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Abstract: Reinforcement learning has recently been studied in various fields and also used to
optimally control IoT devices supporting the expansion of Internet connection beyond the usual
standard devices. In this paper, we try to allow multiple reinforcement learning agents to learn
optimal control policy on their own IoT devices of the same type but with slightly different dynamics.
For such multiple IoT devices, there is no guarantee that an agent who interacts only with one IoT
device and learns the optimal control policy will also control another IoT device well. Therefore, we
may need to apply independent reinforcement learning to each IoT device individually, which requires
a costly or time-consuming effort. To solve this problem, we propose a new federated reinforcement
learning architecture where each agent working on its independent IoT device shares their learning
experience (i.e., the gradient of loss function) with each other, and transfers a mature policy model
parameters into other agents. They accelerate its learning process by using mature parameters. We
incorporate the actor–critic proximal policy optimization (Actor–Critic PPO) algorithm into each
agent in the proposed collaborative architecture and propose an efficient procedure for the gradient
sharing and the model transfer. Using multiple rotary inverted pendulum devices interconnected via
a network switch, we demonstrate that the proposed federated reinforcement learning scheme can
effectively facilitate the learning process for multiple IoT devices and that the learning speed can be
faster if more agents are involved.

Keywords: Actor–Critic PPO; federated reinforcement learning; multi-device control

1. Introduction

Recently, reinforcement learning has been applied to various fields and shows better performance
than humans. Reinforcement learning [1] is how the agent observes the simulation or real environment
and chooses an action that maximizes the cumulative future reward. In particular, after the
development of Deep Q-Network (DQN) by Google DeepMind, reinforcement learning has been
applied to Atari Games in 2015 [2], Go in 2016 and in 2018 (AlphaGo and AlphaZero) [3,4], and
StarCraft 2 in 2019 (AlphaStar) [5]. As a result, the optimal control using reinforcement learning has
been studied mostly in the area of game playing.

On the other hand, the real-world control systems, such as inverted pendulums, robot arms,
quadcopters, continuum manipulators, chemical reactors, and so on, are of different categories of
nonlinearities. One of the most effective ways to develop a nonlinear control strategy, reinforcement
learning-based control schemes interact directly with these systems in a trial-and-error manner to train
agents to learn optimal control policies [6–9]. In our previous work [10], we also proved that a DQN
agent can control a rotary inverted pendulum (RIP) successfully, even though the agent is deployed
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remotely from the pendulum. An imitation learning approach was applied to reduce the learning time
and mitigate the instability problem in the previous study.

Multiple IoT devices of one type are often installed and utilized simultaneously in a domain. For
example, in a factory that produces a large number of cars per day, many robotic arms of the same type
assemble them precisely. In order to control such multiple robotic arms optimally, a reinforcement
learning agent that controls one IoT device can collaborate with other agents that control the other IoT
devices in order to learn its optimal control policy faster. Such a collaboration is able to accelerate the
learning process and mitigate the instability problem for training multiple IoT devices.

Although multiple IoT devices of the same type are produced on the same manufacturing line,
their physical dynamics are usually somewhat different. Therefore, there is no guarantee that an agent
who interacts only with one IoT device and learns the optimal control policy will control another IoT
device well. A simple copy of a mature control policy model to multiple devices cannot be a solution,
but a kind of cooperative method is required to train multiple IoT devices efficiently. We consider that
the cooperative reinforcement learning agents sharing learning outcomes can have more generalization
capability than an agent that interacts only one IoT device.

Bonawitz et al. [11] proposed a new machine learning system based on federated learning,
which is a distributed deep learning approach to enable training on a large corpus of decentralized
data residing in multiple IoT devices like a mobile phone. The federated reinforcement learning
enables learning to be shared among other agents on IoT devices by conducting learning in separate
environments through distributed multi-agents and collecting learning experiences through a broker.
In this paper, we propose a new federated reinforcement learning scheme for controlling multiple IoT
devices of the same type by borrowing the idea of the collaborative approach of the federated learning.

