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Abstract: Magnetization reversal in a Wiegand wire induces a pulse voltage in the pickup coil around
the wire, called the Wiegand pulse. The Wiegand sensor features the Wiegand wire and the pickup coil.
The amplitude and width of the Wiegand pulse are independent of the frequency of the magnetic-field
change. The pulse is generated by the Wiegand sensor, which facilitates the use of the Wiegand
sensor as a power supply for equipment without batteries. In order to meet the power consumption
requirements, it is necessary to maximize the energy of the pulse signal from the Wiegand sensor,
without changing the external field conditions. The distributions of the magnetic field generated
from the applied magnet in air and in the Wiegand wire were simulated before the experiments.
Simulation predicted an increase in the magnetic flux density through the center of the Wiegand
wire. This study determined that the magnetic flux density through the center of the Wiegand wire,
the position of the pickup coil, and the angle between the Wiegand sensor and the magnetic induction
line were the main factors that affected the energy of a Wiegand pulse. The relationship between
these factors and the energy of the Wiegand pulse were obtained.

Keywords: Wiegand sensor; large Barkhausen jump; Wiegand pulse; magnetization reversal;
Wiegand wire

1. Introduction

Recently, the extensive application of wireless monitoring nodes has promoted the effective
development and application of the Internet of Things (IoT) [1]. The application fields of the IoT
includes industry, agriculture, transportation, medicine, education, and finance [2]. Although wireless
nodes use a low-power design, the batteries in the wireless monitoring nodes must be replaced
periodically due to their limited battery life. This problem can be solved effectively by using
self-generating sensors as power supplies in wireless nodes.

The self-generation of electricity is also called energy harvesting. Sensors collect tiny amounts
of energy from their surroundings and they use this as their power source. Presently, the commonly
used sensors that are capable of spontaneous electricity generation are the Hall sensor, MR sensor,
electromagnetic sensor, and the Wiegand sensor based on the Barkhausen effect [3]. Because the
Wiegand sensor does not require an external power supply, it can output sharp and perfect voltage
pulses by changing only the polarity of the applied external magnetic field. Moreover, the width
of the pulse does not depend on the ratio of the change of the applied external magnetic field [4-6].
This feature makes the Wiegand sensor widely popular.

The motivation for this work is that the energy of the pulse signal from the Wiegand sensor can
meet the power supply requirements of the wireless nodes, thereby eliminating the need for battery
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operation. The advantage of using the Wiegand pulse for energy harvesting is that the electrical power
is generated by the movement or vibration of a magnet with an extremely slow speed, almost zero [3],
which may not be achieved by other vibration-type energy harvesters. A single Wiegand pulse
generates an electrical power of 600 nJ [3]. This study attempted to set the ferrite beads for both ends
of the Wiegand wire, change the position of the pickup coil around the Wiegand wire, and adjust
the direction of the Wiegand sensor in the magnetic field. The magnetic flux through the center
of the Wiegand wire increased after the ferrite beads were set at both ends of the Wiegand wire.
The simulation results predicted an increase in the magnetic flux density, and it could be estimated
that the energy of the Wiegand pulse increased in a corresponding manner. When the pickup coil was
closer to the center of the Wiegand wire, the angle between the Wiegand sensor and the magnetic
induction line was smaller, and the energy of the Wiegand pulse was larger. Thus, the factors that had
a great influence on the energy of the Wiegand pulse were successfully determined. An appropriate
configuration was chosen to maximize the energy of the Wiegand pulse without changing the external
field conditions.

