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Abstract: This work develops a distributed message-passing approach to cooperative localization
for autonomous mobile vehicles that communicate via mm-wave wireless connection in
vehicle-to-vehicle networks. Vehicles in the network obtain the measurement information about
the relative distance and the angle of arrival from the mm-wave connections made with each other.
Some vehicles may obtain knowledge about their absolute position information of different quality,
for example, via additional localization feature. The main objective is to estimate the locations
of all vehicles using reciprocal exchanges of simple information called a message in a distributed
and autonomous way. A simulation is developed to examine the performance of the localization
and navigation of vehicles under various network configurations. The results show that it does
provide better positioning results in most cases and there are also several cases where the use of the
cooperative technique adapts to design parameters such as accuracies of measurement equipment,
and initial position estimates, that can affect the localization performance.

Keywords: autonomous vehicle localization; mm-wave connection; vehicle-to-vehicle network;
message-passing algorithm

1. Introduction

With the recent introduction of 5th generation (5G) communication with low latency, large capacity,
and high reliability characteristics, actual implementation of autonomous vehicles has been rendered
more realistic [1]. Among the most important aspects of an autonomous vehicle, one very essential
feature is the estimation of its position in a reliable and autonomous manner. This feature requires the
robustness to inter-node connection failure, real-time updates, and high accuracy [2–4]. The localization
of a group of vehicles can be conducted in a centralized manner; all vehicles’ locations can be estimated
by a single computationally superior unit. While this approach alleviates computational demands of
most vehicles in the network, its scalability has a limit since it is responsible for all processing steps such
as collection, calculation, and distribution of the positioning information. Furthermore, the amount of
devoted computation efforts scales directly with the population of vehicles in the network. Since the
constraint on the scalability may cause significant challenges in applying the localization technique in
an imminent large-scale vehicle-to-everything network, a distributed localization method where
the positions of individual vehicles are identified locally and independently by themselves can
be considered. A distributed method of the cooperative localization can adapt to a network of
varying sizes because its local estimations involve only observations of a few neighboring units.
In most cases, in order to obtain accurate location information, the global navigation satellite system
(GNSS) is supported. However, its systems exploit essentially satellites and its effectiveness does
not prove sufficient for autonomous driving in harsh environments with obstacles undermining the
satellite signals, such as tunnels and undergrounds [5–7]. Therefore, one of the most promising
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alternatives for situations in which all vehicles do not receive GNSS signals is that vehicles in the
wireless networks can independently infer their positions by exchanging local information [8] via
mm-wave communication [2,9,10] which includes geometric analysis of received signals.

Localization problems have been studied steadily to meet these purposes using various techniques,
such as maximum a posteriori (MAP) estimations [11,12], extended Kalman filters (EKF) [13–15],
particle filters [16], and maximum likelihood (ML) estimations [17]. In References [11,12], factor graph
models along with belief propagation algorithm are utilized to reduce complexity requirements in
communication and computation and achieve joint cooperative localization and clock synchronization.
In References [13–15], an extended Kalman filter technique is developed to achieve cooperative
localization of large groups of mobile robots and road vehicles. In Reference [16], a particle filtering
approach estimates the position and orientation of vehicles by combining the results from Global
Positioning System-based absolute localization. The localization methods using extended Kalman filters
and particle filters involve the data fusion of redundant readings of multiple sensors. In Reference [17]
the ML estimation is combined with numerical optimization to solve the localization problem without
external localization units. A representative distributed approach is based on sum-product algorithm
over a wireless network (SPAWN) [18]. SPAWN shows good performance in terms of the accuracy since
it efficiently calculates the posterior distribution of messages at each time instant. However, since the
estimated distributions are nonparametric, their representation and evaluation are highly demanding for
real-time updates. Recently, an new optimization technique based on distributed-alternating direction
method of multipliers (ADMM) [19] is developed to lift a large amount of the computational cost in
cooperative localization. However, ADMM updates the solution by using only average values of the
probability distribution as position estimates, an extended technique that allows joint updates with
the average and the accuracy for reliability adaptation for the position estimate is expected to improve
the performance.

To this purpose, this work models a message-passing (MP) based technique that allows us to use
all available measurement information for distributed cooperative localization. The ultimate goal aims
at constructing a distributed algorithm capable of real-time positioning with high accuracy, turns out
to be a completely new challenge compared with existing techniques [18,19]. In order to enhance the
localization accuracy of a vehicular network, this work tries to update the accuracy with the average
of the vehicle position. For a real-time deployment, this work proposes a novel modeling strategy
that allows for the parametrization of complicated probability distributions for the position estimate
and the its accuracy. In this technique, messages are calculated and exchanged cooperatively among
neighboring vehicles to provide the estimate of the position with sufficient quality. Furthermore,
additional reduction of communication overloads is available by employing a broadcasting policy to
share the messages among adjacent vehicles. A simulation platform with graphical user interface (GUI)
is developed to test the accuracy of the localization in real-time assessment for case studies. In practical
circumstances including sensor noises, specific conditions are addressed for when the cooperative
positioning becomes valid to improve the network-wide performance.

