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Abstract: Due to industrialization and the rising demand for energy, global energy consumption
has been rapidly increasing. Recent studies show that the biggest portion of energy is consumed in
residential buildings, i.e., in European Union countries up to 40% of the total energy is consumed by
households. Most residential buildings and industrial zones are equipped with smart sensors such
as metering electric sensors, that are inadequately utilized for better energy management. In this
paper, we develop a hybrid convolutional neural network (CNN) with an long short-term memory
autoencoder (LSTM-AE) model for future energy prediction in residential and commercial buildings.
The central focus of this research work is to utilize the smart meters’ data for energy forecasting
in order to enable appropriate energy management in buildings. We performed extensive research
using several deep learning-based forecasting models and proposed an optimal hybrid CNN with the
LSTM-AE model. To the best of our knowledge, we are the first to incorporate the aforementioned
models under the umbrella of a unified framework with some utility preprocessing. Initially, the
CNN model extracts features from the input data, which are then fed to the LSTM-encoder to generate
encoded sequences. The encoded sequences are decoded by another following LSTM-decoder to
advance it to the final dense layer for energy prediction. The experimental results using different
evaluation metrics show that the proposed hybrid model works well. Also, it records the smallest
value for mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE)
and mean absolute percentage error (MAPE) when compared to other state-of-the-art forecasting
methods over the UCI residential building dataset. Furthermore, we conducted experiments on
Korean commercial building data and the results indicate that our proposed hybrid model is a worthy
contribution to energy forecasting.

Keywords: buildings energy management; deep learning; energy consumption prediction; LSTM;
autoencoder; load forecasting; smart sensors

1. Introduction

Electrical energy consumption has recently been accelerating due to rapid population and economic
growth [1]. According to the World Energy Outlook (2017), global energy demand is predicted to
increase by 1.0% compound annual growth rate (CAGR) over the period of 2016-40 [2]. Residential
buildings play a vital role in this consumption, constituting 27% of total global energy usage, and have
a substantial impact on overall energy consumption [3]. In the US, buildings make up 40% of their
national overall energy usage [4]. Due to the high level of electricity consumption in commercial and
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residential buildings, efficient smart electrical energy prediction and its management are becoming
more important because the load forecasting directly affects the control and planning of power systems’
operation. A research study estimated that a 1% decrease in forecasting errors can save £10 million
per year for the UK power system [5]. Therefore, appropriate energy planning plays a vital role in
saving energy, as well as being an economical solution. Future energy planning is possible through
computationally intelligent electricity forecasting methods [6,7].

Electricity consumption prediction is a multivariate time series problem where the sensors
generate data that may contain uncertainty [8,9], redundancy, missing values, etc. Due to irregular
trend components and seasonal patterns, it is difficult to accurately predict electricity consumption
by employing traditional machine learning models [10]. On the other hand, deep learning models
yield ultimately better results and are less error prone. Deep learning models are aggressively studied
in several applications such as CNNs, which are superior at recognizing images, and recurrent
neural networks (RNNs) [11], which perform well in natural language processing (NLP) [12] and
speech recognition problems. In recent studies, many researchers integrated multiple models in the
aforementioned domains to achieve convincing results that are applicable in real-world scenarios.
Utilizing hybrid techniques, CNN with LSTM has achieved state-of-the-art results for various domains,
such as convincing results for emotion recognition [13], speech processing [14], activity recognition [15]
and also in the medical domain, where it shows superior performance in detecting arrhythmias [16].
Similar hybrid models are used in the energy forecasting domain to achieve state-of-the-art results.

Several techniques have been developed for energy consumption prediction, including ARIMA [17],
SVM and SVR [18], time series [8], neuro fuzzy and linear regression (LR) models [19] and artificial
neural networks [20]. These prediction models are grouped into four major groups: statistical, machine
learning (ML), deep learning and hybrid models. Energy forecasting related studies are grouped based
on this categorization and their descriptions along with the dataset used and strategy followed is given
in Table 1.