2. Wiegand Sensor

2.1. Wiegand Effect

The Wiegand effect was initially observed in magnetic wires of NiFe alloys. In addition,
the Wiegand effect was also observed in the magnetic bistable FeSiB amorphous wires. But vicalloy,
with a typical composition of Fey 4Cog 5V 1, has been known as the optimum material that yields this
effect [3]. The diameter of the wire is typically 0.25 mm. Torsion stress, annealing, and cold-treatment
were applied to the wire in the fabrication. The strength, twisting and anti-twisting abilities of the
Wiegand wire are improved by performing a cold-treatment process. The wire exhibited different
magnetic properties near the surface regions and around their center after twisting. This results in
a "soft layer" with a soft magnetic appearance and low coercivity of approximately poH =1 mT. This also
resulted in a hard center, known as the "hard core", with a larger coercive force of approximately from
noH =1 to 8 mT [7-12]. The magnetic properties of the twisted FeCoV wires depend on the conditions
of the annealing and torsion stress, which have been previously reported [6]. The volume ratio of the
soft layer exhibiting the fast magnetization reversal is calculated to be 23% at a maximum, and the
thickness of the soft layer is approximately 0.03 mm, which has been previously reported in detail [3].
The Wiegand sensor consists of two parts: the Wiegand wire, which is the sensitive element of the
sensor, and the pickup coil around the Wiegand wire. The structure of the Wiegand wire and the
sensor are shown in Figure 1.
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Figure 1. Structure of the Wiegand wire and sensor.

When no external magnetic field is applied, the hard and soft layers are parallel [13], as shown
in Figure 2a. When opposite magnetic fields with the appropriate strengths are applied to the
Wiegand wire, the soft layer with the low coercivity will first flip [14-16], as demonstrated in Figure 2b.
This magnetization reversal of the soft layer is accompanied by a large Barkhausen jump, which is also
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known as the Wiegand effect [9-11]. A magnetization reversal of the soft layer from the antiparallel to
the parallel process, against the hard core was observed by applying an asymmetric field, which has
been previously reported [3]. As the reverse magnetic field continues to increase, the hard layer with
the higher coercivity also reverses subsequently. When the polarity of the external magnetic field
changes again, the soft layer becomes reversed, followed by the hard layer in a cyclic process [17,18].
The major loop of the FeCoV wire that is 0.25 mm in diameter and 25 mm in length was measured before
the measured minor loop. The saturation magnetization of the sample was Mg = 1.78 T. The major
loop and minor loop were measured using a vibration sample magnetometer. Figure 2c illustrates the
magnetization curve (minor loop) of the whole wire and a schematic of the magnetization process of
the Wiegand wire (FeCoV wire) used in this study. It can be seen from Figure 2c that the magnetization
reversal is gradual in the hysteresis loop (magnetization curve) measured with an applied static
magnetic field up to ypH = 6 mT. A steep change in the magnetization is observed at around poH
=1 mT, where the magnetization of the soft later is reversed. The magnetization of the hard core is
gradually reversed from 1 to 6 mT. The hard core is magnetized completely until the wire reaches the
saturation state, which occurs when the applied alternating magnetic field pyH is greater than 15 mT.

(a) Parallel state (b) Antiparallel state

Soft layer Magnetization Wiegand wire

Hard core—»;):\/w 10.25 mmI |
C
( ) 0.6 o T ® T L ¥ T of T »
_—
—
0.4 o 6mT I B
- |
0.2+ e, completely 1
Magnetization -

Magnetization
-0.29 completely

Magentization [M/M_])
o
o

<— |Alarge Barkhausen jump
~——/ (Wiegand|effect)

12 8 4 0 4 8 12
Magnetic filed p,H [mT]

Figure 2. Magnetization states and magnetization curves of the Wiegand wire: (a) parallel state;
(b) antiparallel state and (c) magnetization curve (minor loop) of the whole wire.

2.2. Wiegand Pulse and Its Energy

During the magnetization reversal of the soft layer in the FeCoV wire, a voltage pulse that is
several volts wide and has a duration of 10 ps was detected in the pickup coil [19,20]. This is depicted
in Figure 3, which is called the Wiegand pulse. The pickup coil is 5 mm long and it has 3 000 turns.
The external excitation magnetic field is generated by a magnet (NdFeB) with a diameter of 4 mm and
a length of 6 mm. The magnetization direction of the magnet used in this study is along the axis.
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Figure 3. Pulse signal waveform from the Wiegand sensor.

