, 32. [CrossRef]

14. Lee, H.T.; Chen, R.C.; Chung, W.H. Combining Voice and Image Recognition for Smart Home Security
System. In International Conference on Frontier Computing; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 212–221.

15. Microsoft. Computer Vision | Microsoft Azure. Available online: https://azure.microsoft.com/en-us/
services/cognitive-services/face/ (accessed on 26 December 2019).

16. IBM. Watson Visual Recognition. Available online: https://www.ibm.com/watson/services/visual-
recognition/ (accessed on 23 July 2018).

17. Chen, S.; Saiki, S.; Nakamura, M. Integrating Multiple Models Using Image-as-Documents Approach
for Recognizing Fine-Grained Home Contexts. Sensors 2020, 20, 666. doi:10.3390/s20030666. [CrossRef]
[PubMed]

18. Chen, S.; Saiki, S.; Nakamura, M. Towards Affordable and Practical Home Context Recognition: - Framework
and Implementation with Image-based Cognitive API-. Int. J. Netw. Distrib. Comput. (IJNDC) 2019, 8, 16–24.
doi:10.2991/ijndc.k.191118.001. [CrossRef]

19. Chen, S.; Saiki, S.; Nakamura, M. Evaluating Feasibility of Image-Based Cognitive APIs for Home Context
Sensing. In Proceedings of the International Conference on Signal Processing and Information Security
(ICSPIS 2018), Dubai, UAE, 7–8 November 2018; pp. 5–8.

20. Kamishima, T. Clustering. Available online: http://www.kamishima.net/archive/clustering.pdf (accessed
on 23 July 2018).

21. Muflikhah, L.; Baharudin, B. Document clustering using concept space and cosine similarity measurement.
In Proceedings of the 2009 International Conference on Computer Technology and Development,
Kota Kinabalu, Malaysia, 13–15 November 2009; Volume 1, pp. 58–62.

22. Lee, L.H.; Wan, C.H.; Rajkumar, R.; Isa, D. An enhanced Support Vector Machine classification framework by
using Euclidean distance function for text document categorization. Appl. Intell. 2012, 37, 80–99. [CrossRef]

23. Cormack, R.M. A review of classification. J. R. Stat. Soc. Ser. A Gen. 1971, 134, 321–353. [CrossRef]
24. Milligan, G.W. An examination of the effect of six types of error perturbation on fifteen clustering algorithms.

Psychometrika 1980, 45, 325–342. [CrossRef]
25. Milligan, G.W. A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika

1981, 46, 187–199. [CrossRef]
26. Milligan, G.W. An algorithm for generating artificial test clusters. Psychometrika 1985, 50, 123–127. [CrossRef]
27. Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means clustering with background knowledge.

In Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williamstown,
MA, USA, 28 June–1 July 2001; Volume 1, pp. 577–584.

28. Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799.
[CrossRef]

http://dx.doi.org/10.1007/s10916-019-1158-z
http://www.ncbi.nlm.nih.gov/pubmed/30648217
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-object-detection
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/concept-object-detection
https://cloud.ibm.com/apidocs/speech-to-text/speech-to-text
https://cloud.ibm.com/apidocs/speech-to-text/speech-to-text
https://cloud.google.com/natural-language/docs/
https://cloud.google.com/natural-language/docs/
http://dx.doi.org/10.3390/designs3030032
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://www.ibm.com/watson/services/visual-recognition/
https://www.ibm.com/watson/services/visual-recognition/
http://dx.doi.org/10.3390/s20030666
http://www.ncbi.nlm.nih.gov/pubmed/31991724
http://dx.doi.org/10.2991/ijndc.k.191118.001
http://www.kamishima.net/archive/clustering.pdf
http://dx.doi.org/10.1007/s10489-011-0314-z
http://dx.doi.org/10.2307/2344237
http://dx.doi.org/10.1007/BF02293907
http://dx.doi.org/10.1007/BF02293899
http://dx.doi.org/10.1007/BF02294153
http://dx.doi.org/10.1109/34.400568

Sensors 2020, 20, 1442 14 of 15

29. Tax, N.; Sidorova, N.; Haakma, R.; van der Aalst, W.M. Mining local process models with constraints
efficiently: applications to the analysis of smart home data. In Proceedings of the 2018 14th International
Conference on Intelligent Environments (IE), Rome, Italy, 25–28 June 2018; pp. 56–63.

30. Hu, S.; Tang, C.; Liu, F.; Wang, X. A distributed and efficient system architecture for smart home. Int. J.
Sens. Netw. 2016, 20, 119–130. [CrossRef]

31. Xu, K.; Wang, X.; Wei, W.; Song, H.; Mao, B. Toward software defined smart home. IEEE Commun. Mag.
2016, 54, 116–122. [CrossRef]

32. Copos, B.; Levitt, K.; Bishop, M.; Rowe, J. Is anybody home? Inferring activity from smart home network
traffic. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA,
22–26 May 2016; pp. 245–251.