Among the statistical-based models, Fumo and Biswas [21] used a linear regression model for
residential energy prediction and observed time resolution effects on the model’s performance. Daily
energy consumption prediction is proposed in Reference [22] by using multiple-linear regression with
genetic programming. They integrated five variables through genetic programming and then fed
them into their proposed prediction model. The performance of this model is increased by removing
unnecessary variables, but independent variables correlation leads to the problem of multicollinearity
and it is also challenging to get explanatory variables via linear regression models. Therefore, such
models are not recommended for electricity prediction.

In the machine learning approaches category, SVR was used to forecast electricity consumption in
buildings [23] and improved the performance of the model by adding temperature variables. Another
approach based on random forest was developed in Reference [24], in which the authors predicted
the following week’s energy by using human dynamics. In the machine learning approach, if the
model does not have many features, then it generates complex decision boundaries. However, these
models drain into an overfitting problem if the data is increased or the correlation between variables
is complicated. If a model is overfitted, it greatly affects the prediction accuracy and hence is not
recommended for use in residential or commercial buildings energy forecasting.

Deep learning models are widely used for electricity prediction, in which Reference [25] used
a sequence-to-sequence model for electricity consumption prediction in buildings and achieved the
highest possible performance. The authors of Reference [1] used stacked AE and reduced noise
disturbance and randomness from the electricity consumption data via deep features. These models
extracted important features in cases where they had complex attributes and a lot of redundant data.
However, modeling the spatial and temporal features of electricity consumption data is difficult for
deep learning models.

Among these approaches, some recent studies show combinations of models for electricity
consumption prediction. The authors of Reference [26] integrated CNN with the LSTM model for
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electricity prediction, where the CNN layers were used to extract spatial features and LSTM was
utilized for modeling temporal information. The combination of CNN with Bi-directional LSTM was
presented in Reference [27] where the CNN layers were used to extract important information and the
Bi-directional LSTM used these features in both the forward and backward direction to make a final
prediction. These models achieved the best results but still the error rate was too high for them to be
implemented for accurate electricity consumption prediction in real-world scenarios.

Table 1. The four types of prediction models for energy consumption.

Category Paper Learning Strategy Dataset Description

Statistical models

[21] LR

Electricity
consumption

Analysis of electricity prediction
using LR according to time resolution.

[22] Multiple regression
(MR)

Develops two models: ML and
genetic algorithm (GA), where GA is
used to select critical information
from the dataset followed by optimal
prediction via the ML model.

[28] MR

Uses backward elimination and a
multicollinearity process for suitable
variable selection and uses a MR
model for medium-term electricity
prediction.

Machine
learning-based
models

[23] SVR Electricity load
Adds a temperature variable to
improve the performance of SVR for
electricity prediction.

[24] Random forest
regressor

Electricity
consumption

Avoids overfitting by using an
ensembled method and transforms
the data from time to frequency
domain to solve the input data
computational complexity.

DL-based models

[25] Seq2seq Electricity load

Collects data from real smart meters
and develops a
sequence-to-sequence-based
prediction model for short-term
electricity prediction in buildings.

[1] Stacked AE (SAE) Electricity
consumption

Combines SAE with an extreme
learning machine (ELM), where SAE
is used to extract features and ELM is
used as a prediction model.

[29] DRNN based on
pooling Electricity load

Uses pooling based DRNN, addresses
the overfitting problem in a naïve
deep learning network and tests the
method in a real environment on
smart meters in Ireland.

[30] Seq2seq

Electricity
consumption

Uses a sequence-to-sequence model
based on modified LSTM.

Hybrid models

[26] CNN-LSTM
CNNs are used to extract spatial
features and LSTM is used for
modeling temporal features.

[27] CNN-bidirectional
LSM

CNNs are used to extract spatial
features and bidirectional LSTM is
used for these features for final
prediction.

We proposed a hybrid model of CNN LSTM-AEs’ synergy for electricity prediction in residential
and commercial buildings. CNN layers are used to extract spatial features and their output is fed into
LSTM-AE, followed by a dense (fully connected) layer for final prediction. Finally, the time resolution
is changed to observe if further improvement can be made using the CNN with a LSTM-AE model.
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For the first time, a hybrid model of CNN and LSTM-AE is developed and tested to predict residential
and commercial power consumption. The following are the main contributions of this research work:

• The input dataset is passed through a preprocessing step where redundant, outlier or missing
values are removed, and the data are normalized to achieve satisfactory prediction results.