Major contributions of this work are summarized as follows:

• A mathematical formulation is constructed for vehicular self-localization and identifying vehicles’
relative positions based on a V2X network where all vehicles do not necessarily obtain the exact
position information from peripheral devices.

• A novel message-passing framework is developed to determine the positions of all vehicles.
The algorithm carries out the exchange of only the estimate and accuracy of the position to
save computation costs spent to obtain the improved representation of messages. In addition,
a broadcast protocol is designed to decrease message calculations and communication overloads
for networking.

• A GUI simulation platform is developed to test the vehicular network based on 3GPP TR 37.885
specifications. The performance comparison among various distributed strategies is made to justify
the localization performance of the proposed algorithm.
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The rest of this paper is organized as follow: Section 2 presents the system model in a mm-wave
connection based vehicular network. An MP algorithm is derived to handle the position estimates and
their accuracies for cooperative localization in Section 3. Section 4 evaluates the performance of the
proposed algorithm, and Section 5 concludes the paper.

2. System Model

2.1. Vehicular Network Model

This section introduces a system model for cooperative localization in a vehicle-to-vehicle (V2V)
network. The vehicles in the network move along the road, and they can communicate with at least one
of their neighbors. Among the vehicles, at least one vehicle, called an anchor, is capable of obtaining
different quality measurements received from peripheral devices over other vehicles, called agents [18].
Let x(t)j = [x(t)1j , x(t)2j ] and x(t)k = [x(t)1k , x(t)2k ] be two-dimensional coordinate vectors of vehicle j and
vehicle k at time t, respectively. Vehicles make measurements about their movement and communicate
in mm-wave with surrounding vehicles to obtain the estimate about the relative distance and the angle
of arrival (AoA) [2,20]. The relative distance measured by vehicle j from vehicle k at time t is given by

d(t)kj = ‖x(t)k − x(t)j ‖, (1)

where ‖ · ‖ is an Euclidean distance. Also, the AoA value measured by vehicle j from vehicle k is
given by

θ
(t)
kj = tan−1

x(t)2k − x(t)2j

x(t)1k − x(t)1j

. (2)

Figure 1 represents an example of the distributed vehicular network. There are three vehicles:
two agent vehicles and a single anchor vehicle which obtains relatively improved position information
from the network infrastructure. The vehicles communicate with each other and, in particular, vehicle
1 obtains the measurement about (d(t)i1 , θ

(t)
i1 ) (i = 2, 3) in mm-wave communication with vehicles 2 and

vehicle 3.

Figure 1. Cooperative localization in mm-wave vehicular network.
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To estimate the vector x(t)j for positioning at time t, a Bayesian technique can be used to find

the posterior probability distribution for x(t)j from available information. For the information about

the movement of vehicle j, vehicle j estimate its position denoted by q(t)
j only using the previous

position x(t−1)
j and its noisy measurement of the speed of driving. Subsequently, the mobility model for

vehicle j available to itself is characterized by a prior probability distribution denoted by p(x(t)j |q
(t)
j ).

Furthermore, the measurement model about the collection of parameters received from a surrounding
vehicle k denoted by w(t)

dkj ,θkj
is characterized by a likelihood function p(w(t)

dkj ,θkj
|x(t)j ). With those

probabilistic functions, the identification of the MAP estimate of xj, denoted by x̂j, is pursued. For the

MAP estimation, the marginal posterior p(x(t)|w(t)
dkj ,θkj

, q(t)
j ) is necessary and is represented as

p(x(t)j |w
(t)
dkj ,θkj

, q(t)
j ) =

p(w(t)
dkj ,θkj
|x(t)j )p(x(t)j |q

(t)
j )

p(w(t)
dkj ,θkj
|q(t)

j )
∝ p(w(t)

dkj ,θkj
|x(t)j )p(x(t)j |q

(t)
j ). (3)

Several reasonable assumptions can be made in identifying the positions of vehicles: All vehicles
move independently of each other and their movement are modeled in terms of Markov chains. In other
words, the knowledge about the mobility obtained internally by each vehicle is independent and is not
affected by other vehicles. Furthermore, the relative measurement results are also independent of each
other, while the relative measurement results are only affected by the current condition of the vehicle.

2.2. Mobility Model

With the knowledge of the mobility model p(x(t)j |q
(t)
j ), vehicle j predicts its position internally.