In the proposed scheme, each agent on multiple IoT devices shares its learning experiences, i.e.,
a gradient of loss function computed on each device, with each other. This strategy enhances the
generalization ability of each agent. Each agent also transfers its deep learning model parameters into
other agents when its learning process is finished, so that other workers can accelerate its learning
process by utilizing the mature parameters. Therefore, the proposed federated learning scheme consists
of two phases: 1) gradient sharing phase and 2) transfer learning phase. Inside the overall procedure
of the proposed scheme, the actor–critic proximal policy optimization (Actor–Critic PPO) [12–14] is
incorporated instead of DQN. Actor–Critic PPO consists of the policy neural network (actor) that
determines the optimal behavior of the agent, and the value neural network (critic) that serves to
evaluate the policy. It is inspired by TRPO [15], but is known to be simpler and provide superior
performance in many domains [7]. We evaluate the performance of our federated reinforcement
learning scheme incorporating Actor–Critic PPO with the three RIP devices.

The contributions of this paper can be summarized as follows:

1. We propose a new federated reinforcement learning scheme to allow multiple agents to control
their own devices of the same type but with slightly different dynamics.

2. We verify that the proposed scheme can expedite the learning process overall when the control
policies are trained for the multiple devices.

The remainder of this paper is organized as follows. In Section II, we review related studies
and state the motivation for our work. In Section III, we describe the overall system architecture
and procedure of the proposed federated reinforcement learning scheme. In Section IV, we explain
the operation methods of the gradient sharing and model transfer, and present the details of the
Actor–Critic PPO algorithm used for reinforcement learning. In Section V, we prove the effectiveness of
the proposed scheme by applying it to three real RIP devices. Finally, we provide concluding remarks
and future work in Section VI.
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2. Related Work

2.1. Federated Reinforcement Learning

Federated learning is a distributed machine learning technique that trains an algorithm across
multiple decentralized edge devices holding local data samples, without exchanging their data samples.
[11,16–18]. It allows multiple edge devices to jointly learn the deep learning model of local data without
disclosing data to a central server or other devices. This type of privacy collaboration is accomplished
by a simple three-step process. In the first step, all devices bring the latest global model from the server.
Next, the device uses a stochastic gradient descent (SGD) algorithm based on local training data to
update the global model imported from the server to the local model. Finally, to form a new global
model, all devices collect and integrate improved local models and upload them back to the server.
These steps are repeated until a certain convergence criterion is satisfied, or lasted for a long period to
improve the deep learning model continuously.

Transfer learning is a machine learning technique that focuses on storing knowledge gained while
solving one problem and applying it to a different but related problem [19]. Glatt et al. [20] proposed a
method of applying transfer learning to reinforcement learning. They made deep learning models to
control some Atari games with DQN. To train other Atari games, then, the pre-trained DQN models
were transferred to the model of the new DQN. By applying transfer learning to reinforcement learning,
the learning process is greatly accelerated. Also, in 2015, Google DeepMind worked on extending
DQN to a distributed architecture [21]. In the architecture, the parameter server collects each gradient
through the DQN agents and updates the global model. The parameter server copies the updated
global model to each agent’s target network to share experiences among distributed agents. The use
of distributed DQN architecture improves learning time and performance. There have been many
researches on a distributed architecture for transfer learning and gradient sharing in reinforcement
learning.

The combination of federated learning and reinforcement learning, namely federated
reinforcement learning (FRL), was first studied in [22]. In the study, the authors demonstrated that the
FRL approach is capable of making full use of the joint observations (or states) from an environment,
and outperforms a simple DQN with the partial observation of the same environment. FRL was also
applied to autonomous driving [23], where all the participant agents make steering control actions
with the knowledge learned by others, even when they are acting in very different environments.
Even in robot system control, FRL was used to make robot agent models fuse and transferred their
experience so that they can effectively use prior knowledge and quickly adapt to new environments
[24]. However, the previous FRL schemes were evaluated and verified in software such as games or
simulation rather than real devices. In addition, Actor–Critic PPO has not yet been applied to FRL
research.