• A novel hybrid model is developed in this work for accurate future energy prediction. The proposed
model integrates CNN with LSTM_AE in which the CNN layers are used to extract spatial features
from input data and then LSTM-AE are used to model these features.

• The experimental results demonstrate that the proposed CNN with LSTM-AE model has the best
performance compared to other models. The evaluation metrics record the smallest value for
MSE, MAE, RMSE and MAPE for energy consumption prediction.

2. Proposed Framework

Prediction of electrical power consumption in residential and commercial buildings is very
important to provide better energy management services. Due to the impact of unpredictability or the
noisy arrangement of data, accurate electricity consumption prediction is a challenging task. For these
reasons, the forecasting model sometimes generates incorrect prediction results. Moreover, several
methods have been developed based on traditional networks with high error rates. The traditional
methods have the problems of needing to learn from scratch, overfitting or short-term memory
challenges if the data increase or the correlation between variables is complicated. These issues
can be easily solved using sequential learning models, through modeling the spatial and temporal
features for electricity consumption is also challenging. Therefore, in this paper, we developed a CNN
with LSTM-AE model and a data preprocessing step to efficiently predict electricity consumption
in residential and commercial buildings. The overall architecture of the proposed framework for
electricity consumption is shown in Figure 1. Further, each section of the proposed framework for
electricity consumption is discussed in the next sections.

Figure 1. Proposed framework for electricity consumption prediction.

2.1. Data Preprocessing

This section offers detailed analysis about the collection and refinement of data. The data is
collected from smart meters which are installed at the edge of the electricity network and connect all
appliances to a main board. Normally, the data are gathered annually or monthly, which generates
noise and abnormalities in the data due to measurement or human error, meter problems and climate
change, if the meters are installed for a long time. Before training, the data need to be refined and
normalized for good results.
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The tested datasets include null, redundant and outlier values. Similarly, samples from the
datasets are not all in the same range and need to be normalized before training for accurate prediction.
Null, redundant and outlier values are extracted from the datasets and are discussed in this section.
Also, different normalization techniques were applied to get the odd range values within a specified
limit. These techniques include Min-Max scalar, standard transform, Max-Abs scalar, quantile and
power transform, as shown in Figure 2. After detailed analysis of each technique, finally, we selected
standard transform for data normalization because it centers and scales each feature independently.

Figure 2. Data normalization techniques, where (a) original data in the dataset, (b) the range of data
after applying Min-Max scalar, (c) the range of data after applying Max-Abs scalar, (d) the range of
values after applying power transform, (e) the data plot after quantile transformation, and (f) the range
of data after applying standard transformation.

The range of each feature is different in the original dataset, as shown in Figure 2a where the ranges
of features are between 0–10, 0–50 and 200–250. After applying Max-Min normalization technique, the
range of these features lies between 0 and 0.7, as visualized in Figure 2b. Similarly, after processing data
with Max-Abs, the ranges are normalized between 0 to 0.8, as shown in Figure 2c. After normalizing
data with quantile transformation, the features range is achieved between 0 to 1, as visualized in
Figure 2e. However, we needed to transform the input data in a way such that the negative values
also exist in the features to achieve good results. The range of power transformation is between −2 to
5 as visualized in Figure 2d, and standard transform is −2 to 6 as given in Figure 2f. However, the
computational complexity of power law transformation is higher than standard transformation. Also,
standard transform processes each feature independently. Due to these reasons, finally, we selected
standard transform for data normalization.

2.2. ANN

ANN is a type of strong mathematical modeling tool inspired by the human nervous system.
An early ANN model is MLP [31] which includes input, hidden and output layers. Each neuron
relates to the next and previous layer neurons, which are similar in MLP with several input and output
links. The value retrieved from the previous layer is summed up with some weight for each neuron
individually, and a bias term. Finally, activation function “f” is used to transform the sum, which may
be different for each neuron, as shown in Figure 3.
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Figure 3. The simple neuron operation in ANN, where “X” represents the input data, “W” represents
the weights, ”F” is the activation function and “Yi” is the output.