Let vj(t) = [v1j(t), v2j(t)] denote the estimated velocities of vehicle j along the x-axis and the y-axis of
the domain at time instant t. This can be modeled as a pair of random variables, since it is subject to
corrupted measurement incurred by sensory hardware imperfection, which is characterized by noise
variance σ̃2. The interval between consecutive time instants is denoted by ∆t. In addition, the mean
and variance of the mobility model p(x(t)j |q

(t)
j ) are given by an estimate vector q(t)

j and an accuracy

vector ϕ
q
j (t), which can be expressed, respectively, as

q(t)
j = x(t−1)

j + vj(t)∆t, (4)

ϕ
q
j (t) = [ϕ

q
1j(t), ϕ

q
2j(t)]. (5)

Note that each component of the accuracy vector [ϕq
1j, ϕ

q
2j] corresponds to the variation of the

velocity in the x-axis and the y-axis directions, respectively.

2.3. Measurement Model

Vehicles j uses measurement model p(w(t)
dkj ,θkj
|x(t)j ) to estimate the relative distance and the AoA

from neighboring vehicle k. The noisy measurement obtained by vehicle j about the distance to vehicle
k is expressed as w(t)

dkj
= d(t)kj + n(t)

dkj
. The distance measurement noise n(t)

dkj
being a zero-mean Gaussian

random variable with variance σ2
nd

. Likewise, the noisy AoA measurement is given by w(t)
θkj

= θ
(t)
kj + n(t)

θkj
.

The AoA measurement noise n(t)
dkj

is also a zero-mean Gaussian random variable with variance σ2
nθ

.

If vehicle j measures two parameters from vehicle k, likelihood function p(w(t)
dkj ,θkj
|x(t)j ) for vehicle j is

expressed as

p(w(t)
dkj ,θkj
|x(t)) = p(w(t)

dkj
|x(t)j , x(t)k )p(w(t)

θkj
|x(t)j , x(t)k ), (6)
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where p(w(t)
dkj
|x(t)j , x(t)k ) and p(w(t)

θkj
|x(t)j , x(t)k ) are given, respectively, by

p(w(t)
dkj
|x(t)j , x(t)k ) =

1√
2πσ2

nd

exp

−|w
(t)
dkj
− d(t)kj |

2

2σ2
nd

 , (7)

p(w(t)
θkj
|x(t)j , x(t)k ) =

1√
2πσ2

nθ

exp

−|w
(t)
θkj
− θ

(t)
kj |

2

2σ2
nθ

 . (8)

Note that these mobility and measurement distribution models enforce two different types of
constraint functions in deriving a message-passing algorithm in the following section.

3. Proposed Message-Passing Algorithm

To develop a distributed algorithm via a message-passing framework, a factor graph [21] is
introduced. The factor graph consists of function nodes and variable nodes. A function node is usually
represented in a square, while a variable node is denoted in a circle in the graph. Each variable node
is connected by an edge with its associated function node. In this problem, each variable node is
associated with the coordinates of a vehicle, and two types of function nodes are introduced to reflect
the internal mobility model and the measurement model. Since the measurement model is based on
the information between each pair of adjacent vehicles, the corresponding function node has two
connections to two variable nodes. On the other hand, a function node associated with mobility model
is connected to a single variable node since the mobility model involves only its internal state of
each vehicle. The messages are calculated using the sum-product rule [21] and are exchanged along
connected edges. The repeated exchanges of the messages continue until all messages converge to
respective fixed values.

The algorithm proceeds in three steps: First, a message which evidences the next position of
a vehicle goes from a mobility function node to the corresponding variable node. The second-step
message that contains the information about the relative distance and the AoA between each pair of
adjacent vehicles also goes from a measurement function node to a variable node. The last message
corresponding to the estimated current position of an individual vehicle goes back from the associated
variable node to all neighboring function nodes. A single iteration consists of three steps of the message
calculation. The iteration, indexed by l, of message transfers at a time instant is repeated until the
value of messages stop changing. To be specific, the messages of vehicle j corresponding to three steps
at a time instant are denoted by µ(x(t)j , t),

→
µ (x(t)j , l), and

←
µ (x(t)j , l), respectively. Among those values,

the last two message vectors are expressed as

→
µ (x(t)j , l) =

{→
µ h1

(x(t)j , l),
→
µ h2

(x(t)j , l), . . . ,
→
µ hn

(x(t)j , l)
}

, (9)
←
µ (x(t)j , l) =

{←
µ h1

(x(t)j , l),
←
µ h2

(x(t)j , l), . . . ,
←
µ hn

(x(t)j , l)
}

, h1, h2, . . . , hn ∈ N(j), (10)

where N(j) is a set of indices for neighboring vehicles that can communicate with vehicle j.
Consider the first-step message update rule defined with respect to the mobility model. Let

