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Abstract: Gait recognition is being employed as an effective approach to identify people without
requiring subject collaboration. Nowadays, developed techniques for this task are obtaining high
performance on current datasets (usually more than 90% of accuracy). However, those datasets are
simple as they only contain one subject in the scene at the same time. This fact limits the extrapolation
of the results to real world conditions where, usually, multiple subjects are simultaneously present
at the scene, generating different types of occlusions and requiring better tracking methods and
models trained to deal with those situations. Thus, with the aim of evaluating more realistic and
challenging situations appearing in scenarios with multiple subjects, we release a new framework
(MuPeG) that generates augmented datasets with multiple subjects using existing datasets as input.
By this way, it is not necessary to record and label new videos, since it is automatically done by
our framework. In addition, based on the use of datasets generated by our framework, we propose
an experimental methodology that describes how to use datasets with multiple subjects and the
recommended experiments that are necessary to perform. Moreover, we release the first experimental
results using datasets with multiple subjects. In our case, we use an augmented version of TUM-GAID
and CASIA-B datasets obtained with our framework. In these augmented datasets the obtained
accuracies are 54.8% and 42.3% whereas in the original datasets (single subject), the same model
achieved 99.7% and 98.0% for TUM-GAID and CASIA-B, respectively. The performance drop shows
clearly that the difficulty of datasets with multiple subjects in the scene is much higher than the ones
reported in the literature for a single subject. Thus, our proposed framework is able to generate useful
datasets with multiple subjects which are more similar to real life situations.

Keywords: gait recognition; gait framework; gait dataset; multiple subjects; augmented dataset

1. Introduction

Nowadays, the presence of video-surveillance cameras in our cities is common and they are
considered as one more element of the street furniture. Images and videos recorded with those cameras
can be used for people identification in video-surveillance applications. Three of the main challenges
of those images and videos are the distance from which they are recorded, the occlusions produced
by people and street furniture, and the presence of multiple people in the scene. Therefore, effective
people identification approaches must deal with these problems.

Typically, the problem with the distance has been faced using gait recognition, which is a kind of
biometric pattern that identifies people by the way they walk. In contrast to commonly used biometric
patterns such as iris- or fingerprint-based approaches [1,2], gait-based methods can be considered
as non-invasive since they can be performed at a distance and do not require the cooperation of
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the subjects that have to be identified. Thus, gait recognition can be used in the context of video
surveillance to control the access of people to special areas or identify dangerous people at certain
distance. Many approaches have been proposed for solving the problem of identifying people based
on gait recognition [3]. However, most of them do not solve the last two challenges commented above
so that their applicability to real-life scenarios is limited.

Regarding occlusions, some works [4–6] have developed mechanisms to alleviate this problem
in the context of gait recognition. In most of the cases, those approaches only solve partial issues
like improving incorrect subject segmentation or reducing the noise produced during recording time.
Although those approaches try to solve occlusions produced by static objects, the occlusions produced
by dynamic objects, like other people, is still an unsolved issue. In addition, this problem has not
been treated in detail because most of gait datasets publicly available have been recorded in controlled
situations without occlusions or with very limited kind of occlusions that are far from real situations.

Concerning gait recognition when several people are simultaneously walking in the scene,
there are no works trying to identify multiple subjects at the same time. Like in the previous challenge,
it is due to the absence of realistic datasets with multiple subjects walking freely in the scene. Currently,
there exists a dataset [7] with multiple subjects in the scene but, the recognition process is focused on
the main subject, which is occluded by other static people. Thus, they only focus on occlusions but not
on the identifying of all subjects in the scene, which is a much more challenging problem that requires
accurate people detection and tracking methods to produce good results.

Therefore, there is a significant lack of realistic datasets in the gait recognition field. In order to
solve this absence of datasets dealing with real life situations that allow the development of robust
gait recognition approaches, we propose a new framework, called Multiple Person Gait framework
(MuPeG). This framework produces augmented datasets with multiple subjects in the scene by taking
advantage of existing gait datasets. Thus, MuPeG combines an arbitrary number of subjects from
existing datasets and creates new realistic video sequences that contain several subjects. By this way,
videos with multiple subjects can be generated without recording a new dataset, what is a tedious
and slow process. Moreover, our framework can produce different situations such as people walking
beside or crossing each other, what produces multiple kinds of occlusions. Consequently, it can
generate gait sequences more similar to real situations, setting up a new kind of benchmark that, to the
best of our knowledge, did not exist before. Finally, to measure the suitability and difficulty of the
generated dataset, we propose an experimental methodology composed of two types of experiments
that we recommend to perform in datasets generated with our framework. The first one focuses on
validating the video suitability of the generated dataset, and the second one focuses on measuring the
performance of gait recognition approaches in scenes with multiple persons.

Thus, the main contributions of this paper are: (i) to propose and develop the first framework
to produce augmented gait datasets with multiple subjects in the scene from existing datasets; (ii) to
propose an experimental methodology for analyzing gait recognition datasets with multiple subjects
in the scene; and, (iii) to perform the first accuracy evaluation of a gait recognition approach for all
subjects appearing in the scene.

The rest of the paper is organized as follows. Section 2 summarizes the related work. In Section 3,
we describe our framework together with the experimental methodology. Then, Section 4 contains the
results of the proposed experiments, where the discussion of those results is carried out in Section 5.
Finally, we present the conclusions in Section 6.

2. Related Work

In recent years, many approaches have been proposed for solving the problem of identifying
people based on gait recognition [3] using different sources of data, such as inertial sensors [8,9],
foot pressure [10], infrared images [11,12] or traditional images [13]. Most gait recognition studies
use a stack of binary silhouettes as input data. In this regard, Gait Energy Image (GEI) [14] is the
most popular silhouette-based gait descriptor. This descriptor is the result of computing a temporal
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averaging of the binary silhouette of the target subject. In contrast to descriptors based on silhouettes,
Castro et al. [15] propose a method that uses dense local spatio-temporal features and a Fisher-based
representation rearranged as tensors. Another example without silhouettes is the work carried out by
Preis et al. [16], which uses a Kinect camera with an integrated depth sensor for skeleton detection
and tracking in real-time.