In this paper, we propose a new scheme to apply the federation method to reinforcement learning
using gradient sharing and transfer learning. Unlike the previous study, the proposed method is
used to train multiple real IoT devices simultaneously in a distributed architecture rather than virtual
environments.

2.2. Actor–Critic PPO

Policy-based reinforcement learning algorithms directly optimize the agent’s policy and have
shown excellent performance in various fields. In particular, PPO algorithm [12] has been proposed to
mitigate the disadvantage of the policy-based algorithm, where the policy can be changed drastically
in the process of gradually updating it. The PPO agent samples data through interaction with the
given environment and optimizes its objective function using an SGD optimization algorithm. In a
model optimization, there are multiple iterations of model parameter updates with data generated
from the environment. That is, the importance sampling technique is used to take advantage of past
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Figure 1. The system configuration for the proposed federated reinforcement learning.

experiences for sample efficiency. This feature is well suited for learning how to directly control IoT
devices, since acquiring rich training data from real IoT devices is time-consuming and very expensive.
In addition to that, the drastic policy change is mitigated due to the proximal trust region which is
constrained through the clipping method applied to the objective function.

The Actor–Critic method [13,25] has been also known as a reinforcement learning framework
to lead a good learning performance. It uses two deep learning models, one called actor model and
the other called critic model (sometimes, the hidden layers are shared by actor and critic models
since the parameters useful for estimating the value function could also be useful for selecting actions.
In this study, the two models share the hidden layers, too). The actor model performs the task of
learning what action to be selected under a particular observation of the environment (i.e., the control
policy). When the action selected by the actor model is performed, the agent gets a reward from the
environment. This reward is taken in by the critic model. The role of the critic model is to learn to
evaluate if the action taken by the actor model led the environment to be in a better state or not, and
its feedback is used to the actor model optimization. It outputs a real number indicating a rating of
the action taken in the previous state. By comparing this rating, the agent can compare its current
policy with a new policy and decide how it improves the actor model to take better actions. In this
paper, we set up this actor–critic framework into each agent working on its independent IoT device
and implement the PPO algorithm into the framework.

In our previous work [10], we implemented the DQN algorithm in a single RIP device, Quansar
QUBE-Servo 2 [26]. In this paper, we extend the previous work and propose a new federated
reinforcement learning scheme that can make each agent on multiple IoT devices learn the optimal
control policy collaboratively. The proposed federated reinforcement learning scheme, unlike the
existing FRL schemes, applies two strategies, 1) gradient sharing and 2) model transfer, to allow
distributed IoT devices to share the learning experience. In this way, the proposed federated
reinforcement learning speeds up the learning process and improves the generalization capability that
allows multiple agents to control their own IoT devices robustly.

3. System Architecture & Overall Procedure

In this section, we describe the proposed federated reinforcement learning system architecture
and overall procedure to allow multiple agents to control their own IoT devices. The proposed system
consists of one chief node and N worker nodes. The workers have their own independent environment
(i.e., IoT device) and train its actor and critic models to control the environment optimally through its
reinforcement algorithm. On the other hand, the chief node mediates the federated work across the N
workers and ensures that each worker’s learning process is synchronized.

The reinforcement learning has been mostly researched in simulation environments to consist
of software. In the simulation environment, most elements of the device are placed in cyberspace
and implemented in software. However, as shown in Figure 1, the manufactured real IoT devices
are positioned in the physical space and the worker containing our reinforcement learning agent
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Figure 2. The federated reinforcement learning overall procedure.

is usually placed in cyberspace because of the IoT device’s constrained resource. Therefore, the
elements of cyberspace and physical space interact in real-time is important. Besides, it is vital that
the reinforcement learning agent must not be broadly changed to control the real IoT device. In
other words, the control task in the equivalent process irrespective of whether the environment to be
controlled exists in the cyber or physical space should be performed by the reinforcement learning
agent. We allow workers to set up a cyber environment to correspond with the physical environment,
so that the state of the real IoT device can be observed and be controlled by the reinforcement learning
agents only over the cyber environment. When observing and controlling the real IoT device, the
reinforcement learning agent may not need to know that the real device is placed in the physical space.