2.3. CNN

CNN was specially developed for grid topology data processing [32]. For example, visual data,
i.e., images and videos, are viewed as a two-dimensional grid and time series data are viewed as
one-dimensional data. The CNN [33–35] uses a weight sharing concept that provides high accuracy
in nonlinear problems, such as energy consumption prediction. Convolution-pooling layers of one
dimension are shown in Figure 4. When the convolution is applied to the input data, I1, I2, I3, I4, I5
and I6 are converted to a features map C1, C2, C3, C4. Next, a pooling layer is applied to sample
the feature-maps of the convolution layer. The pooling layer procedure is important for extracting
high-level convolution features; after applying the pooling layer, the dimension of the features map is
reduced to 2.

Figure 4. The operation of convolution layers and pooling layers over input data.

2.4. LSTM

The recurrent neural network (RNN) is another popular deep learning architecture, where
connections between units form a directed graph along with the sequence information from the input,
as depicted in Figure 5. The RNN processes a sequence of input data by using their internal state and
turns into a vanishing gradient problem, which has a major negative effect on the model accuracy. An
enhanced version of RNN is LSTM [36], which overcomes the vanishing gradient problem via the
concept of gates (input, forget, and output) and memory cells. The LSTM operation is illustrated by
the following equations and its structure is shown in Figure 5.

ft = Φ
(
Ŵ f · [ht−1, xt] + B f

)
(1)

it = Φ
(
Ŵi · [ht−1, xt] + Bi

)
(2)

Ct = tanh
(
ŴC · [ht−1, xt] + BC

)
(3)

Ct = ft ×Ct−1 + it ×Ct (4)
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ot = Φ
(
Ŵo · [ht−1, xt] + Bo

)
(5)

ht = ot × tanh(Φ(Ct). (6)

Figure 5. Standard architecture of RNN and LSTM.

In Equation (1), the network input is xt, ht is the output of the hidden layer, Φ represents the
sigmoid function, the cell state is Ct and the state candidate values are represented through Ċt. Ŵi, Ŵo,
Ŵf and ŴC are the weights for the input, output, forget gate and memory cells, while Bi, Bo, Bf and
BC represent the bias for the input, output, forget gate and cell, respectively. The input gate decides
whether input data will be reserved or not, the forget gate verifies if data will be lost or not, the cell
records the processing state and the output is delivered through the output gate. This architecture is
specially designed to address the vanishing gradient problem in RNNs.

2.5. LSTM-AE

Autoencoders (AE) are generally used in representation learning to understand unsupervised
inputs in a feature vector. The conventional method utilizing an LSTM-AE is illustrated in Figure 6.
We employed sequence-to-sequence AE for a time-series sequence dataset. The optimal goal is to
predict the short-term electricity consumption of residential and commercial buildings. AE consists of
an encoder and a decoder, where the input sequence is first encoded and then decoded. Let xt be the
input features and F the feature space. The encoder function applied is: ϕ: xt→F that learns important
features and encodes the features vector F. In the decoder, Ð= F→ X, which intends to reconstruct the
input by utilizing internal representations [37]

Figure 6. The internal structure of LSTM-AE where the first LSTM layer used as an encoder and the
second is a decoder.

We employed LSTM cells for the execution of the encoder and decoder, which are capable of
learning from temporal dependencies from one sequence and another. Formally, for input samples
sequence X(N), the AE function is applied ΦAE: ϕ Ð, which outputs samples x(N).