The advent of Deep Learning (DL) architectures [17] has started a new realm of the feature
learning field for recognition tasks. This trend is also observed in the gait recognition field and many
DL research works have appeared in the last years. In Reference [18], Hossain et al. extract gait features
from binary silhouettes using Restricted Boltzmann Machines. However, they use a small probe set
(i.e., only ten subjects) for validating their approach. Yan et al. [19] extract high-level features that are
used in a multi-task framework, where the goals are gait, angle view and scene recognition. They use
as input data for a Convolutional Neural Network (CNN) the GEI descriptors computed on complete
walking cycles. In Reference [20] the authors propose a CNN that accumulates the obtained features,
in order to obtain a global representation of the dataset, using a random set of binary silhouettes of a
sequence. In Reference [21], authors use raw 2D GEI to train an ensemble of CNNs using as classifier a
Multilayer Perceptron (MLP). Similarly, in Reference [22] a multilayer CNN is trained with GEI data.
In addition, in Reference [23], the authors developed a new approach based on GEI, where they train a
CNN using pairs of gallery-probe samples. In Reference [24] the authors propose a different approach
to the previous ones: the use of optical flow as input for training a CNN for gait recognition, obtaining
state-of-the-art results. Despite most CNNs use visual data as input (e.g., images or videos), there are
some works that build CNNs for different kinds of data like inertial sensors [9] or human pose [25].
Holden et al. [26] propose a CNN that corrects wrong human skeletons obtained by other methods or
devices (e.g., Microsoft Kinect). Neverova et al. [27] build a temporal network for active biometric
authentication with data provided by smartphone sensors (e.g., accelerometers, gyroscope, etc.).

However, all those approaches use datasets where the scene is completely controlled, that is,
there are no occlusions and there is only one subject in the scene at the same time. It is important to
note that static and dynamic occlusions will produce different problems. While the first is an obstacle,
the second involves modifications in the calculation of predictors based on movement, such as optical
flow, stack of silhouettes or GEI. Those datasets are summarized in Table 1. We briefly explain their
main characteristics. AVAMVG [28] is characterized by the curved trajectories performed by the
subjects and the occlusions of the lower part of the body. CASIA-B [29] is a cross-view gait dataset with
people walking under different conditions (normal, carrying a bag or wearing coats). CASIA-C [30] is
a dataset collected by an infrared camera and recorded during the night, with 5 different gait speeds
per subject. The CMU Mobo [31] dataset has been recorded using six cameras with subjects walking
on a treadmill and performing 4 types of step: slow, fast, inclined and walking with a ball. OU-ISIR
[32] contains one of the largest number of subjects including a wide range of ages, from 1 to 94 years.
OU-ISIR MVPL [33] is another dataset that contains a large number of subjects which recorded from
multiple points of view (14 viewing angles). Soton dataset [34] is recorded with a time difference of
13 months between samples of the same subject, with the aim of isolating the effect of elapsed time in
gait recognition. TUM-GAID [35] combines audio, RGB and depth signals to further study multi-modal
gait recognition. TUM-IITKGP [7] dataset is traditionally used to develop gait recognition techniques to
cope occlusions introduced in a subject. Finally, the USF dataset [23] is one of the most widely used gait
databases and contains two fixed recording periods, collected outdoors with complex backgrounds.

Previous datasets do not contain any type of people occlusion, with the exception of TUM-IITKGP
dataset [7]. It also contains multiple subjects in the scene, but they only try to identify the main subjects,
considering others as occluding items. Therefore, gait recognition methods for multiple classifiable
subjects are not studied. Using this specific dataset, several studies regarding how occlusions affect gait
recognition have been performed. In Reference [4], they artificially degrade the visual quality of video
sequences following three different frame degradation distributions. Then, perturbed silhouettes are
reconstructed using the Balanced Gaussian Process Dynamic Model (BGPDM). Lately, the same
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authors [5] generate static and dynamic occlusions with different size, position and number of
frames.In Reference [6], artificial (salt and pepper), static and dynamic occlusions are generated.
With salt and pepper occlusions they simulate changes in the background of the scene. In the
static occlusions, an object is inserted in the lower area of the image, which contains the most
relevant information about the step. Finally, in dynamic occlusions, a moving object distorts the
human silhouette.

Table 1. Comparison of state-of-the-art gait datasets.

Name Subjects Views Occlusions Multi-Subjects Time Span Main Application

AVAMVG [28] 20 6 Yes No - Cross-view and curved paths
CASIA-B [29] 124 11 No No - Cross-view gait recognition
CASIA-C [30] 153 1 No No - Night gait recognition
CMU Mobo [31] 25 6 No No - Gait analysis
OU-ISIR [32] 4016 4 No No - Gait analysis
OU-ISIR MVPL [33] 10,307 14 No No - Cross-view
Soton [34] 25 12 No No 13 months Gait recognition
TUM-GAID [35] 305 1 No No 3 months Multimodal gait recognition
TUM-IITKGP [7] 35 1 Yes No - Gait recognition with occlusions
USF [23] 20 2 No No - Gait recognition

In contrast, in our work, the occluding object is a person (i.e., it is dynamic and may eventually
occlude the whole body of the other subject).

Other papers focus on reducing the impact of noise caused by failures in the segmentation of
the silhouettes or by the clothing used by the subjects. Iwashita et al. [36] proposes to divide the
GEI area into five horizontal areas to reduce the impact of the segmentation errors. References [37,38]
focus on reducing the influence of clothing worn by subjects on the gait recognition accuracy. The first
paper ([37]) identifies the direction of the gait samples and uses it to choose between gallery sets
for doing the classification. For dealing with the occlusions of the clothes, it compares samples in
that gallery with the GEI sample sections that are considered unaffected by clothing. The second
paper ([38]), which uses an algorithm based on the golden number, separates for each subject the
critical zone for gait recognition of the areas with clothes. To do this, the authors divide each training
sample into six areas, each one with a different golden ratio, and they use them to train a gait
recognition classifier.

Thus, one of the most common drawbacks in all these approaches and used datasets is that they
only allow the study of scenes that contain a single subject at a given time. Therefore, when these
datasets are used, factors such as the crossing between subjects or the prolonged overlap between
them are not taken into account. As a result, most of the results obtained with those datasets cannot be
extrapolated to real life situations with occlusions or multiple persons in the scene.

3. Methodology

Nowadays, current gait datasets contain only one identifiable subject in the scene at the same time.
However, in a real life scenario, there can be multiple persons in the scene walking together, producing
occlusions ones over others. Therefore, in order to measure the performance of gait recognition
approaches under real life conditions, it is necessary to create a new dataset including multiple persons
in the scene at the same time.

In this section, we propose a new framework for generating datasets with multiple subjects in the
scene and an experimentation methodology that proposes how to evaluate the generated datasets.