Figure 2 shows the system overall procedure for the proposed federated reinforcement learning
scheme. The process where each worker sends and receives messages back to the chief is called Round.
For a round, each worker starts a sequential interaction (i.e., an episode) with its environment at the
time step t = 0, and finishes at the time step T when the episode end condition is met (the episode
end conditions vary according to the type of control IoT devices and the control objective). At every
time step t, the worker receives a representation st of the environment’s state and selects an action at

that is executed in the environment which in turn provides a reward signal rt+1 and a representation
st+1 of the successor state. For every time step t, the worker stores the tuple < st, at, rt+1, st+1 > as its
experience into its trajectory memory. The tuples of trajectory memory are continuously maintained
across every round. But, the size of trajectory memory is limited, so that the tuples are inserted and
removed according to an organizing and manipulating rule, such as the first-in first-out (FIFO) rule.

In each round, each worker’s reinforcement learning algorithm calculates the gradients for the
optimization of actor and critic models by using the tuples stored in the trajectory memory. For the
deep learning models of a worker, the gradients are the vectors of partial derivatives with respect to
the parameters of the models and they are used to find the optimal models to control the IoT device.

The two phases, 1) gradient sharing and 2) model transfer, are synchronized and mediated by the
chief node. In the gradient sharing phase, the chief collects the actor model’s gradient produced by
the learning process of workers (step 1© in Figure 2), averages them (step 2©), and sends it back to the
workers (step 3©). The workers optimize the current actor model once more using the average gradient
received from the chief. In our architecture, the gradient represents the experience of the learning task
that a worker has made to control its IoT device. That is, workers share their experience with each
other during the gradient sharing phase.

The idea of gradient sharing was first introduced by [27]. However, it has been used
asynchronously for the parallel or distributed SGD implementation, whereas we utilize it in a
synchronous manner. Even though the asynchronous gradient sharing can minimize worker idle time,
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it is not recommended due to the added noise from stale gradients (referred to as the "delayed gradient
problem") [28,29]. With synchronous gradient sharing, the chief waits for all gradients to be available
before computing the average and sending it back to the workers. The drawback is that some workers
may be slower than others, so other workers may have to wait for them at every round. To reduce the
waiting time, we could ignore the gradients from the slowest few workers (typically 10%).

After multiple rounds of the gradient sharing, a worker comes to satisfy the predefined criteria
for completing the learning process. At this time, the next round is executed for the model transfer
phase. During the model transfer phase, the worker completing its learning process sends its mature
actor model parameters to the chief (step 4© in Figure 2). When receiving the mature actor model
parameters from a worker, the chief considers them the best ones, and it transfers them to the rest
N − 1 workers (step 5©). And then, the N − 1 workers replace their model parameters with the mature
model parameters, so that the leaning time can be reduced for the workers with slow learning.

Although the mature actor model is incorporated to the N − 1 workers, several gradient sharing
phases may be still needed among the workers, since the inherent dynamics of each IoT device are
slightly different from each other. Therefore, the same procedure of the steps from 1© to 5© in Figure 2
is performed repeatedly between the rest of the workers. By continuously performing this procedure,
the learning processes of all workers are completed when the predefined condition is satisfied at the
last worker.

4. Federated Reinforcement Learning Algorithm

In our study, each worker conducts individual training with the Actor–Critic PPO algorithm on
an independent IoT device. The key advantage of Actor–Critic PPO is that a new update of the policy
model does not change it too much from the previous policy. It leads to less variance in learning, but
ensures smoother policy update and also ensure that the worker does not go down an unrecoverable
path of taking senseless actions. This feature is particularly important for optimal IoT device control
because optimal control learning for IoT devices in the physical environment takes more time than
software in the cyber environment.