The energy of the signal can be expressed as:

—+o0o
E—= ﬁ V() ds )

In this study, the energy of the Wiegand pulse is calculated based on the discrete data points
determined by the oscilloscope. It can be seen from Equation (1) that the energy of the Wiegand pulse
is equal to the sum of the product of the squares of the magnitudes for all discrete points and the time
axis. In other words, the energy of the Wiegand pulse is proportional to the area of the shaded part in
Figure 3. Because the width of the Wiegand pulse does not depend on the intensity of the applied
magnetic field and the frequency of the magnetic-field change, the larger the voltage, the larger the
pulse area and the energy of the Wiegand pulse.

3. Methods

A Wiegand wire of length 11 mm and a diameter of 0.25 mm, supplied from SWEFE, Co. Ltd.,
Meishan, China, was used in this work. When the Wiegand wire is placed in an alternating magnetic
field, the pickup coil repeatedly outputs the alternating Wiegand pulses. Typically, the rotation of
a pair of magnets or a single magnet is used to apply an alternating magnetic field to the wire. In this
study, a pair of magnets was used. All of the waveforms of the pulse voltage were measured as an open
circuit voltage across the pickup coil of the Wiegand sensor.

3.1. Enhance the Magnetic Flux

Air’s ability to collect the magnetic flux is weak since the magnetic path diverges in air. In contrast,
ferrite material is more capable of collecting the magnetic flux in comparison to air. Therefore, in the
experiments to enhance the magnetic flux at the center of the Wiegand wire, a ferrite bead was set
at both ends of the Wiegand wire as presented in Figure 4. Figure 4a shows a model without ferrite
beads, which is referred to as the “Without beads” model. Figure 4b shows the model with ferrite
beads, which is referred to as the “With beads” model. The inner and outer diameters of the ferrite
beads (TDK, Co. Ltd., Japan, HF57BB3.5X3X1.3) used in the study were 1.3 and 3.5 mm, respectively,
the length was 3 mm, and their main metallic elements were Ni, Zn, and Fe.
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Figure 4. Experimental models: (a) “Without beads” model and (b) “With beads” model.

To study the effects of the magnetic flux density through the center of the Wiegand wire with
respect to the energy of the Wiegand pulse, the applied external magnetic-field intensity was set
between 4 and 8 mT for both models. Meanwhile, to prove that the ferrite material was more capable
of collecting the magnetic flux density, than air, the two models used the same pickup coil and the same
external magnetic field. The experimental results of the two models were compared for each additional
1 mT. The pickup coil was wound 200 turns around the Wiegand wire and its length was 5 mm.

3.2. Change the Position of the Pickup Coil

To analyze the relationship between the position of the pickup coil and the energy of the Wiegand
pulse, a 1 mm long pickup coil was wound 50 times around the Wiegand wire, and an external magnetic
field with an intensity of 4 mT was applied. In the initial state, the pickup coil was located at the
center of the Wiegand wire and it was moved by a 1 mm step to the right for both models. The pulse
waveforms induced by the pickup coil at different positions were measured for the different models.
The schematic for the position measurement is shown in Figure 5.

Ferrite bead Ferrite bead
(With or Without) (With or Without)

1

Wiegand W|re 11 mm

\ 4

4
Distance [mm)]
Figure 5. Schematic for position measurement.
3.3. Adjust the Angle of the Sensor in the Magnetic Field

In order to obtain the relationship between the angle of the Wiegand sensor and the magnetic
induction line, as well as the energy of the Wiegand pulse, the waveforms of the Wiegand pulse were
detected by the pickup coil. These were measured under the rising and falling triggering modes of the
oscilloscope. The angles (between the Wiegand sensor and the magnetic induction line) were 0°(360°),
30°(330°), 45°(315°), 60°(300°), 90°(270°), 120°(240°), 135°(225°), 150°(210°), and 180°, for both models
(“With beads” and “Without beads”). The angle (theta) diagram of the Wiegand sensor in the magnetic
field is illustrated in Figure 6. The waveforms were then analyzed and compared. The pickup coil
was wound 500 times around the Wiegand wire, and its length was 5 mm. The distance between the
magnet surface and the center of the pickup coil was 5 mm.
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Figure 6. Angle (theta) diagram of the Wiegand sensor in the magnetic field: (a) parallel or antiparallel
states, (b) vertical state, and (c) other states.