3.1. MuPeG: Multiple Person Gait framework

We propose a framework, MuPeG, which is available in https://github.com/rubende/cnngait_tf,
that combines subjects from a real dataset into the same scene. By this way, it is not necessary to record
new sequences, as real subjects are synthetically included in the scene. Note that, since the proposed

https://github.com/rubende/cnngait_tf
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framework only needs videos originally published in these datasets, our framework can be potentially
applied to any gait dataset published in the literature.

Our proposed framework consists of four main operations, as shown in Figure 1:

1. Video selection. In this step, we select the two videos that will be combined into a single scenario.
The first video, the background video, is used as basis to add the second subject synthetically.
Two considerations are taken into account in this step, the first one is to select videos from
different subjects to avoid non realistic situations were the same subject appears twice in the scene.
The second one is to use as background video those ones where the segmentation step described
below tends to produce poor results due to the walking conditions (e.g., wearing coats, carrying
objects, etc.). This selection can be seen in Figure 1A.

2. Segmentation. The goal of this step is to obtain the regions of the second video, foreground video,
where the subject is located in each frame. Thus, the output of this step is a set of binary masks
with the silhouette of the subject. This is a critical step since the suitability of the generated dataset
depends on the suitability of the segmentation. Therefore, in order to obtain the best possible
results, we use the state-of-the-art CNN segmentation model called DeepLabV3+ [39], pretrained
using Pascal VOC 2012 dataset [40]. An example of the output obtained in this step is shown in
Figure 1B. Note that the negative mask is obtained from the mask of the foreground video.

3. Cropping. Once the binary masks of both videos are generated, the background is cropped from the
images in order to easily combine the foreground video with the background video used as basis.
For that purpose, we just compute the element-wise product of the frames by the corresponding
binary masks, producing new frames with black areas as shown in Figure 1C.

4. Aggregation. Finally, both videos are combined. This is an easy operation since a simple
element-wise add operation is applied between the cropped frames of both videos as seen
in Figure 1D,E.

A. ORIGINAL FRAMES B. SEGMENTATION C. CROPPING D. AGGREGATION E. OUTPUT FRAME

BACKGROUND VIDEO

FOREGROUND VIDEO

Figure 1. Multiple Person Gait framework (MuPeG) framework. (A) The inputs are two frames
belonging to videos of different subjects. (B) Binary mask of the lower frame is obtained by
segmentation. At the same time, the negative mask is computed for the upper frame. (C) Cropping
operation is computed as the element-wise product of the masks by the corresponding frames. (D) Both
frames are aggregated with an element-wise add operation. (E) The final output contains both subjects.

Figure 2 shows some examples obtained with our framework. The first two columns are obtained
from TUM-GAID [35] and the last two columns are obtained from CASIA-B [29]. As we can see in
the images, MuPeG can be used in multiple scenarios with different view-points, walking conditions,
and so forth. Moreover, it is possible to combine many subjects in the same scene.
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Figure 2. Samples generated with MuPeG. Output frames obtained with subjects from TUM-GAID
and CASIA-B datasets under different walking conditions (view-points, carrying conditions, etc.).

3.2. Experimental Methodology

We propose an experimental methodology for using gait datasets generated with our framework.
This methodology is composed of two experiments that we recommend to carry out. The first
experiment focuses on validating the suitability of the generated videos, and the second experiment is
in charge of measuring the recognition capabilities of the models when multiple subjects are present in
the scene. Note that this is an initial set of experiments and many different ones can be performed
depending on the kind of dataset. Figure 3 shows an overview of our methodology. On the one hand,
the original training data is used to generate a classification model. This process is represented by red
lines. In fact, any model already trained for these datasets could be used. On the other hand, MuPeG is
applied to the original test set so that both validation videos (purple lines) having just one aggregated
subject and augmented videos (orange lines) containing multiples subjects are generated. Then, we use
the classification model with the information generated with our framework to perform two different
experiments as follows:

1. The goal of the first experiment, represented by purple arrows in Figure 3, is to validate the
suitability and correctness of the augmented dataset. Thus, MuPeG is used to generate videos
from the original test dataset with just one subject per video. These new videos constitute the
validation test dataset, as indicated in Figure 3. By this way, the generated videos contain the same
information than the original test dataset, but using segmented/aggregated subjects with MuPeG.
Now, those videos are tested using a model trained on the original training set. The obtained test
accuracy should be close to the accuracy obtained on the original test videos. If this condition is
satisfied, we can assume that MuPeG is able to generate accurate augmented videos and more
complex experiments, as the following one, could be performed.

2. The goal of this second experiment, path with orange arrows in Figure 3, is to measure the
accuracy of gait recognition approaches under multiple subject conditions. For this experiment,
gait recognition approaches are trained with the training data included in the original dataset,
like the previous experiment, but now, they are tested on the augmented test dataset, also shown in
Figure 3. It is necessary to apply a subject extraction, which allows us to maintain the relationship
between the subjects and themselves throughout the sequence, with the aim of building the
individual movement information. In order to extract valuable information from accuracy results,
we recommend to split test samples into two categories: samples with subjects walking in the
same direction and samples with subjects walking in opposite directions. By this way, it is possible
to know the performance of gait recognition approaches under different levels of people overlap,
i.e., when the subjects walk in the same direction occlusions stay longer, while when they walk
in different directions, overlap uses to happen just during subject crossing and, consequently,
takes shorter time.
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Validation
Results
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Original Training
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Original Test Dataset

Validation Dataset

Augmented Dataset

Figure 3. MuPeG use case. Outline of a typical use case of MuPeG framework. Blue elements identify
training and test data belonging to the original dataset and the training of the Convolutional Neural
Network (CNN) model based on the original training data. Green elements refer to procedures proposed
in this paper. Red lines denotes the training process to obtain the Classification Model. Purple lines
show the validation with just an aggregated subject. Orange lines represent the test with the augmented
dataset including multiple subjects. (Best viewed in color).

4. Experiments

4.1. Datasets

We use our MuPeG framework to generate two augmented datasets using as basis two of the
most widely used gait datasets—TUM-GAID [35] and CASIA-B [29]. Note that our framework needs
datasets including RGB videos as the intended output of our framework is RGB videos.

Thus, the goal of those datasets is to measure the accuracy of gait recognition approaches in
situations with multiple people, where the presence of multiple subjects simultaneously complicates
the classification task. In this paper we only focus on two subjects in the scene to avoid excessive
occlusion, since the recorded area is small and more subjects would overlap in most of the frames.
In order to test all possible situations, we generate three kinds of videos: (a) two subjects walking
together from left to right, (b) two subjects walking together from right to left and (c) two subjects
walking in different directions. In all cases, both videos start at the same time, that is, from the first
frame until the last one. By this way, we ensure that all subjects appear in the scene during enough
time to be identified. Note that the length of each original video can be different because of the walking
speed of each subject. However, in our combined videos, the length is the largest one and, if a subject
walks faster than the other, it will disappear from the scene when its video is finished. Finally, in order
to produce realistic videos, we do not allow the same subject to appear twice in the same combined
video, since it is impossible in real life.