An actor model (i.e., policy model) πθ has its own model parameters θ. With an actor model, a
worker performs the task of learning what action to take under a particular observed state of the IoT
device. The worker sends the action predicted by the actor model to the IoT device and observes what
happens in the IoT device. If something positive happens as a result of the action, then a positive
response is sent back in the form of a reward. If a negative occurs due to the taken action, then the
worker gets a negative reward. This reward is taken in by the critic model Vµ with its model parameter
µ. The role of the critic model inside a worker is to learn to evaluate if the action taken by the actor
model led the IoT device to be in a better state or not, and the critic model’s feedback is used to the
actor model optimization.

Figure 3 shows the overall process of an Actor–Critic PPO algorithm conducted in a worker
whenever every episode ends. First, the Actor–Critic PPO obtains a finite mini-batch of sequential
samples (i.e., experience tuples) from the trajectory memory. In a mini-batch, the time step (t0 in
Figure 3) of starting tuple is chosen at random, but all subsequent tuples in the mini batch must be
continuous.

In a general policy gradient reinforcement learning, the objective function LP is as follows:

LP(θ) = Ê
[
log πθ (at|st) Ât

]
(1)

where Ê[...] is the empirical average over a finite batch of samples, and Ât is an estimator of the
advantage function at time step t. With the discount factor γ ∈ [0, 1], we use the generalized advantage
estimator (GAE) [30] to calculate Ât. The GAE is

Ât = δt + (γλ) δV
t+1 + (γλ)2 δV

t+2 · · · (γλ)U−t+1 δV
U−1 (2)
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Figure 3. The actor–critic proximal policy optimization (Actor–Critic PPO) algorithm process.

where λ is the GAE parameter (λ ∈ [0, 1]), U is the sampled mini-batch size, and δt = rt + γVµ(st+1)−
Vµ(st). The objective (i.e., loss) function LV is as follows:

LV(µ) = Ê
[

LV
t (µ)

]
= Ê

[
|V̂target

µ (st)−Vµ(st)|
]

(3)

where the target value of time-difference error (TD-Error) V̂target
µ (st) = rt+1 + γVµ(st+1). The

parameters of Vµ are updated by an SGD algorithm (i.e., Adam [31]) with the gradient ∇LV :

µ = µ− ηµ∇LV(µ) (4)

where ηµ is the learning rate for the critic model optimization.

Algorithm 1: Federated RL (Chief)

1 for i = 1, 2, 3, ..., M do
2 P = []
3 for w ∈W do
4 Receive a message mw from the worker w
5 Append mw into P
6 end
7 if there is a message mw ∈ P s.t. mw has the actor model parameter θw of a worker w then
8 θ̄ = θw
9 Send to the workers in W − {w} the message mc including the model parameter θ̄

10 W = W − {w}
11 else
12 collect the gradients g1

θ , g2
θ , ..., g|W|θ from all mw ∈ P

13 ḡ = average(g1
θ , g2

θ , ..., g|W|θ )

14 Send to all the workers in W the message mc including the average gradient ḡ
15 end
16 if W is empty then
17 Break
18 end
19 end



Sensors 2020, 20, 1359 8 of 14

In the actor model of TRPO and PPO, instead of the objective function presented in Equation
(1), the worker uses the importance sampling to obtain the expectation of samples gathered from an
old policy πθold under the new policy πθ we want to refine. They maximize the following surrogate
objective function LCPI :

LCPI(θ) = Ê
[

πθ (at|st)

πθold (at|st)
Ât

]
. (5)

With a small value δ, TRPO optimizes LCPI subject to the constraint

Ê
[
KL
[
πθold (·|st) , πθ (·|st)

]]
≤ δ

on the amount of the policy update. KL indicates the Kullback–Leibler divergence [32]. PPO inherits the
benefit from TRPO, but it is much simpler to implement, allows multiple optimization iterations, and
empirically presents a better sample efficiency than TRPO. With the probability ratio Rt (θ) =