µ(x(t)j , t) be the message associated with internal mobility model for vehicle j at time t. According to

the sum-product update rule, message µ(x(t)j , t) is simply given by mobility probability distribution

p(x(t)j |q
(t)
j ). Since p(x(t)j |q

(t)
j ) is simply represented by mean and variance, µ(xj, t) can be characterized

with position vector q(t)
j and accuracy vector ϕ

q
j (t), which are given, respectively, as
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q(t)
j = x̂(t−1)

j + vj(t)∆t, (11)

ϕ
q
j (t) = [ϕ

q
1j(t), ϕ

q
2j(t)]. (12)

The second-step message update rule is associated with the measurement model which vehicle j
obtains the distance and the azimuth from neighboring vehicle k. Message

→
µ k(x(t)j , l) is calculated by

integrating the product of the measurement model function and the incoming message as

→
µ k(x(t)j , l) =

∫
p(w(t)

dkj ,θkj
|x(t)j , x(t)k )

←
µ k(x(t)k , l)dx(t)k . (13)

Note here that likelihood functions p(w(t)
dkj
|x(t)j , x(t)k ) and p(w(t)

θkj
|x(t)j , x(t)k ) are highly nonlinear

since d(t)kj and θ
(t)
kj are nonlinear functions of coordinates of vehicle as in (1) and (2). Thus,

the corresponding message can be evaluated only by numerical integration and is not simple to
handle in a real-time manner.

To resolve unwieldy handling of this message, we introduce a new parameterized measurement
model as shown in Figure 2, Figure 2a illustrates the confidence region of the measurement model
where vehicle j measures d(t)kj and θ

(t)
kj from neighboring vehicle k. Here, the challenge lies in that the

axes of elliptical shapes representing the confidence region are slanted with respect to the direction of
the movement of vehicle j. This significantly complicates to calculate the integration for the position of
the vehicle.

Figure 2. Measurement models: (a) original model (b) modified model.

To represent a new measurement model with respect to x(t)j and x(t)k , the elliptical areas in Figure 2a
are transformed into another elliptical shapes in Figure 2b, where horizontal and vertical axes are
aligned toward the moving direction of vehicle j. By applying for this model with Cauchy-Schwarz
inequality followed by some algebra, a new measurement model is characterized as a function of
a two-dimensional coordinate difference vector of vehicle j and k. The resulting measurement model
denoted by p(d(t)kj , θ

(t)
kj |x

(t)
j − x(t)k ) is given by

p(d(t)kj , θ
(t)
kj |x

(t)
j − x(t)k ) =

1√
2πϕw

kj(t)
exp

(
−

(w(t)
kj − x(t)j + x(t)k )2

2ϕw
kj(t)

)
, (14)
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with estimate vector w(t)
kj = [w(t)

1kj, w(t)
2kj] and accuracy vector ϕw

kj(t) = [ϕw
1kj(t), ϕw

2kj(t)] are given by

w(t)
1kj = −d(t)kj cos θ

(t)
kj (15)

w(t)
2kj = −d(t)kj sin θ

(t)
kj , (16)

and

ϕw
1kj(t) = σ2

dkj
cos2 θ

(t)
kj + (d(t)kj )

2σ2
θkj

sin2 θ
(t)
kj (17)

ϕw
2kj(t) = σ2

dkj
sin2 θ

(t)
kj + (d(t)kj )

2σ2
θkj

cos2 θ
(t)
kj , (18)

respectively. Figure 3 shows the factor graph representing the new measurement model corresponding
to the example of Figure 1. Now we can rewrite the message update equation as

→
µ k(x(t)j , l) =

∫
p(w(t)

dkj ,θkj
|x(t)j , x(t)k )

←
µ j(x(t)k , l)dx(t)k (19)

=
∫

p(d(t)kj , θ
(t)
kj |x

(t)
j − x(t)k )

←
µ j(x(t)k , l)dx(t)k . (20)

Note here that the message sent from the measurement function node to variable node x(t)j at

iteration l evaluates the convolution with respect to x(t)k instead of complex integral calculations with

the original measurement model described with d(t)kj and θ
(t)
kj . The estimate and accuracy vectors of the

resulting message are expressed as the sums of the estimate and accuracy vectors of two incoming
messages respectively. Thus, each component of of message

→
µ k(x(t)j , l) can be inferred in a probability

distribution given as

→
µ k(x(t)1j , l) ∝

1√
2πϕ∆

1kj(l)
exp

(
−

(x(l)1j − ∆(l)
1kj)

2

2ϕ∆
1kj(l)

)
, (21)

→
µ k(x(t)2j , l) ∝

1√
2πϕ∆

2kj(l)
exp

(
−

(x(l)2j − ∆(l)
2kj)

2

2ϕ∆
2kj(l)

)
, (22)

where components of estimate vector ∆
(l)
kj = [∆(l)

1kj, ∆(l)
2kj] and accuracy vector ϕ∆

kj(l) = [ϕ∆
1kj(l), ϕ∆

2kj(l)]
are simply given, respectively, by

∆(l)
1kj = x̂(l−1)

1k + w(t)
1kj (23)

∆(l)
2kj = x̂(l−1)

2k + w(t)
2kj, (24)

and

ϕ∆
1kj(l) = ϕx̂

1k(l − 1) + ϕw
1j(t) (25)

ϕ∆
2kj(l) = ϕx̂

2k(l − 1) + ϕw
2j(t). (26)

Since the message with component distributions in (21) and (22) can be fully described using estimate
vectors and accuracy vectors, it suffices to send them for the message transfer.
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Figure 3. Graphical model associated with example in Figure 1.