The main characteristic of the two augmented datasets can be summarized as:

1. MultiTUM-GAID dataset. This augmented dataset, based on TUM-GAID dataset, contains only test
samples, since the training samples are the same ones used for training in TUM-GAID. The test
video sequences of the new dataset, called augmented test dataset in Figure 3, are built using
our framework MuPeG by merging two original test videos randomly chosen from TUM-GAID
dataset. As we generate only test sequences, we focus on videos labeled as N5, N6, B1, B2,
S1 and S2, which are the sequences belonging to the test set in TUM-GAID. In order to avoid
segmentation problems caused by backpacks or coating shoes, only N5 and N6 videos are used
as foreground. For the background, all videos are used. Overall, the augmented dataset used as
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test is composed of 155 subjects with a total of 1860 videos. Since the combination of subjects is
performed randomly, the number of occurrences per subject differs between 16 and 34 videos,
being the average 24 videos per subject.

2. MultiCASIA-B dataset. This second augmented dataset is based on CASIA-B dataset and, like with
MultiTUM-GAID, we only generate test samples because the training samples are the same ones
used for training in CASIA-B. The test video sequences of this new dataset, called augmented
test dataset in Figure 3, are built using our framework MuPeG by merging two original test
videos randomly chosen from CASIA-B dataset. Note that following the experimentation setup
proposed in References [23,24], the first 74 subjects with all cameras are used for training and the
last 50 subjects are used for testing. Thus, we focus on videos labeled as nm-5, nm-6, bg-1, bg-2,
cl-1 and cl-2 for the last 50 subjects and the 90◦ camera. Again, to avoid segmentation problems
caused by backpacks or coats, only ‘nm’ videos are used as foreground. For the background,
all videos are used. Overall, the augmented dataset used as test is composed of 50 subjects with
a total of 600 videos. As in TUM-GAID, the combination of subjects is performed at random.
The number of occurrences per subject differs between 17 and 36 videos, with the same average
of 24 videos per subject.

Some samples of the augmented datasets can be seen in Figure 4. As we can see most of the
frames are perfectly generated thanks to a robust segmentation process. Only in some cases shown in
the bottom row problems appear, specially when some subjects walk much closer to the camera than
the rest of the subjects (middle frame). In the other cases, the segmentation can produce some blank
spaces of excessive borders that occlude the background subject.
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Figure 4. MultiTUM-GAID and MultiCASIA-B datasets. Different situations produced by our
framework. Top four rows show frames generated with different subjects and different walking
paths, exhibiting the quality of the output data. Bottom row shows some segmentation errors that
produce lower quality outputs. The two leftmost columns show samples generated from TUM-GAID.
The two rightmost columns are generated from CASIA-B.

4.2. Gait Recognition Approach

In this section we describe the gait recognition approach used in our experiments, which is based
on References [24,41] but changing the people detection and tracking process since we have more than
one subject in the scene. The approach presented in that paper reported state-of-the-art results on the
original TUM-GAID and CASIA-B datasets. Thus, in this paper we only explain the main differences
with regard to References [24,41], while the remaining details can be found in References [24,41].
Figure 5 summarizes the pipeline of this approach where, from the input video, we compute the optical
flow maps. Then, 25 consecutive optical flow maps are stacked together and cropped to keep the
subject in the middle of the 13th frame. Finally, the state-of-the-art CNN described in References [24,41]
is trained. This CNN constitutes the classification model (see Figure 3) employed in experiments.
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Video Crop & Stack OF

CNN

Classifier

ID

Gait Recognition

Figure 5. Pipeline for gait recognition. Pipeline based on References [24,41]. The input is a sequence of
RGB frames where optical flow is calculated. Then, optical flow is cropped and stacked in 25-frame
subsequences, keeping the subject centered in the 13th frame. Finally, the subsequences are passed
through a CNN and classified by a SoftMax layer.

In order to find the position of the subjects in the scene, we use an object detector that includes
the class ‘person’. In our case, we use the deep learning model called Faster-RCNN-Inception-V2 [42],
which is a well-known object detection CNN model. This model produces a set of bounding-boxes
of the detected objects as seen in Figure 1B. Since we only need the position of the persons, we only
keep those bounding-boxes belonging to that class. Note that in the original paper, the authors used a
Gaussian Mixture model (GMM) to segment the background and obtain the position of subjects.

As explained above, once that we obtain the bounding-boxes of the subjects, we track the
bounding-boxes of the same subject along 25 frames in order to crop the 80 × 60 optical flow maps to
60 × 60. By this way, we remove unnecessary information of the background and we limit the input
size of the image as seen in Figure 6D.

A. VIDEO

B. OBJECT DETECTOR

C. OPTICAL FLOW
D. TRACKING + CROP

Figure 6. Input data generation. (A) The original data are sequences of video frames. (B) Persons
appearing in the frames are detected and localized using an object detector. (C) Optical flow is
computed for each pair of frames. (D) For each subject, optical flow maps are cropped and combined
to produce a common output.

Since the bounding-boxes produced by the object detector do not have any associated identity,
we have to group them according to the subject they belong. In order to do this, we group similar
bounding-boxes according to their similarity in a feature space obtained from a pretrained ResNet50
model [43]. Thus, we feed the RGB information contained in each bounding-box to obtain a feature
vector that describes that region. Finally, we group the bounding-boxes of each subject computing a L2
distance between the bounding-boxes of the current frame and the bounding-boxes of the previous
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frame. Then, the closest regions will be grouped together and at the end we obtain two groups of
regions, one per subject.

Finally, using the bounding-boxes calculated above, we crop the optical flow maps according to
their position. Notice that optical flow is calculated on augmented videos, so those obtained values
can be very different from those of the original videos, specially when the subjects overlap each-other
or if the process of building augmented videos does not work properly. Like in References [24,41],
the crops are performed taking into account that in the central frame of the subsequence (frame 13),
the horizontal centroid coordinate of the subject must be in the middle of the image.

4.3. Implementation Details

We performed our experiments on a server with two Xeon E5-2698 16 core processors, 256 GB
of RAM and a NVidia Titan X. To develop our model, we used Keras [44] and Tensorflow [45] for
Ubuntu 18.04.