πθ(at |st)
πθold

(at |st)
,

the PPO objective function LCLIP is given by

LCLIP(θ) = Ê
[

LCLIP
t (µ)

]
= Ê

[
min

(
Rt (θ) , clip (Rt (θ) , 1− ε, 1 + ε)

)
Ât

] (6)

where ε is the clipping parameter. The clipped objective function LCLIP does not makes PPO greedy in
favoring actions with positive advantage, and much quick to avoid actions with a negative advantage
function from a mini-batch of samples. The parameters of πθ are updated by an SGD algorithm with
the gradient ∇LCLIP for the negative of the clipped objective function (i.e., −LCLIP):

θ = θ − ηθ∇LCLIP(θ) (7)

where ηθ is the learning rate for the actor model optimization.
With Actor–Critic PPO, our federated reinforcement learning algorithm is provided in Algorithms

1 and 2. The chief and all workers share the parameter M which indicates the maximum number of
rounds (i.e., episodes). The chief maintains the set of all workers W. Whenever a chief receives the
actor model parameter θw from a worker w, the chief removes it from W at the end of round. If W is
empty, the chief finishes its task. In a worker, K is the number of model optimizations in one round.
The multiple model optimizations are conducted to further improve sample efficiency.

5. Experiments

In this section, we apply the proposed federated reinforcement learning scheme to the real IoT
devices. We validate the effectiveness of gradient sharing and transfer learning for our federated
reinforcement learning in the real IoT devices. We also validate the effect of the number of workers on
the performance of the proposed scheme.

5.1. Experiment Configuration

As the real IoT device environment, we choose the RIP device (Quanser QUBETM-Servo 2 [26]). It
is a highly unstable nonlinear IoT device and has been used as a usual device in the nonlinear control
engineering field.

The experimental system configuration for controlling the real multiple IoT devices optimally is
shown in Figure 4. In the system, there are three workers and one chief, and each worker is connected
with its RIP device. The RIP device is installed with an optical encoder that provides status information
about each angular position and angular velocity of the pendulum and motor. The Raspberry Pi 3
Model B (Raspberry Pi) connects to RIP device and a worker through a serial peripheral interface (SPI).
The Raspberry Pi takes the motor power index (i.e., control input) from the reinforcement learning



Sensors 2020, 20, 1359 9 of 14

Algorithm 2: Federated RL (Worker w)

1 for i = 1, 2, 3, ..., M do
2 for each step t of an episode do
3 Run the actor model πθ for st and do action at
4 Get rt+1, st+1 from the environment
5 Store <st, at, rt+1, st+1> into the trajectory memory
6 end
7 if learning process is finished then
8 Send to the chief a message mw including the actor model parameter θw
9 Break

10 else
11 Update πθold ← πθ

12 for j = 1, 2, 3, ..., K do
13 Get a mini-batch B from the trajectory memory (the size of B is U)
14 for t = 1, 2, ..., U do
15 Compute Ât by using the critic model Vµ and Equation (2)
16 Get the value Vµ(st) and V̂target

µ (st)

17 Compute LV
t (µ) by using Equation (3)

18 Compute LCLIP
t (θ) by using the actor model πθ and Equation (6)

19 end
20 Compute the gradient gµ = ∇LV(µ) for average(LV

1 (µ), ..., LV
U(µ)) w.r.t. the critic

model parameter µ
21 Update Vµ with gµ through SGD
22 Compute the gradient gθ = ∇LCLIP(θ) for average(LCLIP

1 (θ), ..., LCLIP
U (θ)) w.r.t the

actor model parameter π
23 Update πθ with gθ through SGD
24 end
25 Send to the chief a message mw including the last gradient gθ

26 end
27 Wait for a message mc from the chief if it is not available
28 if mc has the actor model parameter θ̄ then
29 Replace the current actor model parameter with the received θ̄
30 else if mc has the average gradient ḡ then
31 Update πθ with the received ḡ through SGD
32 end

agent in a worker, permutes it into a voltage value, and eventually sends it to the RIP device. Also, it
takes observed state information (i.e., the angular position and angular velocity of the pendulum and
the motor) from the RIP device, and sends them to the reinforcement learning agent in a worker. There
is also a switch for the connection between the three workers and the chief. For the communication
among the Raspberry Pi nodes, the workers, and the chief, the MQTT protocol is used.