3.4. Simulate the Distribution of the Magnetic Field

Before the experiments, the magnetic flux density through the center of the Wiegand wire
was simulated by the finite element analysis using ANSYS Maxwell® (ANSYS, Inc., USA). In the
simulation, the 3D models of the magnet, the Wiegand wire, the ferrite beads and the air field were
defined. The distance from the surface of the magnet to the center of the Wiegand wire was 5 mm.
The dimensions of the magnet, the Wiegand wire and the ferrite beads were designed according to
the samples used in the experiments, and the air field was designed as a cylinder with a radius of
15 mm and a height of 20 mm. The maximum length of elements of the Wiegand wire, the ferrite beads,
the magnet and the air field were set to 0.3, 0.3, 0.5 and 1 mm in the mesh operations, respectively.
The corresponding materials were determined according to the samples, as follows: “NdFe35” was
chosen for the magnet from the material database of the software, and default parameters were used.
A material named FeCoV was defined for the Wiegand wire. Its relative permeability and saturation
magnetic flux density were 20 and 1.8 T, respectively, which were provided by the supplier (SWFE,
Co. Ltd., Meishan, China). The “ferrite” material in the material database was selected for the ferrite
beads, and the parameters were modified according to the sample datasheet of the supplier (TDK, Co.
Ltd., Japan). The simulation results in Figure 7a show the magnetic field distribution at a distance of
5 mm from the surface of the magnet that was used in this study. The simulation results in Figure 7b
show the magnetic flux density through the center of the Wiegand wire in the “With beads” model
and “Without beads” model. The results of Figure 7b verified the judgment that the magnetic flux
density through the center of the Wiegand wire was increased by setting a ferrite bead at both ends of
the Wiegand wire. This was achieved without changing the intensity of the external magnetic field.
This demonstrates the feasibility and effectiveness of the experimental method used in this study.
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Figure 7. Simulation results of the magnetic flux density in the air and the Wiegand wire: (a) in the air
and (b) in the Wiegand wire.

4. Results and Discussion

4.1. Relationship between Magnetic Flux and Energy

It can be observed from Figure 8 that the amplitude and the area of the Wiegand pulse from
the Wiegand sensor increases with an increase in the applied magnetic field. This is irrespective
of whether or not the ferrite beads are installed at both ends of the Wiegand wire. The reason for
this result is that the volume of the reversed soft layer increases against the hard core based on the
increase in the external excitation magnetic field. When all of the soft layer and the hard core are
antiparallel, the amplitude and the area of the pulse will reach a maximum. This will also not increase
with an increase in the external magnetic field. In summary, the increase in the amplitude and the area
of the pulse is attributed to the increase in the volume of the reversed soft layer against the hard core.

(a) Output voltage (b) Pulse area
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Figure 8. Comparison of the experimental results of the amplitude and the area of the Wiegand pulse
with or without ferrite beads, displaying: (a) output voltage and (b) pulse area. (The meanings of
amplitude and area of the pulse are described in Figure 3).

However, the amplitude and area of the Wiegand pulse are larger when using ferrite beads than
that without ferrite beads. This suggests that the ferrite beads at both ends of the wire are capable of
increasing magnetic flux density through the center of the Wiegand wire. Therefore, the volume of the
magnetically reversed soft layer is increased, and the amplitude and area of the pulse increase.