The CNN architecture used in this paper is the same released in References [24,41], which is
composed of four convolutional layers and two fully-connected layers. During training, we use
standard Stochastic Gradient Descent (SGD) with mini-batches of 128 samples. The learning rate is set
to 0.01 and divided by 10 when the validation loss does not improve in 3 epochs. Weight decay and
momentum are set to 0.00005 and 0.9, respectively. We apply L2 regularization to the weights of the
convolutional layers and dropout of 40% to the last two fully-connected (FC) layers.

Note that all the hyper-parameters have been cross-validated on the validation set before
performing the final experiments.

4.4. Description of Experiments

As explained before in Section 3.2, two experiments have been carried out in the generated
datasets, together with an additional experiment that focuses on measuring the impact of the overlap
between subjects in the accuracy metric (see Equation (1), where TP is the number of true positives
and TN is the number of true negatives):

Acc =
TP

TP + TN
. (1)

1. Dataset validation. For this purpose, we generated the whole test set of the original
TUM-GAID and CASIA-B datasets using our framework but with only one subject in the scene.
Thus, these validation datasets will contain the same subjects than the original ones but they have
been synthetically added into the scene using a common background image found in the original
datasets. Finally, those videos are fed into the CNN model proposed in References [24,41] which
has been trained with the original training data included in each original dataset. Thus, if the
augmented datasets are correctly generated, the accuracy achieved by the model should be similar
to that obtained with the original test datasets.

2. Multiple person recognition. In this experiment, the gait recognition approach is trained with
the training dataset included in each original dataset, like in the previous experiment, but now,
it is tested on the augmented test datasets generated by MuPeG with multiple subjects in the
scene. By this way, we are able to measure the generalization capabilities of the model to real life
situations where multiple subjects are present in the same scene at the same time. In order to
measure the performance of gait recognition approaches, we use the standard accuracy metric
computed at video level, that is, combining the sample labels with a majority voting strategy.
Thus, for each video, we will compare the two subjects predicted by the approach and the two
ground-truth labels. Finally, in order to measure the accuracy per walking condition, we separate
test samples according to their conditions like in the original TUM-GAID and CASIA-B datasets.
The results obtained for this are summarized in Tables 2 and 3, where each row represents a
different approach. Two metrics are employed to measure the achieved performance. Thus, in the
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metric called ‘Subject level’, we consider each subject of the video individually in order to compute
the accuracy. Similarly, with the metric called ‘Group level’, all subjects of the same video must be
well-identified in order to consider the video as correctly classified. Regarding the columns of the
table, ‘Walking direction’ contains the results obtained by splitting the test samples according to
the walking patterns of the subjects: walking in different directions (‘Opposite’) and walking in
the same direction (‘Same’). On the other hand, ‘Walking scenario’ shows the obtained accuracy
when test samples are split according to the kind of walking conditions: normal gait (‘N’), carrying
bags (‘B’) and wearing coating shoes (‘S’) for MultiTUM-GAID and normal gait (‘nm’), carrying
bags (‘bg’) and wearing coats (‘cl’) for MultiCASIA-B. Finally, ‘Global’ column indicates the
accuracy for all test samples. The discussion of those results is carried out in the following section.

3. Person overlap. Finally, in this additional experiment, we measure the accuracy of the model
used in the previous experiment but, in this case, according to the overlap of the subjects in a
sample. In order to measure the overlap of the samples, we compute the average intersection
area (intersected area divided by the area of the smallest bounding-box) of both bounding-boxes
along the 25 frames of a sample. Then, once the test samples are characterized according to the
intersection, we obtain the accuracy of the model per sample of 25 frames. Figure 7 contains
the results for this experiment, where the horizontal axis represents the overlap range and the
vertical axis represents the accuracy at sample level. Note that, like in previous experiments,
the results are obtained at sample (stack of 25 frames) level instead of video one since at video
level the intersection between people is lower and the results would be condensed in a few bins.
The discussion of these results is carried out in the following section.

Table 2. Accuracy on MultiTUM-GAID. Each row represents a different granularity of the experiment.
Each column represents a different test scenario. Best global results are marked in bold. More details in
the text.

Experiment Metric Walking Direction Walking Scenario Global
Opposite Same N B S

L2Tracker+CNN Subject level 79.1 20.3 57.8 52.8 53.5 54.7
Group level 61.3 3.0 36.3 30.2 30.5 32.3

GroundTruthTracker+CNN Subject level 94.2 27.5 61.6 58.6 62.4 60.8
Group level 89.3 3.7 47.7 44.2 47.6 46.5

Cropping+L2Tracker+CNN Subject level 69.3 31.2 57.5 47.2 55.7 53.5
Group level 45.1 14.0 34.5 23.4 31.2 29.7

Cropping+GroundTruthTracker+CNN Subject level 95.2 49.0 74.8 68.1 73.5 72.1
Group level 90.6 25.4 61.3 53.6 59.2 58.0
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Table 3. Accuracy on MultiCASIA-B. Each row represents a different granularity of the experiment.
Each column represents a different test scenario. Best global results are marked in bold. More details in
the text.

Experiment Metric Walking Direction Walking Scenario Global
Opposite Same nm bg cl

L2Tracker+CNN Subject level 51.3 40.3 59.1 53.4 40.8 45.7
Group level 26.1 17.3 36.0 29.3 13.0 21.8

GroundTruthTracker+CNN Subject level 75.3 47.2 91.0 80.5 54.5 61.3
Group level 53.0 27.0 83.0 62.0 14.0 40.0

Cropping+L2Tracker+CNN Subject level 45.1 37.1 50.9 48.4 35.5 41.0
Group level 19.4 11.9 25.0 22.2 11.0 15.7

Cropping+GroundTruthTracker+CNN Subject level 74.0 54.0 89.5 77.0 55.5 64.0
Group level 51.0 33.7 79.0 57.0 17.0 42.3

... ...

Figure 7. Accuracy under different grades of overlap. Each bar represents the accuracy of a different
grade of overlap of the subjects present in a sample. More details in the main text. Blue bars correspond
to TUM-GAID results, while orange bars correspond to CASIA-B results.

5. Discussion

In this section, we comment on the results obtained for the experiments described in Section 4.4.

5.1. Dataset Validation Experiment

We discuss here the first experiment, that is, the validation of the dataset using videos generated
with a single subject in the scene. Following the proposed indications in Section 4.4, we use a CNN
trained with the training set of original videos included in TUM-GAID and the performance evaluation
is carried out with the validation dataset generated by MuPeG. In this experiment, we achieve an
accuracy of 98.0%. When the same model is applied to test data of the original dataset, the obtained
accuracy is 99.7%. Similarly, we perform the same training and validation process with CASIA-B
dataset. In this case, using the augmented videos we obtain an accuracy of 97.0% while using the
original videos we achieve a 98.0%. Therefore, we can assume that our framework produces datasets
that look realistic, since a model trained with the original dataset and tested with our augmented
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dataset with one subject obtains an accuracy score very close to the one obtained on the original
test dataset.