The workers and the chief are deployed on Ubuntu 16.04 LTS. The proposed scheme using
the Actor–Critic PPO algorithm is implemented using Python 3.6 and PyTorch 1.2. A multi-layer
perceptron with the three hidden layers and two separate output layers is used to constitute the actor
and critic models. The two models share the three hidden layers, where each layer includes 128
neurons. For the actor model, the first output layer yields three values (i.e., three types of actions) that
sum to one. For the critic model, the second output layer yields a single value to evaluate the action
selected by the actor model. The other hyper-parameters of the Actor–Critic PPO algorithm are listed
in Table 1.
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Figure 4. Our experiment configuration with multiple rotary inverted pendulum (RIP) devices, multiple
workers, and one chief.

5.2. State, Action, and Reward Formulation

First, we perform an upswing control at the beginning of each round. This process forces the
motor to move until the pendulum is facing upwards. This process has been empirically implemented
using existing control models in the mechanical field. The proposed Actor–Critic PPO reinforcement
learning algorithm then tries to balance the pendulum.

For the proposed algorithm, the state of reinforcement learning consists of observed information
from the environment. The observed information is as follows: 1) pendulum angle, 2) pendulum
angular velocity, 3) motor angle, and 4) motor angular velocity. In an episode, at every step, a new
state is provided for the actor and critic models.

The action is selected by each worker’s actor model and the RIP device controls the motor by the
selected action. The selected actions are −60, 0 and 60 as the power of the motor. These values are the
power to turn the motor. If the selected action is negative 60, the direction of turning is from right to
left, whereas the direction of rotation is positive 60, the direction of turning is from left to right. On the
Raspberry Pi, the motor power index is changed to the motor voltage value, which is fed to the RIP
device.

Designing rewards is important for reinforcement learning challenges. At each step, the reward is
calculated after applying the selected action in the current state by the cyber environment. The value
of reward depends on each step of success or failure. If the pendulum of the RIP is within a range of ±
7.5 degrees (i.e., the pendulum is standing upright) of the step, the step succeeds and the reinforcement
learning agent is rewarded with +1. If the step fails, the reinforcement learning agent is rewarded with
0 and the episode is terminated. When the episode is terminated, the score is the sum of the reward for

Table 1. Hyper-parameter configuration for Actor–Critic PPO.

Hyper-parameter Value
Clipping parameter (ε) 0.9
Model optimization algorithm Adam
GAE parameter (λ) 0.99
Learning rate for the critic model (ηµ) 0.001
Learning rate for the actor model (ηθ) 0.001
Trajectory memory size 200
Batch size (U) 64
Number of model optimizations in one round (K) 10
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(a) Change of score and loss values without the
proposed scheme

(b) Change of score and loss values with the
proposed scheme

Figure 5. Effectiveness of the proposed federated reinforcement learning scheme. The blue line
represents the score for each round, and the red line represents the weighted moving average (WMA)
of the scores from the last 10 rounds. The green dotted line indicates the loss value for each round.

all steps of the episode. If the weighted moving average of the reward in the last 10 episodes is 2,450,
then the learning is determined to be complete.

5.3. Effect of Gradient Sharing & Transfer Learning

Figure 5 shows the effectiveness of the proposed federated reinforcement learning for the
experimental system. In particular, the advantages of gradient sharing and model transfer are
illustrated in the figure. For each of the three workers, Figure 5 (a) shows the change of the score and
the loss values of the actor model when each worker performs the learning process individually, while
Figure 5 (b) shows the change of the ones when the proposed scheme is applied. As known in the two
figures, at about 300 episodes, the learning process of all workers is completed when the proposed
federated learning scheme is applied. However, without the proposed scheme, the learning process
of Worker I and II are completed at about 820 episodes and the one of worker III is completed at 571
episodes. Therefore, we can know that the learning speed becomes much higher and the variation in
learning time for each RIP device is also reduced when the proposed scheme is applied.