Thus, the experimental results show that the addition of ferrite beads at both ends of the Wiegand
wire, without changing the external magnetic field, increases the volume of the reversed soft layer
against that of the hard core. The amplitude and area of the Wiegand pulse increase, improving the
energy of the Wiegand pulse.
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4.2. Relationship between the Position of the Pickup Coil and Energy

As shown in Figure 9, as the distance between the pickup coil and the Wiegand wire center
increases, the amplitude and the area of the Wiegand pulse decrease. In other words, the energy
of the Wiegand pulse decreases. To analyze the causes of this phenomenon, the magnetic field
distributions were simulated at a distance of 5 mm from the surface of the magnet applied in the study,
as demonstrated in Figure 7a.

(a) Output voltage (b) Pulse area
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Figure 9. Experimental results of the relationship between the amplitude and area of the Wiegand
pulse and the position of the pickup coil, displaying: (a) output voltage and (b) pulse area.

It can be seen from Figure 7a that the magnetic field is strong in the middle and weak at both
ends. This makes the volume of the reversed soft layer against the hard core larger at the center of the
Wiegand wire and smaller at both ends. Therefore, the amplitude and the area of the pulse detected
by the pickup coil is the largest at the center of the Wiegand wire. This shows a decreasing trend
towards both ends. When the pickup coil is at the center of the Wiegand wire, the detected energy of
the Wiegand pulse is at its maximum.

It can also be demonstrated from Figure 9 that, irrespective of where the pickup coil is placed
around the Wiegand wire, the amplitude and the area of the pulse output are larger when using the
ferrite beads. This further verifies that the setting of the ferrite beads at both ends of the Wiegand wire
can improve the volume of the reversed soft layer against the hard core; thus, improving the energy of
the Wiegand pulse.

4.3. Relationship between the Angle and Energy

Figure 10 displays the positive and negative peak-to-peak voltages of the Wiegand sensor, from 0°
to 360° for both the “With beads” and “Without beads” models. The abscissa in Figure 10 represents
the angle between the Wiegand sensor and the magnetic induction line. The ordinate represents the
peak-to-peak voltages of the Wiegand pulse for the corresponding angle.

As demonstrated from Figure 10, at the angles of 0°, 180°, or 360° between the Wiegand sensor
and the magnetic induction line (in the parallel or antiparallel states), the peak-to-peak value of the
Wiegand pulse is at its maximum. In other words, the output energy is at its maximum. On the contrary,
when the angle becomes 90° or 270° (in a vertical state), the peak-to-peak value of the Wiegand pulse is
at a minimum; thus, the energy output is at its minimum.

In other words, the magnetic induction lines that are parallel or antiparallel can excite the Wiegand
sensor successfully, whereas those in the vertical state cannot achieve this. The Wiegand sensor and the
magnetic induction line are not in a parallel or antiparallel state and they are inclined at a certain angle.
As a result, the magnetic induction lines that excite the Wiegand sensor to output the Wiegand pulses
are the parallel or antiparallel components of the magnetic induction lines, which have a particular
angle to the Wiegand sensor.
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Figure 10. Experimental results of the relationship between the angle of the Wiegand sensor in the
applied magnetic field and peak-to-peak voltage of the Wiegand pulse from the Wiegand sensor.

Furthermore, the intensity of the effective magnetic field applied to the Wiegand wire is reduced.
That is, the magnetic field, which reverses the soft layer, is reduced, and the volume of the reversed
soft layer becomes reduced. As a result, the peak-to-peak voltage of the Wiegand pulse is decreased.
However, when the direction of the applied magnetic field is parallel or antiparallel to the Wiegand
wire, the peak-to-peak voltage of the Wiegand pulse reaches its maximum. The experimental results
shown in Figure 9 support this analysis. Simultaneously, both the positive and negative peak-to-peak
voltages of the Wiegand sensor in the “With beads” model are larger than those in the “Without beads”
model. Therefore, setting the ferrite beads is advantageous for the practical applications of the Wiegand
sensor for the power supply.