Finally, the message which a vehicle updates about its position and sends to a neighboring vehicle
is calculated. The message sent from the variable node is updated using the sum-product update rule
with all incoming messages from the measurement function nodes and a single message from the
mobility function node. The resulting message update rule accounts for multiplying those incoming
messages as

←
µ k(x(t)j , l) = µ(x(t)j , t) ∏

h∈N(j)\k

→
µ h(x(t)j , l), (27)

where N(j)\k is the set of neighboring vehicles that can send or receive the message from vehicle j
except vehicle k. Since all incoming messages are represented with position estimate and accuracy
vectors, the assumption of Gaussian shape distributions leads to their product being also of a Gaussian
shape. Therefore, estimate and accuracy vectors of the outgoing message

←
µ k(x(t)j , l) can also be

represented as the function of estimates and accuracy values of incoming messages. Each component
of the resulting message is described in a probability distribution given by

←
µ k(x(t)1j , l) ∝

1√
2πϕx̂

1j(l)
exp

(
−

(x(t)1j − x̂(l)1j )
2

2ϕx̂
1j(l)

)
(28)

←
µ k(x(t)2j , l) ∝

1√
2πϕx̂

2j(l)
exp

(
−

(x(t)2j − x̂(l)2j )
2

2ϕx̂
2j(l)

)
, (29)

where components of estimate vector x̂(l)j = [x̂(l)1j , x̂(l)2j ] and accuracy vector ϕx̂
j (l) = [ϕx̂

1j(l), ϕx̂
2j(l)] are

calculated, respectively, as

x̂(l)1j = ϕx̂
1j(l)

( q(t)1j

ϕ
q
1j(t)

+ ∑
h∈N(j)\k

∆(l)
1hj

ϕ∆
1hj(l)

)
(30)

x̂(l)2j = ϕx̂
2j(l)

( q(t)2j

ϕ
q
2j(t)

+ ∑
h∈N(j)\k

∆(l)
2hj

ϕ∆
2hj(l)

)
, (31)
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and

ϕx̂
1j(l) =

1
1

ϕ
q
1j(t)

+ ∑h∈N(j)\k
1

ϕ∆
1hj(l)

(32)

ϕx̂
2j(l) =

1
1

ϕ
q
2j(t)

+ ∑h∈N(j)\k
1

ϕ∆
2hj(l)

. (33)

If a vehicle estimates its position and sends the corresponding message to neighboring vehicles,
it calculates distinct forms of messages according to neighboring vehicles since the message update
rule in (27) does not include the message coming from the direction of the message going out.
However, as the network size scales up, the evaluation of all different messages incurs significant
number of computations. Furthermore, for transmission of those messages, a sophisticated scheduling
strategy that makes connections, transmits messages, and closes connections to respective neighbors
is necessary, and its associated communication loads readily become critical for real-time operation.
To resolve this scheduling challenge, identical messages are desired to send to all neighbors. If there
are a sufficiently number of vehicles in the network, outgoing messages make little difference for
all vehicles. Thus, the vehicles need to send a common message to surrounding vehicles to indicate
its position. This makes little impact on the accuracy of cooperative positioning and boils down
to a broadcast protocol for handling messages. Estimate vector x̂(l)j = [x̂(l)1j , x̂(l)2j ] and accuracy

vector ϕx
j (l) = [ϕx̂

1j(l), ϕx̂
2j(l)] of the probability distribution corresponding to a common message are

described, respectively, as

x̂(l)1j = ϕx̂
1j(l)

( q(t)1j

ϕ
q
1j(t)

+ ∑
h∈N(j)

∆(l)
1hj

ϕ∆
1hj(l)

)
(34)

x̂(l)2j = ϕx̂
2j(l)

( q(t)2j

ϕ
q
2j(t)

+ ∑
h∈N(j)

∆(l)
2hj

ϕ∆
2hj(l)

)
, (35)

and

ϕx̂
1j(l) =

1
1

ϕ
q
1j(t)

+ ∑h∈N(j)
1

ϕ∆
1hj(l)

(36)

ϕx̂
2j(l) =

1
1

ϕ
q
2j(t)

+ ∑h∈N(j)
1

ϕ∆
2hj(l)

. (37)

Note that, in fact, out of three-step message update rules, the first two update rules require only
the information internally acquired within a vehicle. The last update rule, however, evaluates the
messages that are externally exchanged with neighboring vehicles. It suffices for a vehicle to transmit
only the messages calculated using (34)–(37). Thus, each vehicle calculates its position once with the
common outgoing messages and broadcasts them to neighboring vehicles. By doing so, the total
number of message calculations decreases, thereby lifting the communication burden. In addition,
it has an advantage that vehicles can be learn simply all positions of surrounding vehicles.