ΦAE(X(N)) = x(N) (7)
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2.6. Training

In our proposed framework, the refined input data is passed to the training step. The training
step includes two sub-sections where “A” demonstrates the CNN architecture and “B” shows the
LSTM-AE architecture. The proposed hybrid model combines CNN with LSTM-AE to predict hourly
and daily electricity consumption for residential and commercial buildings. The CNN layers include
an input layer, hidden layers and an output layer, which extract features for LSTM-AE. The hidden
layers include convolution, dropout, pooling and ReLU layers. Two convolution layers with the RELU
activation function and dropout layer after each convolution are employed. Initially, the CNN extracts
feature from the refined input data, then the output CNN features are fed into the LSTM encoder,
which encodes the input sequences of four time-steps. The repeated vector layer replicates these
encoded sequences twice from the model. These encoded sequences are inputted into another LSTM
for decoding and finally a dense layer is used to produce the output prediction for the input sequence.
The LSTM has problems modeling spatial features, so in this work we used CNN to extract spatial
features and then fed them to the LSTM. Normally, the LSTM fails to learn temporal dependencies
from one sequence to another, so in this work we developed a hybrid network to tackle these issues
and developed a reliable solution for accurate electricity prediction. In this architecture, we used
two 1D-convolutional layers, where two dropout layers are inserted after each convolutional layer,
two encoder LSTM layers, one repeated vector layer, two decoder LSTM layers and finally one fully
connected layer. As a result, the total number of layers are 10 in the proposed architecture and the
model size is 445 KB with 33,811 parameters. The filter size for first convolution layer is 8 while for the
second layer it is 16 and the kernel size is one for both convolution layers.

The proposed method works better than other state-of-the-art models because we integrated
multiple architectures to develop a hybrid model (CNN-LSTM-AE), where CNN is used to extract
spatial features from the input dataset and then feed these features to LSTM-AE. The simple LSTM
model works well but is unable to learn temporal dependency between sequences, while LSTM-AE is
capable of learning from temporal dependencies from one sequence and another. This is experimentally
proven and the results are discussed in the Section 3. Therefore, we claim that our model works well
and show convincing results when compared to other models.

3. Results

This section provides detailed discussion about the experimental setup, datasets, evaluation
metrics, evaluation of the UCI dataset, evaluation of the Korean commercial building dataset and
finally a comparative analysis of the proposed hybrid network with other baseline models.

3.1. Experimental Setup

We evaluated and validated the efficiency of the proposed hybrid CNN with LSTM-AE model
using residential and commercial buildings datasets. We trained our hybrid model on TITAN X
(Pascal)/PCLe/SSE2 GPU with an Intel Core i5-6600 processor, with 64 GB memory over the Ubuntu
16.4 LTS operating system. This model was implemented in Python (V3.5) in Keras (V2.2.4) with
a TensorFlow (V1.12) backend and employed Adam as the optimizer. Several experiments were
conducted to find the optimal selection of the hyper perimeter of each model. After extensive
experiments, finally we decided to train the model over 50 epochs with 1000 as the batch size and a 0.2
validation split.

3.2. Datasets

In this paper, we used two datasets: the household electric power consumption dataset available
on the UCI machine learning repository [38] and our own commercial data. A number of time-series
variables were used in the proposed architecture to predict the global active power consumption.
The UCI dataset contains actual power consumption data, with one-minute resolution, collected from
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a single residential building in France between 2006 and 2010. A total of 2,075,269 records are present
in the dataset, with 25,979 missing values that are handled in the preprocessing step of the proposed
framework. The dataset is then grouped into hourly and daily resolution to predict the electricity
consumption for the short term. Table 2 shows the electricity consumption variables of the UCI dataset,
which include date, time, global active power, global reactive power, voltage, intensity, submetering_1,
submetering_2 and submetering_3 variables. The time variable includes months, days, years, hours
and minutes. The submetering shows the electricity consumption in the home, where submetering_1-3
corresponds to the kitchen, laundry room and living room, respectively.

Table 2. Feature representation and detailed description of the residential dataset, namely the
“individual household electricity consumption dataset”.

Variable Description
Date Presented in dd/mm/yyyy format.

Time Time variable given in hours, minutes and seconds (hh:mm:ss)

Global active power Minutely given average active and reactive power for individual house.
Global active power

Voltage One-minute average voltage

Intensity Current intensity for every minute.

Submetering (1, 2, 3)
Active electricity related to kitchen, laundry room and living room of
residential home, while only one submetering_1 sensor in commercial

dataset is related to office electricity.