5. Conclusions

In this study, the energy of the Wiegand pulse was described. Through a large number of
experiments, the factors affecting the energy of the Wiegand pulse were determined, and their
relationship with the energy of the Wiegand pulse was successfully stated. The essential relationship
between these factors and the energy of the Wiegand pulse was determined to have an effect on the
volume of the reversed soft layer against the hard core. For the same Wiegand wire, the same pickup
coil, and the same external excitation conditions, a larger volume of the reversed soft layer against the
hard core could produce a Wiegand pulse with more energy.

When using the Wiegand sensor in practical applications, ferrite beads should be set at both ends
of the Wiegand wire, to increase the magnetic flux density. The pickup coil on the Wiegand wire should
be distributed evenly on both sides with the center as the origin. In addition, when the Wiegand sensor
is used as a power supply, it should be ensured that the magnetic induction line and the Wiegand
sensor are parallel or antiparallel, to obtain the maximum energy.

Author Contributions: Conceptualization, Y.T.; methodology, T.Y. and Z.S.; investigation, C.Y.; software, T.S.;
writing—original draft preparation, C.Y.; writing—review and editing, Y.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the JSPS KAKENHI, grant number 19K21965.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jan, B;; Farman, H.; Khan, M.; Talha, M.; Din, I.U. Designing a smart transportation system: An Internet of
things and big data approach. IEEE Wirel. Commun. 2019, 26, 73-79. [CrossRef]


http://dx.doi.org/10.1109/MWC.2019.1800512

Sensors 2020, 20, 1408 10 of 10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bazzani, M.; Conzon, D.; Scalera, A.; Spirito, M.; Trainito, C. Enabling the IoT paradigm in e-health solutions
through the VIRTUS middleware. In Proceedings of the IEEE 11th International Conference on Trust Security
and Privacy in Computing and Communications, Liverpool, UK, 25-27 June 2012; pp. 1954-1959.
Takemura, Y.; Fujiyama, N.; Takebuchi, A.; Yamada, T. Battery-less hall sensor operated by energy harvesting
from a single Wiegand pulse. IEEE Trans. Magn. 2017, 53, 4002706. [CrossRef]

Wiegand, J.R.; Velinsky, M. Bistable Magnetic Device. U.S. Patent 3,820,090, 25 June 1974.

Wiegand, J.R. Switchable Magnetic Device. U.S. Patent 4,247,601, 27 January 1981.

Abe, S.; Matsushita, A.; Naoe, M. Annealing and torsion stress effect on magnetic anisotropy and
magnetostriction of Vicalloy fine wire. IEEE Trans. Magn. 1997, 33, 3916-3918. [CrossRef]

Takahashi, K.; Takebuchi, A.; Yamada, T.; Takemura, Y. Power supply for medical implants by Wiegand
pulse generated from a magnetic wire. . Magn. Soc. Jpn. 2018, 42, 49-54. [CrossRef]

Takemura, Y.; Aoki, T.; Tanaka, H.; Yamada, T.; Abe, S.; Kohno, S.; Nakamura, H. Control of demagnetizing
field and magneto static coupling in FeCoV wires for zero-speed sensor. IEEE Trans. Magn. 2006, 42,
3300-3302. [CrossRef]

Takahashi, K.; Yamada, T.; Takemura, Y. Circuit parameters of a receiver coil using a Wiegand sensor for
wireless power transmission. Sensors 2019, 19, 2710. [CrossRef]

Serizawa, R.; Yamada, T.; Masuda, S.; Abe, S.; Kohno, S.; Kaneko, F; Takemura, Y. Energy harvesting
derived from magnetization reversal in FeCoV wire. In Proceedings of the IEEE Sensors, Taipei, Taiwan,
28-31 October 2012.