In light of the structural discrepancy between the developed message-passing algorithm and its
physical deployment of distributive positioning, additional consideration is required about handling
of messages. The mm-wave technologies are used for conveying the messages computed by the
message-passing operation. The signal strengths of the mm-wave signals can be measured by
individual vehicles to acquire the estimates of the relative distances and AoAs of the neighboring
vehicles. In practical implementation, the steps illustrated in Figure 4a–c are repeated while vehicles
estimate their positions at time t via mm-wave technologies. In Figure 4a, vehicle j updates its new
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position estimate with the mobility model output. In Figure 4b, the signal strengths are measured
to estimate the relative distance and AoA of the neighboring vehicle k and the function-to-variable
messages in (23)–(26) are updated. Finally, in Figure 4c, vehicle j updates its position by collecting
messages calculated in Figure 4a,b and, in turn, broadcasts it to surrounding vehicles. For practical
deployment, the computation of messages in Figure 4a,b is carried out internally at each vehicle,
while the communication with surrounding vehicles occurs only in Figure 4c. Algorithm 1 provides
a summary of the proposed protocol for the distributed positioning algorithm.

Figure 4. Three steps of proposed algorithm at time t: (a) mobility prediction step (b) measurement
update step (c) message broadcast step.

Algorithm 1 Simplified MP algorithm

1: At time t = 0 Initialization
2: given x̂(0)j , x̂(0)k , ∀{j, k}, {j, k} ∈ N
3: for t = 1 to Tmax do {time index}
4: for nodes j ∈ N do in parallel
5: calculate the estimate and the accuracy of the message, µ(xj, t) in (11) and (12)
6: end for
7: for l = 1 to Lmax do {iteration index}
8: for j = 1 to N in parallel do
9: calculate the estimate and the accuracy of the message

→
µ (xj, l) in (23)–(26)

10: calculate the estimate and the accuracy of the message
←
µ (xj, l) in (34)–(37)

11: end for
12: broadcast the estimate and the accuracy of the message

←
µ (xj, l)

13: end for
14: end for

4. Performance Evaluation

In this section, we test the performance of the proposed MP algorithm (denoted by “SMP”)
and compare with several algorithmic options, such as a different type of the message-passing
algorithm [11] (denoted by “CSMP”), variational message-passing algorithm (denoted by “VMP”) [22],
and extended Kalman filter (denoted by “EKF”) [13]. These algorithms run essentially in a distributed
manner that requires similar levels of computational efforts and communication burdens, which
allows fair comparison in the performance test. known to have similar computational costs for fair
comparison.
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4.1. Cooperative Localization Algorithm

Simulation has been conducted under vehicular network scenarios described in 3GPP TR 37.885
specification to verify the performance and strategy of the proposed algorithm. A V2V environment of
3GPP is a highway with 5 lanes. The width of the lanes is 3.5 m, and the moving distance is 2000 m.
A single anchor is assumed to exist that can obtain its position with relatively improved accuracy with
peripheral devices. The mobility model of each vehicle has the average speed of [0 kph, 72 kph] with
variations ranging in [0.1 (kph)2, 1 (kph)2]. In the measurement model, the uncertainty with variation
of 1 m and 3◦ are incurred in d and θ respectively. Each vehicle measures its own speed every 100 ms
and broadcasts a message every 10 ms. All vehicles obtain their initial positions corrupted by additive
noises which cause vehicles to consider as if they are in a false lane. The simulation parameters are
summarized in Table 1.

Table 1. Simulation parameters.