Our new dataset is similar to the UCI dataset but with some differences which are mentioned below:

• The UCI dataset was derived from residential buildings while the proposed dataset was generated
in commercial buildings.

• The UCI dataset has three consumption sensors: submeters 1, 2 and 3, while our dataset includes
only one electricity consumption sensor.

• The UCI dataset includes 1-minute resolution, while the proposed dataset has 15-minute resolution.

3.3. Evaluation Metrics

The proposed method is evaluated on four standard metrics: MSE, MAE, RMSE and MAPE.
The mathematical formulas of these metrics are given in Equations (8)–(11). RMSE is the percentage
of difference between predicted and testing variables, MAE represents the percentage of difference
between the predicted variables, MSE represents the average square value between the testing and
predicted variables, while the last metric MAPE expresses the prediction accuracy in percentage.
The training and validation loses for both UCI and Korean commercial building dataset are shown
in Figure 7, where “A”, “B”, “C” and “D” represent the loses for residential building hourly data,
residential building daily data, Korean commercial building hourly data and Korean commercial
building daily data, respectively.

There are a total of 960,000 records in our dataset, with null and redundant values that are removed
in the preprocessing step. Next, we normalized the input data to train the proposed model efficiently.
For training purposes, 75% of the data are used from each dataset, while the remaining 25% are used
for testing. This means that the first three years data of the UCI dataset are used for training, while the
last year’s data are used for testing. Furthermore, we performed several experiments on different deep
models for comparison, such as CNN, LSTM, LSTM-AE and the CNN with LSTM-AE models.

MSE =
1
n

∑n

1
(y− ŷ)2 (8)



Sensors 2020, 20, 1399 10 of 16

MAE =
1
n

n∑
1

∣∣∣y− ŷ
∣∣∣ (9)

RMSE =

√√
1
n

n∑
1

(y− ŷ) (10)

MAPE =
100%

n

n∑
t−1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (11)

Figure 7. Training and validation loss during training.

3.4. Performance Evaluation over UCI Dataset

To validate the robustness of the proposed hybrid model, we performed experiments on several
deep learning models with variable sets of resolutions. The results achieved for each model over
hourly data are shown in Figure 8. First, we used CNN to check the performance of the model, and
obtained values of 0.37, 0.47 and 0.67 for MSE, MAE and RMSE, respectively. On the other hand, when
using LSTM, we observed 0.35, 0.45 and 0.61 for MAE, MSE and RMSE, correspondingly. Moreover,
with the combined CNN-LSTM we obtained 0.31, 0.44, and 0.58 for MSE, MAE, RMSE, and with the
LSTM-AE model values of 0.26, 0.38 and 0.56 for MSE, MAE, and RMSE, respectively. Inspired by the
results of LSTM-AE, we combined CNN with LSTM-AE and recorded the smallest values: 0.19, 0.31
and 0.47 for MSE, MAE and RMSE, respectively.
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Figure 8. The MSE, MAE and RMSE error rates of different deep learning models for hourly
electricity prediction.

Next, the performance of the aforementioned deep learning models for daily data was tested.
For the MSE, MAE and RMSE evaluation metrics, our method performed best compared to the baseline
models. In more detail, CNN achieved values of 0.006, 0.05 and 0.07 for MSE, MAE and RMSE,
respectively, while LSTM reduced its error rate (compared with the hourly rate) to 0.05, 0.13 and 0.22
for MAE, MSE and RMSE. Furthermore, we combined the CNN with LSTM and achieved 0.007, 0.06,
and 0.08 for MSE, MAE, and RMSE, whereas LSTM-AE showed values of 0.01, 0.07 and 0.11 for MSE,
MAE, and RMSE, respectively. Finally, we tested the proposed CNN with LSTM-AE hybrid model and
obtained the lowest values of all, at 0.0004, 0.01 and 0.02 for MSE, MAE and RMSE, respectively, as
shown in Figure 9b.

Figure 9. The detailed results of different deep learning-based models for one day resolution data
where (a) demonstrates MSE, MAE and RMSE for the Korean commercial building dataset and (b)
shows these error rates over UCI dataset.