5.2. Multiple Person Recognition

Once the framework is validated, we move to the second experiment using multiple persons
in the scene. The results of these experiments are summarized in Tables 2 and 3. Focusing on the
first approach (‘L2Tracker+CNN’), see Section 4.2, and comparing the results obtained for the normal
scenario (‘N’ in MultiTUM-GAID, ‘nm’ in MultiCASIA-B) at subject level in experiment one (one
subject in the scene) and experiment two (two subjects in the scene), we can see a big drop in the
performance, from 98.0% to 57.8% in MultiTUM-GAID and from 98.0% to 59.1% in MultiCASIA-B.
In our opinion, this decrease in the performance is the consequence of two main facts: the overlap
among subjects, which produces wrong optical flow vectors, and the performance of the tracker,
that confuses the bounding boxes of the subjects and constructs optical flow windows with errors,
mixing the subjects in them. Focusing on the different metrics, we can see that the accuracy is higher
at subject level than at group level. However, the behaviour among scenarios is similar in both cases
and the difference is due to the stricter metric for the group level, as all subjects in a video must be
classified correctly. If we focus on the ‘Walking direction’ column, we can observe that the classification
is clearly worse when the subjects walk in the same direction. This is because in this situation both
subjects overlap each other, sometimes during few frames and other times during the whole video,
what makes more difficult to classify these subjects. In MultiCASIA-B, we have observed that this
problem is less frequent since the subjects walk with many different speeds so they do not overlap as
much as in MultiTUM-GAID, where the subjects have similar walking speeds. Concentrating on the
‘Walking scenario’, we can observe that the results of the normal scenario (‘N’ from MultiTUM-GAID
and ‘nm’ for MultiCASIA-B) are better than the other kind of walking conditions, which coincides with
the behaviour already observed in References [24,41]. Thus, it can be explained taking into account
that during the training of the classifier, there are only normal samples (‘N’ or ‘nm’ depending on
the dataset) and the model tends to forget how to deal with the other different scenarios. Comparing
the ‘Global’ accuracies between MultiTUM-GAID and MultiCASIA-B we can see a clear drop in
MultiCASIA-B, mainly due to the ‘cl’ scenario that is very challenging since it introduces long coats.

In order to corroborate our intuition regarding the performance of the tracker, we have designed an
additional experiment considering a ground-truth tracker that never fails. Since tracking is performed
during the segmentation process of our framework (see Section 3.1 for more details), we can build
a perfect tracking just grouping together, during subject aggregation, bounding boxes belonging to
the same subject, avoiding, in this way, the confusion between them. Note that this is not a fair
tracker because it is designed only for validating our hypothesis and cannot be used in real scenarios.
Comparing the results of this approach (‘GroundTruthTracker+CNN’), for both datasets, with the
previous ones, we can see a clear improvement in both metrics, specially for the ‘Opposite’ case.
Therefore, a better tracker improves the identification performance of our approach. However, for the
‘Same’ case, the improvement is very limited because of the subject overlapping problem (shown
in Figure 4), which cannot be solved by this ground-truth tracker. Moreover, since our CNN uses
60 × 60 pixels input sample, if subjects walk close in the scene without overlapping, the input sample
could contain data coming from both subjects, confusing the classifier. In order to deal with this
case, we propose a cropping process for each detected subject that removes other subjects appearing
in the scene. This process uses the bounding-box of the subject as a Region of Interest (ROI) and
removes the optical flow vectors located outside of this ROI. By this way, we remove other subjects
appearing in the scene. Comparing the results for this new version (‘Cropping+L2Tracker+CNN’
and ‘Cropping+GroundTruthTracker+CNN’) with the previous ones, we can see that only for the
ground-truth tracker there is an improvement of the results. In our opinion, the reason is that if
the tracker fails, the cropping process might remove critical information, decreasing the accuracy.
Thus, since the ground-truth tracker never fails, the results can be improved, specially in the ‘Same’
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case. In real situation, if the used tracker does not provide reliable results, it is better to avoid the
cropping strategy.

5.3. Person Overlap

Finally, focusing on the last experiment, we measure the accuracy of the
‘GroundTruthTracker+CNN’ under different grades of overlap among subjects for both datasets.
Note that we use this version of the tracker with the aim of providing correct bounding boxes of the
same subject to the model. This way, our experiment focuses on errors produced just by occlusions.
The results of this experiment are summarized in Figure 7. We use the accuracy at sample level,
using 25 frames length windows, since we are measuring the overlap per sample. Focusing on the
results, we can see that, as expected, the accuracy is high (67.8% in MultiTUM-GAID and 43.0% in
MultiCASIA-B) with small overlap ranges and starts to decrease with larger overlaps. Thus, as subjects
move closer, the overlapping area produces noisy optical flow values that reduce the accuracy score.
However, it can be seen in the rightmost part of the plot that the accuracy improves, around 9% for
MultiTUM-GAID and around 15% for MultiCASIA-B, from the range [70, 80) to the range [90, 100].
In our opinion, this can be explained taking into account that in situations with large overlaps, one
subject is very visible in the scene, while the other one is almost hidden behind the foreground subject.
Thus, the optical flow noise added by the background subject on the foreground one is small and does
not penalize excessively the classification scores for the foreground subject. This situation happens
more often when subjects walk in the same direction. Note that in MultiCASIA-B, the results are more
unstable among overlap steps due to the extremely noisy background used in this dataset, specially
due to the marks included in the wall, as seen in Figure 4.

6. Conclusions

In this paper, we have proposed the first framework (MuPeG) to generate augmented gait datasets
with multiple persons in the scene using existing datasets. This framework allows researchers to
build a new type of datasets that did not exist before in the state-of-the-art, opening new challenges
for researchers, as all previous state-of-the-art datasets have only one subject per sequence and,
consequently, they do not allow to deal with realistic gait analysis problems.

In order to use the datasets generated with our MuPeG framework, we have proposed an
experimental methodology that defines the minimum number and type of experiments that must be
performed in this kind of datasets. Specifically, we define two experiments, one for validating the
suitability of the generated datasets and a second one, that defines how to perform the experiments
under multiple person conditions.