Parameter Value

Network size X1 × X2 (m ×m) 17.5 × 2000
The number of vehicles N (anchor/agent) 10 (1/9)

Average speed of vehicles v(t) (kph) 72
variance of speed ϕv

1 , ϕv
2, (kph)2 0.1, 1

Std. of distance measurement error σd (m) ±1
Std. of AOA measurement error σθ (◦) ±3

Discrete time period ∆t (ms) 10
The number of Message iteration l ∆t/N
Initial position of N vehicles x(0) 0± 0.1

The number of samples M 104

Std. of hardware noise [σ̃1, σ̃2] (m) 0, 0.1, 0.2, 0.3, 0.4, 0.5

A simulation platform that shows the performance of the proposed algorithm in real-time
simulation has been developed as shown in Figure 5. The simulator consists of three domains:
the visualization domain, the configuration domain, and the evaluation domain. The trajectory of
vehicle positions is shown in the visualization domain. An anchor vehicle marked with ‘∗’ exists in
the third lane. The configuration domain adjusts simulation environment parameters including the
number of vehicles, the noise variance of d and θ, the starting position of vehicles, the speed of the
vehicle and the number of iterations. The evaluation domain shows the real-time measurement of the
maximum, minimum and average localization errors. Those errors are represented in two types of
absolute and relative errors. The absolute error corresponds to the difference between the actual vehicle
position and the estimated vehicle position, while the relative error indicates the error value associated
with the relative distance between neighboring vehicles in the network. The absolute and relative error
values of the vehicular network with agent vehicles and an anchor vehicle are plotted, respectively.

Figure 6 shows the performances of the proposed algorithm in comparison with several
distributed algorithms in cases whether an anchor does or does not exist. The performance is presented
with the cumulative distribution function (CDF) of the localization error with respect to observation
parameters. SMP has superior performance over existing algorithms. CSMP has the degraded
performance but outperforms other algorithms. In addition, VMP performs similarly but slightly
worse than CSMP, while EKF shows additional performance degradation. If an anchor vehicle exists,
the SMP shows improved performance with average error of 0.31 m, while CSMP, VMP and EKF
have average errors of 1.64 m, 1.73 m and 5.16, respectively. Therefore, if at least one anchor exists
in the network, even if the proposed algorithm has some level of the uncertainty in AoA, it can
greatly improve the cooperative localization performance. On the other hand, in case where anchor
vehicle lacks, the performance of SMP depends on the quality of the AoA. If the deviation of the AoA
measurement is within 1◦, SMP still has performance improvement over existing techniques. However,
if the uncertainty in AoA measurement amounts up to 3◦, SMP may be subject to a large absolute
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error. In case of the localization error value of 5 m, the deviation in the AoA measurement of 5◦ causes
the inversion of the localization error with respect to the unavailable AoA information measurement
case. Since the distance between vehicles can be considered to be proportional to the localization error,
the positioning error value can be regarded as the distance between vehicles. The farther vehicles
are apart, the larger deviation on the information of the angles is received. Therefore, inaccurate
information of θ can increase the localization error, thereby impairing the localization performance.
To analyze the noise limit on the distance and AoA in the model based on 3GPP TR 37.885 specification,
a limit of the standard deviation of the AoA is obtained from the Crammer-Rao Lower Bound with
respect to the signal-to-noise ratio (SNR). The theoretical bound of the angle is 0.46◦ which is strictly
smaller than 1◦. According to this result, it is expected that SMP has relatively good performance with
the error incurred in AoA available from reasonably practical measurement equipment.
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Figure 7 represents absolute and relative errors of the proposed algorithm with respect to the
driving distance of vehicles. The total driving distance is 2000 m, and 10 vehicles exchange messages
with each other. If no anchor exists, the absolute average error value continues to increase. Since
a vehicle which has relatively high accuracy information of position lacks, the uncertainty of the
positions continuously propagates over the network for their inaccurate operations while running
along the road. On the other hand, if there is at least one anchor, the absolute error value is kept
below 40 cm all the way to the driving distance of 2000 m. As a result, if only a small number of
anchor vehicles is available, even a single one, the absolute positioning error of the entire network is
greatly improved since messages that convey relatively accurate information helps locating all vehicles
correctly. Meanwhile, the relative error maintains low regardless of the presence of the anchor vehicle.
This indicates that the error is only affected by the measurement quality of observation parameters
d and θ. Since the AoA information is available from other vehicles, the relative error value is kept
as low as 20 cm on average. This means that all vehicles are affected by the same level of the bias in
positioning. Therefore, there rarely happens a chance of dangerous situations caused by the collision
among vehicles.
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Figure 7. Error of SMP: with and without an anchor.

Table 2 shows trends of the absolute error with respect to the number of vehicles and the distance
from an anchor vehicle to the group of agent vehicles. The total absolute error of the vehicular network
increases as the distance increases, or as the number of vehicles in the network decrease. The minimum
absolute error becomes down to 10 cm if a single anchor vehicle is close to 30 vehicles. On the
other hand, the maximum error amount to 2.82 m if an anchor vehicle is apart from 5 agent vehicles.
According to these observations, if the network size is large, accurate positioning is possible even if
the anchor vehicle is relatively distant. By contrast, if the number of vehicles is small, an anchor is
necessarily located nearby to maintain certain levels of the localization error. Therefore, this provides
the information about the density of the anchor vehicle in the network required to guarantee the low
level of the positioning error. For example, if the absolute positioning error value of the network
should be kept within 1 m, there must be at least one anchor within a radius of 50 m for 5 vehicles,
150 m for 20 vehicles, 300 m for 30 vehicles in the network, and so on.
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Table 2. Absolute error trends depending on the number of vehicles and the radius of an anchor.