3.5. Performance Evaluation over Newly Generated Dataset

The aforementioned models were also tested on our newly generated dataset, and the proposed
model recorded convincing values for the tested evaluation metrics. The dataset was tested on both
hourly and daily data resolution, as shown in Figure 10 where (a) shows electricity consumption
prediction for hourly data, while (b) indicates electricity prediction for daily data. The difference
between actual and predicted values is very narrow, but better performance is evident for the proposed
model, especially for daily data future load prediction.
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Figure 10. Visualization of performance of our proposed CNN with LSTM-AE over testing data for
electricity prediction. (a) electricity consumption prediction for hourly data; (b) electricity prediction
for daily data.

For hourly electricity prediction on the Korean commercial building dataset, the proposed model
stands in third place, LSTM-AE is second and LSTM is first. For daily electricity prediction, the
proposed model achieved the lowest error rates of 0.0003, 0.01 and 0.01 for MSE, MAE and RMSE,
respectively. Figure 9a shows the prediction performance of the proposed hybrid model for hourly
electricity consumption, while Figure 11 demonstrates the daily energy prediction error rate for
each model.

Figure 11. The results achieved by different deep learning-based models for daily resolution of data on
our own dataset.

3.6. Comparison with other Baseline Models

The performance of the proposed hybrid model was evaluated and compared with other
competitive baseline models, which were similarly used for the same dataset. The results were compared
for both hourly and daily data. For hourly prediction, the proposed method was compared with
References [26,27,30,39] and achieved the smallest error rate among these models, as shown in Table 3.
For daily prediction, the proposed model performance was compared with References [26,27,30,40,41]
and achieved better results, as demonstrated in Figure 12. For instance, the proposed hybrid model
recorded the smallest error rates of 0.19, 0.31 and 0.47 for the hourly dataset, and recorded 0.01, 0.08,
0.11 and 0.69 for the daily dataset.
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Table 3. The comparative analysis of the proposed method with other state-of-the-art Deep Learning
and traditional techniques for hourly data resolution.

Methods MSE MAE RMSE MAPE

Deep Learning
Methods

Kim, T.-Y et al. [26] 0.35 0.33 0.59 -

Kim, J, -Y et al. [39] 0.38 0.39 - -

Marino et al. [30] - - 0.74 -

Le et al. [27] 0.29 0.39 0.54 -

Traditional
Machine
Learning
models

ARMA [42] - - 0.30 -

SVM [43] - 1.12 1.25 -

Linear Regression [41] - - - 1.03

SVR [41] - - - 1.29

Gaussian Process [41] - - - 0.82

Proposed 0.19 0.31 0.47 0.76

Figure 12. Comparative analysis of the proposed hybrid CNN with LSTM-AE model with the methods
developed by Kim et al. [26], Marino et al. [30], Almalaq et al. [40], Wu et al. [41] and Le et al. [27]. In
the figure, our model performance is compared with other state-of-the-art models in term of MSE,
MAE, RMSE and MAPE. Our model attains the smallest values for each metric.

4. Conclusions

In this article, we developed a novel framework for the prediction of electricity consumption in
residential and commercial buildings, and evaluated it using two datasets including the UCI household
electricity consumption prediction and Korean commercial building data. Initially, the input data are
preprocessed to remove missing, redundant and outlier values. Next, we apply different normalization
techniques for better representation of the input data, which yields an effective model. Further, we
developed a novel hybrid CNN with LSTM-AE model. The proposed model has three modules for
predicting electricity consumption: CNN, LSTM-AE and FC. Primarily, two CNN layers are used
to extract information from several variables in the dataset, which are then fed to LSTM-AE, which
converts the sequence into an encoded features vector and then decodes it through another LSTM.
The encoded feature vector layer duplicates these encoded sequences and finally a dense layer is used
to produce the output prediction. The experimental results of the proposed hybrid model outperform
other state-of-the-art models for electricity consumption prediction, in terms of different performance
metrics such as MSE, MAE, RMSE and MAPE.
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