Lastly, we use the approach proposed in References [24,41], which obtains state-of-the-art results in
TUM-GAID and CASIA-B datasets, to obtain the first results for gait recognition with multiple persons
in the scene. Comparing the results obtained in multiple subject datasets with the ones obtained in
traditional ones, the difficulty of this kind of datasets is demonstrated, since the results drops around a
50%. In contrast, in single subject datasets, it is very common to see reported accuracy values higher
than 90%. Two conclusions can be extracted from the results. On the one hand, the development of a
good tracking algorithm to extract isolated subjects is very important so that the extracted samples
can be classified correctly. Note that, the tracking process is necessary for all gait recognition methods
since multiple frames are required to describe the gait movement. On the other hand, attending to
experimental results it is necessary to train classifiers to deal with subject overlapping, specially when
subjects walk in the same direction. Thus, the experiments have shown that the greater the overlap,
the worse the results.

Finally, as future work, we plan to develop both new tracking approaches to improve the results
proposed in this paper and better CNN models able to deal with multiple persons. Moreover, we will
try to define more experiments to take advantage of the multiple person gait datasets generated with
our framework.



Sensors 2020, 20, 1358 16 of 18

Author Contributions: Investigation, R.D.-E., F.M.C., J.R.C., M.J.M.-J. and N.G.; Writing—original draft, R.D.-E.,
F.M.C., J.R.C., M.J.M.-J. and N.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded by project TIC-1692 (Junta de Andalucía) and TIN2016-80920R (Spanish
Ministry of Science and Tech.).

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan X Pascal GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arsalan, M.; Naqvi, R.; Kim, D.; Nguyen, P.; Owais, M.; Park, K. IrisDenseNet: Robust iris segmentation
using densely connected fully convolutional networks in the images by visible light and near-infrared light
camera sensors. Sensors 2018, 18, 1501. [CrossRef]

2. Medina-Pérez, M.A.; García-Borroto, M.; Gutierrez-Rodríguez, A.E.; Altamirano-Robles, L. Improving
fingerprint verification using minutiae triplets. Sensors 2012, 12, 3418–3437. [CrossRef]

3. Wan, C.; Wang, L.; Phoha, V.V. A survey on gait recognition. ACM Comput. Surv. 2019, 51, 89. [CrossRef]
4. Roy, A.; Sural, S.; Mukherjee, J.; Rigoll, G. Occlusion detection and gait silhouette reconstruction from

degraded scenes. Signal Image Video Process. 2011, 5, 415. [CrossRef]
5. Roy, A.; Chattopadhyay, P.; Sural, S.; Mukherjee, J.; Rigoll, G. Modelling, synthesis and characterisation of

occlusion in videos. IET Comput. Vision 2015, 9, 821–830. [CrossRef]
6. Ortells, J.; Mollineda, R.A.; Mederos, B.; Martín-Félez, R. Gait recognition from corrupted silhouettes:

A robust statistical approach. Mach. Vision Appl. 2017, 28, 15–33. [CrossRef]
7. Hofmann, M.; Sural, S.; Rigoll, G. Gait recognition in the presence of occlusion: A new dataset and

baseline algorithms. In WSCG ’2011: Communication Papers Proceedings; Václav Skala–UNION Agency: Plzen,
Czech Republic, 2011

8. Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. Similar gait action recognition using an
inertial sensor. Pattern Recognit. 2015, 48, 1289–1301. [CrossRef]

9. Delgado-Escano, R.; Castro, F.M.; Cózar, J.R.; Marín-Jiménez, M.J.; Guil, N. An End-to-End Multi-Task and
Fusion CNN for Inertial-Based Gait Recognition. IEEE Access 2018, 7, 1897–1908. [CrossRef]

10. Zheng, S.; Huang, K.; Tan, T.; Tao, D. A cascade fusion scheme for gait and cumulative foot pressure image
recognition. Pattern Recognit. 2012, 45, 3603–3610. [CrossRef]

11. Xue, Z.; Ming, D.; Song, W.; Wan, B.; Jin, S. Infrared gait recognition based on wavelet transform and support
vector machine. Pattern Recognit. 2010, 43, 2904–2910. [CrossRef]

12. Castro, F.M.; Marín-Jiménez, M.J.; Mata, N.G.; Muñoz-Salinas, R. Fisher motion descriptor for multiview
gait recognition. Inter. J. Pattern Recognit. Artif. Intell. 2017, 31, 1756002. [CrossRef]

13. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N. Multimodal features fusion for gait, gender and shoes recognition.
Mach. Vision Appl. 2016, 27, 1213–1228. [CrossRef]

14. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell.
2006, 28, 316–322, doi:10.1109/TPAMI.2006.38. [CrossRef] [PubMed]

15. Castro, F.M.; Marín-Jimenez, M.J.; Medina-Carnicer, R. Pyramidal fisher motion for multiview gait
recognition. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm,
Sweden, 24–28 August 2014; pp. 1692–1697.

16. Preis, J.; Kessel, M.; Werner, M.; Linnhoff-Popien, C. Gait recognition with Kinect. In Proceedings of the 1st
International Workshop on Kinect in Pervasive Computing, Newcastle, UK, 18 June 2012; pp. 1–4.

17. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press, 2016. Available online: http://www.
deeplearningbook.org (accessed on 27 February 2020).

18. Hossain, E.; Chetty, G. Multimodal Feature Learning for Gait Biometric Based Human Identity Recognition.
In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 721–728.

19. Yan, C.; Zhang, B.; Coenen, F. Multi-attributes gait identification by convolutional neural networks.
In Proceedings of the International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16
October 2015; pp. 642–647.

20. Wu, Z.; Huang, Y.; Wang, L. Learning Representative Deep Features for Image Set Analysis. IEEE Trans.
Multimed. 2015, 17, 1960–1968. [CrossRef]

http://dx.doi.org/10.3390/s18051501
http://dx.doi.org/10.3390/s120303418
http://dx.doi.org/10.1145/3230633
http://dx.doi.org/10.1007/s11760-011-0245-5
http://dx.doi.org/10.1049/iet-cvi.2014.0170
http://dx.doi.org/10.1007/s00138-016-0798-y
http://dx.doi.org/10.1016/j.patcog.2014.10.012
http://dx.doi.org/10.1109/ACCESS.2018.2886899
http://dx.doi.org/10.1016/j.patcog.2012.03.008
http://dx.doi.org/10.1016/j.patcog.2010.03.011
http://dx.doi.org/10.1142/S021800141756002X
http://dx.doi.org/10.1007/s00138-016-0767-5
https://doi.org/10.1109/TPAMI.2006.38
http://dx.doi.org/10.1109/TPAMI.2006.38
http://www.ncbi.nlm.nih.gov/pubmed/16468626
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TMM.2015.2477681


Sensors 2020, 20, 1358 17 of 18

21. Gálai, B.; Benedek, C. Feature selection for Lidar-based gait recognition. In Proceedings of the 2015
International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Prague,
Czech Republic, 29–30 October 2015; pp. 1–5.