33. Stojkoska, B.R.; Trivodaliev, K. Enabling internet of things for smart homes through fog
computing. In Proceedings of the 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia,
21–22 November 2017; pp. 1–4.

34. Roelleke, T.; Wang, J. TF-IDF Uncovered: A Study of Theories and Probabilities. In Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval;
ACM: New York, NY, USA, 2008; SIGIR ’08, pp. 435–442. doi:10.1145/1390334.1390409. [CrossRef]

35. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
In Proceedings of the Workshop at International Conference on Learning Representations (ICLR 2013),
Scottsdale, Arizona, 2–4 May 2013.

36. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the
ICML’14—31st International Conference on International Conference on Machine Learning—Volume 32,
Bejing, China, 22–24 June 2014; pp. II–1188–II–1196.

37. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. Available online:
https://nlp.stanford.edu/projects/glove/ (accessed on 15 April 2019).

38. Research, F. fastText: A library for efficient learning of word representations and sentence classification.
Available online: https://github.com/facebookresearch/fastText (accessed on 15 April 2019).

39. Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model.
2011, 53, 91–97. [CrossRef]

40. Yen, L.; Vanvyve, D.; Wouters, F.; Fouss, F.; Verleysen, M.; Saerens, M. Clustering using a random walk
based distance measure. In Proceedings of the ESANN, Bruges, Belgium, 27–29 April 2005; pp. 317–324.

41. Huang, A. Similarity measures for text document clustering. In Proceedings of the Sixth New Zealand
Computer Science Research Sudent Conference (NZCSRSC2008), Christchurch, New Zealand, 14–18 April
2008; Volume 4, pp. 9–56.

42. Van der Laan, M.; Pollard, K.; Bryan, J. A new partitioning around medoids algorithm. J. Stat. Comput. Simul.
2003, 73, 575–584. [CrossRef]

43. Sheikholeslami, G.; Chatterjee, S.; Zhang, A. Wavecluster: A multi-resolution clustering approach for very
large spatial databases. In Proceedings of the VLDB, New York, NY, USA, 24–27 August 1998; Volume 98,
pp. 428–439.

44. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
45. Baum, E.B.; Wilczek, F. Supervised Learning of Probability Distributions by Neural Networks. In Neural

Information Processing Systems; Anderson, D.Z., Ed.; American Institute of Physics: College Park, MD, USA,
1988, pp. 52–61.

46. Geurts, P.; Irrthum, A.; Wehenkel, L. Supervised learning with decision tree-based methods in computational
and systems biology. Mol. Biosyst. 2009, 5, 1593–1605. [CrossRef] [PubMed]

47. Microsoft. Computer Vision | Microsoft Azure. Available online: https://azure.microsoft.com/en-us/
services/cognitive-services/computer-vision/ (accessed on 27 November 2019).

48. Clarifai. Enterprise AI Powered Computer Vision Solutions | Clarifai. Available online: https://clarifai.com/
(accessed on 15 April 2019).

49. Imagga. Imagga API. Available online: https://docs.imagga.com/ (accessed on 15 April 2019).
50. ParallelDots. Image Recognition. Available online: https://www.paralleldots.com/object-recognizer

(accessed on 15 April 2019).

http://dx.doi.org/10.1504/IJSNET.2016.074701
http://dx.doi.org/10.1109/MCOM.2016.7470945
https://doi.org/10.1145/1390334.1390409
http://dx.doi.org/10.1145/1390334.1390409
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
http://dx.doi.org/10.1016/j.mcm.2010.07.022
http://dx.doi.org/10.1080/0094965031000136012
http://dx.doi.org/10.1038/nbt1206-1565
http://www.ncbi.nlm.nih.gov/pubmed/17160063
http://dx.doi.org/10.1039/b907946g
http://www.ncbi.nlm.nih.gov/pubmed/20023720
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://clarifai.com/
https://docs.imagga.com/
https://www.paralleldots.com/object-recognizer

Sensors 2020, 20, 1442 15 of 15

51. Arthur, D.; Vassilvitskii, S. k-Means++: The advantages of Careful Seeding; Technical Report, Stanford; Stanford
InfoLab Publication Server: Stanford, CA, USA, 2006.

52. Azure Machine Learning Studio. Available online: https://azure.microsoft.com/ja-jp/services/machine-
learning-studio/ (accessed on 1 February 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://azure.microsoft.com/ja-jp/services/machine-learning-studio/
https://azure.microsoft.com/ja-jp/services/machine-learning-studio/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Previous Method
	Proposed Method

	Experimental Evaluation and Verification
	Experimental Setup
	Evaluating Capability of Cognitive APIs
	Building a Model to Verify
	Results
	Discussion

	Conclusions
	References