Sun, X.; Yamada, T.; Takemura, Y. Output characteristics and circuit modeling of Wiegand sensor. Sensors
2019, 19, 2991. [CrossRef]

Malmhall, R.; Mohri, K.; Humphrey, EB.; Manabe, T.; Kawamura, H.; Yamasaki, J.; Ogasawara, I. Bistable
magnetization reversal in 50 pm diameter annealed cold drawn amorphous wires. IEEE Trans. Magn. 1987,
23, 3242-3244. [CrossRef]

Takebuchi, A.; Kameda, N.; Yamada, T.; Takemura, Y. Vibration-type energy harvesting element using a large
Barkhausen jump in magnetic wires. In Proceedings of the Joint MMM-Intermag Conference, San Diego, CA,
USA, 11-15 January 2016; p. 445.

Tanaka, H.; Yamada, T.; Takemura, Y.; Abe, S.; Kohno, S.; Nakamura, H. Constant velocity of domain wall
propagation independent of applied field strength in vicalloy wire. IEEE Trans. Magn. 2007, 43, 2397-2399.
[CrossRef]

Saggini, S.; Ongaro, F; Corradini, L.; Affanni, A. Low-power energy harvesting solutions for Wiegand
transducers. IEEE |. Emerg. Sel. Topics Power Electron. 2015, 3, 766-779. [CrossRef]

Takebuchi, A.; Yamada, T.; Takemura, Y. Reduction of vibration amplitude in vibration-type electricity
generator using magnetic wire. J. Magn. Soc. Jpn. 2017, 41, 34-40. [CrossRef]

Chang, C.-C.; Chang, J.-Y. Novel Wiegand effect-based energy harvesting device for linear positioning
measurement system. In Proceedings of the Asia-Pacific Magnetic Recording Conference (APMRC), Shanghai,
China, 15-17 November 2018.

Kohara, T.; Yamada, T.; Abe, S.; Kohno, S.; Kaneko, F,; Takemura, Y. Effective excitation by single magnet in
rotation sensor and domain wall displacement of FeCoV wire. . Appl. Phys. 2011, 109, 07E531. [CrossRef]
Moure, A.; Izquierdo Rodriguez, M.A.; Hernandez Rueda, S.,; Gonzalo, A.; Rubio-Marcos, F;
Urquiza Cuadros, D.; Pérez-Lepe, A.; Fernandez, ].F. Feasible integration in asphalt of piezoelectric cymbals
for vibration energy harvesting. Energy Convers. Manag. 2016, 112, 246-253. [CrossRef]

Ostasevicius, V.; Markevicius, V.; Jurenas, V.; Zilys, M.; Cepenas, M.; Kizauskiene, L.; Kizauskiene, L.
Cutting tool vibration energy harvesting for wireless sensors applications. Sens. Actuators A Phys. 2015, 233,
310-318. [CrossRef]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TMAG.2017.2713837
http://dx.doi.org/10.1109/20.619614
http://dx.doi.org/10.3379/msjmag.1803R008
http://dx.doi.org/10.1109/TMAG.2006.879751
http://dx.doi.org/10.3390/s19122710
http://dx.doi.org/10.3390/s19132991
http://dx.doi.org/10.1109/TMAG.1987.1065479
http://dx.doi.org/10.1109/TMAG.2007.893481
http://dx.doi.org/10.1109/JESTPE.2015.2424598
http://dx.doi.org/10.3379/msjmag.1701R004
http://dx.doi.org/10.1063/1.3564948
http://dx.doi.org/10.1016/j.enconman.2016.01.030
http://dx.doi.org/10.1016/j.sna.2015.07.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Wiegand Sensor 
	Wiegand Effect 
	Wiegand Pulse and Its Energy 

	Methods 
	Enhance the Magnetic Flux 
	Change the Position of the Pickup Coil 
	Adjust the Angle of the Sensor in the Magnetic Field 
	Simulate the Distribution of the Magnetic Field 

	Results and Discussion 
	Relationship between Magnetic Flux and Energy 
	Relationship between the Position of the Pickup Coil and Energy 
	Relationship between the Angle and Energy 

	Conclusions 
	References