22. Alotaibi, M.; Mahmood, A. Improved Gait recognition based on specialized deep convolutional neural
networks. In Proceedings of the IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington,
DC, USA, 13–15 October 2015; pp. 1–7.

23. Wu, Z.; Huang, Y.; Wang, L.; Wang, X.; Tan, T. A Comprehensive Study on Cross-View Gait Based
Human Identification with Deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 209–226,
doi:10.1109/TPAMI.2016.2545669. [CrossRef]

24. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; de la Blanca, N.P. Multimodal feature fusion for CNN-based gait
recognition: An empirical comparison. Neural Comput. Appl. 2020, doi:10.1007/s00521-020-04811-z.

25. Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior
knowledge. Pattern Recognit. 2020, 98, 107069. [CrossRef]

26. Holden, D.; Saito, J.; Komura, T.; Joyce, T. Learning Motion Manifolds with Convolutional Autoencoders.
Available online: http://www.ipab.inf.ed.ac.uk/cgvu/motioncnn.pdf (accessed on 27 February 2020)

27. Neverova, N.; Wolf, C.; Lacey, G.; Fridman, L.; Chandra, D.; Barbello, B.; Taylor, G. Learning human identity
from motion patterns. IEEE Access 2016, 4, 1810–1820. [CrossRef]

28. López-Fernández, D.; Madrid-Cuevas, F.J.; Carmona-Poyato, Á.; Marín-Jiménez, M.J.; Muñoz-Salinas, R.
The AVA Multi-View Dataset for Gait Recognition. In Activity Monitoring by Multiple Distributed Sensing;
Mazzeo, P.L., Spagnolo, P., Moeslund, T.B., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Berlin, Germany, 2014; pp. 26–39, doi:10.1007/978-3-319-13323-2_3. [CrossRef]

29. Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition
on gait recognition. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06),
Hong Kong, China, 20–24 August 2006; Volume 4, pp. 441–444.

30. Tan, D.; Huang, K.; Yu, S.; Tan, T. Efficient Night Gait Recognition Based on Template Matching.
In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China,
20–24 August 2006; Volume 3, pp. 1000–1003, doi:10.1109/ICPR.2006.478. [CrossRef]

31. Gross, R.; Shi, J. The CMU Motion of Body (MoBo) Database; Technical Report CMU-RI-TR-01-18; Carnegie
Mellon University: Pittsburgh, PA, USA, 2001.

32. Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The OU-ISIR Gait Database Comprising the Large Population
Dataset and Performance Evaluation of Gait Recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521.
doi:10.1109/TIFS.2012.2204253. [CrossRef]

33. Takemura, N.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Multi-view large population gait dataset
and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vision Appl. 2018, 10,
doi:10.1186/s41074-018-0039-6. [CrossRef]

34. Matovski, D.; Nixon, M.; Mahmoodi, S.; Carter, J. The Effect of Time on Gait Recognition Performance.
IEEE Trans. Inf. Forensics Secur. 2012, 7, doi:10.1109/TIFS.2011.2176118. [CrossRef]

35. Hofmann, M.; Geiger, J.; Bachmann, S.; Schuller, B.; Rigoll, G. The TUM Gait from Audio, Image and Depth
(GAID) database: Multimodal recognition of subjects and traits. J. Visual Commun. Image Represent. 2014,
25, 195–206. doi:10.1016/j.jvcir.2013.02.006. [CrossRef]

36. Iwashita, Y.; Uchino, K.; Kurazume, R. Gait-based person identification robust to changes in appearance.
Sensors 2013, 13, 7884–7901. [CrossRef]

37. Verlekar, T.T.; Correia, P.L.; Soares, L.D. View-invariant gait recognition system using a gait energy image
decomposition method. IET Biometrics 2017, 6, 299–306. [CrossRef]

38. Liang, Y.; Li, C.T.; Guan, Y.; Hu, Y. Gait recognition based on the golden ratio. EURASIP J. Image Video
Process. 2016, 2016, 22. [CrossRef]

39. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Proceedings of the European conference on computer
vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818.

40. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. Available online: http://www.pascal-network.org/challenges/VOC/
voc2012/workshop/index.html (accessed on 27 February 2020).

https://doi.org/10.1109/TPAMI.2016.2545669
http://dx.doi.org/10.1109/TPAMI.2016.2545669
http://dx.doi.org/10.1016/j.patcog.2019.107069
http://www.ipab.inf.ed.ac.uk/cgvu/motioncnn.pdf
http://dx.doi.org/10.1109/ACCESS.2016.2557846
https://doi.org/10.1007/978-3-319-13323-2_3
http://dx.doi.org/10.1007/978-3-319-13323-2_3.
https://doi.org/10.1109/ICPR.2006.478
http://dx.doi.org/10.1109/ICPR.2006.478.
https://doi.org/10.1109/TIFS.2012.2204253
http://dx.doi.org/10.1109/TIFS.2012.2204253
https://doi.org/10.1186/s41074-018-0039-6
http://dx.doi.org/10.1186/s41074-018-0039-6
https://doi.org/10.1109/TIFS.2011.2176118
http://dx.doi.org/10.1109/TIFS.2011.2176118
https://doi.org/https://doi.org/10.1016/j.jvcir.2013.02.006
http://dx.doi.org/10.1016/j.jvcir.2013.02.006
http://dx.doi.org/10.3390/s130607884
http://dx.doi.org/10.1049/iet-bmt.2016.0118
http://dx.doi.org/10.1186/s13640-016-0126-5
 http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
 http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html


Sensors 2020, 20, 1358 18 of 18

41. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Pérez de la Blanca, N. Automatic Learning of Gait Signatures
for People Identification. In Proceedings of the Advances in Computational Intelligence (IWANN), Cadiz,
Spain, 14–16 June 2017; pp. 257–270.

42. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.;
Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 7310–7311.

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

44. Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 27 February 2020).
45. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available
online: https://www.tensorflow.org/ (accessed on 27 February 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/fchollet/keras
 https://www.tensorflow.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	MuPeG: Multiple Person Gait framework
	Experimental Methodology

	Experiments
	Datasets
	Gait Recognition Approach
	Implementation Details
	Description of Experiments

	Discussion
	Dataset Validation Experiment
	Multiple Person Recognition
	Person Overlap

	Conclusions
	References