Number of Vehicles N 5 10 20 30

0 m 0.42 m 0.31 m 0.23 m 0.18 m
50 m 1.04 m 0.84 m 0.59 m 0.50 m

100 m 1.47 m 1.27 m 0.93 m 0.67 m
150 m 1.94 m 1.67 m 1.05 m 0.79 m
200 m 2.39 m 1.83 m 1.21 m 0.87 m
250 m 2.55 m 1.94 m 1.35 m 0.95 m
300 m 2.82 m 2.04 m 1.43 m 1.09 m

Figure 8 illustrates additional cooperative localization results on a practical urban model with
80× 60 m2 rectangular region as in Reference [11]. In the model, there are a single anchor vehicle
represented in a cross and six agent vehicles denoted in circles. Vehicles travel in low speed to reach
their respective random destinations in parking spaces. The communication range is set to about
50 m. The leftmost anchor vehicle can access the position information of relatively improved quality.
For clarity, estimated trajectories for two of seven vehicles are illustrated along with true trajectories.
The estimated results look close to the truth with absolute error 0.74 m at worst in scenarios of such
non-highway environments as well, which validates the developed SMP algorithm.
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Figure 8. Trajectory of vehicles in an urban model.

4.2. V2V Network Strategy with Corrupted Mobility Model

The uncertainty of the initial position of vehicles is already considered along with the
communication strategy when measuring the relative distance and azimuth angle between vehicles.
For practical deployment, the uncertainty caused by hardware imperfection is now addressed. This
is referred to as a noisy mobility model. The uncertainty of measuring mobility measurement is
a zero-mean Gaussian noise incurred in the existing mobility model in (11) and (12). Let σ̃ denote the
standard deviation of the added noise. If a vehicle is in motion, there is some discrepancy between the
actual speed of the vehicle and the speed displayed on the dashboard [23]. The uncertainty of the speed
can be quantified with respect to the vehicular motion. Figure 9 shows the average absolute errors
with respect to the number of message-passing iterations if σ̃ ranges from 0 m to 0.5 m. The simulation
results indicate that cooperative positioning is essential if σ̃ is 0.2 m or greater, in that the localization
error converges to the value strictly less than the initial value. If the σ̃ ranges below than 0.2 m,
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that is, the accuracy of the sensor is sufficiently high, cooperative positioning can be unnecessary,
and the vehicles may prefer to estimate their positions based on their own mobility models. This
indicates that in-vehicle networks of inexpensive hardware devices require cooperative positioning
with surrounding vehicles.
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Figure 9. Average errors of 10 vehicles with respect to σ̃.

We can also envision how much the positioning performance degrades in an unfavorable
communication environment from Figure 9. The failure to the detection of message-conveying signals
causes the loss of the message information along with the lack of the measurement information, thereby
preventing from proceeding with another iteration of message-passing operations. In particular,
in case of employing 10 iterations of message-passing operations, 20% packet loss, corresponding to
8 iterations, degrades the performance only by 2%. This shows that such an extreme packet loss results
in negligible damages to the performance. Thus, this proves the robustness of the proposed algorithm
in communication environments with typical qualities.

5. Conclusions

This paper proposes a message-passing algorithm that enables real-time distributed positioning
in cooperation with surrounding vehicles if mm-wave communication is available. The proposed
algorithm increases the possibility of the real-time communication by parameterizing complex
messages into parameter pairs of estimate and accuracy. The broadcast strategy that allows for
non-directional messages is employed so that the computational costs for radio resource allocation
and scheduling tasks are relieved. According to the simulation results that have been analyzed with
real-time errors, the performance of the proposed algorithm can be improved over existing distributed
positioning algorithms.

In extensive numerical simulations under the highway environment provided from 3GPP TR
37.885 specification, the average absolute error below 40 cm and relative error below 20 cm are achieved,
respectively. For various vehicular environments, the network size and the number of anchor vehicles
are identified to maintain a certain level of the localization error. In addition, a proper condition that
enables cooperative positioning is suggested under the uncertainty of vehicles’ mobility measurement.
The analysis of the measurement equipment uncertainty indicates that cooperative positioning is
essential if the standard deviation of the noise is greater than 0.2 m, whereas, if relatively accurate
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speed estimation is available, cooperative positioning may not be necessary. The proposed framework
offers several future research directions for the deployment in a measurement model for urban area
scenarios, such as in 3GPP TR 37.885 specification, with only non-line-of-sight (NLOS) measurement
available and the experiments with actual mm-wave based radio technology.
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