It is also noted in Figure 5 (b) that the score value of Worker I and III increases suddenly at 287
episodes. It happens because Worker II transfers its mature actor model into Worker I and III. The
model transfer plays a large role in shortening the learning time.

However, we can also know that the additional learning at Worker I and III are still needed over
several episodes to complete the learning process, even though the mature model of Worker II is
transferred to them. To find out the reason for additional learning, another experiment is conducted.
We apply the exact same amount of force to each of three RIP devices (i.e., Quanser QUBETM-Servo 2)
100 times in different directions, and measure the Pearson correlation between the changes of the motor
and the pendulum angles for the three devices. Pearson correlation [33] is commonly used to find
the relationship between two random variables. The Pearson correlation coefficient has +1 if the two
variables X and Y are exactly the same, 0 if they are completely different, and −1 if they are exactly the
same in the opposite direction. Table 2 shows the results of the homogeneity test for the dynamics of
three RIP devices of the same type. As known from the two tables, the angles of motor and pendulum
are changed differently even though the forces applied in different directions are constant over 100
times. For each RIP device, in particular, the change in motor angle is more varied than the change in
the pendulum angle. For multiple RIP devices of the same type, as a result, their dynamics are slightly
different from each other, even though they are produced on the same manufacturing line. This means
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Table 2. Results of homogeneity test for dynamics of multiple IoT devices of the same type.

(a) Pearson correlation matrix of
motor angle changes

Motor angle RIP I RIP II RIP III
RIP I 1 0.77 0.86
RIP II - 1 0.75
RIP III - - 1

(b) Pearson correlation matrix of
pendulum angle changes

Pendulum angle RIP I RIP II RIP III
RIP I 1 0.98 0.96
RIP II - 1 0.98
RIP III - - 1

that the additional learning at Worker I and III is still needed even after receiving the mature model of
Worker II.

Figure 6. Comparison of learning speed in terms of the number of workers.

Figure 6 shows the efficiency of the federated reinforcement learning according to the number
of workers. For two workers and three workers, the experiments are conducted five times and the
average score per episode is shown in the figure. As shown in the figure, the higher the number
of workers, the faster the learning process. In the proposed scheme, each worker share its learning
experiences, i.e., the gradient of loss function computed on each RIP device, with each other. Each
agent also transfers its actor model parameters into other agents when its learning process is finished.
As the number of workers increases, the effects of such two strategies increase.

In our previous study [34], we validated the proposed federated reinforcement learning through
the CartPole simulation software environment of the OpenAI Gym. We also found that the performance
increases as the number of workers increases from one to eight in the simulation environment.

6. Conclusions

In this work, we have shown that the proposed federated reinforcement learning scheme can
successfully control multiple real IoT devices of the same type but with slightly different dynamics.
We adopted Actor–Critic PPO as a reinforcement learning algorithm and applied it to the federated
learning architecture. The proposed approach includes the gradient sharing and model transfer
methods to facilitate the learning process, and it turned out that they can expedite the learning process
by about 1.5 times. We also have shown that learning is further accelerated by increasing the number
of workers. Learning speed was improved by about 38% when three workers were used compared
to two workers. As the future work, we plan to study the system heterogeneity in the federated
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reinforcement learning architecture. The computational and communication capabilities of each IoT
device in federated networks may differ. Moreover, some IoT devices may also be unreliable, and it
is common for an IoT device to drop out at a given round. In these heterogeneous settings, how to
expedite the reinforcement learning process will be studied.

Supplementary Materials: The source code of the experiments is publicly available at
https://github.com/glenn89/FederatedRL.s1
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