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Abstract: This paper focuses on the development of a real-time wearable assist system for upper
extremity throwing action based on the accelerometers of inertial measurement unit (IMU) sensors.
This real-time assist system can be utilized to the learning, rectification, and rehabilitation for the
upper extremity throwing action of players in the field of baseball, where incorrect throwing phases
are recognized by a delicate action analysis. The throwing action includes not only the posture
characteristics of each phase, but also the transition of continuous posture movements, which is
more complex when compared to general action recognition with no continuous phase change.
In this work, we have considered six serial phases including wind-up, stride, arm cocking, arm
acceleration, arm deceleration, and follow-through in the throwing action recognition process. The
continuous movement of each phase of the throwing action is represented by a one-dimensional
data sequence after the three-axial acceleration signals are processed by efficient noise filtering based
on Kalman filter followed by conversion processes such as leveling and labeling techniques. The
longest common subsequence (LCS) method is then used to determine the six serial phases of the
throwing action by verifying the sequence data with a sample sequence. We have incorporated
various intelligent action recognition functions including automatic recognition for getting ready
status, starting movement, handle interrupt situation, and detailed posture transition in the proposed
assist system. Moreover, a liquid crystal display (LCD) panel and mobile interface are incorporated
into the developed assist system to make it more user-friendly. The real-time system provides precise
comments to assist players to attain improved throwing action by analyzing their posture during
throwing action. Various experiments were conducted to analyze the efficiency and practicality of the
developed assist system as part of this work. We have obtained an average percentage accuracy of
95.14%, 91.42%, and 95.14%, respectively, for all the three users considered in this study. We were able
to successfully recognize the throwing action with good precision and the high percentage accuracy
exhibited by the proposed assist system indicates its excellent performance.

Keywords: assist system; upper extremity throwing; IMU sensor; noise filtering; intelligent action
recognition; longest common subsequence

1. Introduction

Baseball is a popular sport played worldwide. In baseball, proper throwing technique is an
important aspect for the fielding team players. Throwing action in baseball involves sequential
activation of body parts through a link system and it goes from the left to right hand in a right-handed
pitcher and vice versa. A coordination action of all body segments is significant to achieve a correct
throwing action in baseball [1]. The involvement of swift motion during throwing action in baseball
makes its analysis a challenging task. When a ball is thrown by a player, a compressive force is
produced at their shoulder and elbow [2–4]. As a greater force is involved in throwing a ball, it is
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to be noted that inappropriate throwing actions often result in long-term soreness of the shoulders
and elbows and even lead to serious injuries to the human body [5–7]. The recurrent microtrauma
endured by the shoulders and elbow during the instances of powerful throwing and pitching often
leads to muscular and ligament damage in overhead sports players [8–11]. Moreover, the high financial
costs involved in surgical treatments of injured players and adverse effects in their throwing actions
after long-term rehabilitation even if they return to sports after being fit are also areas of concern [12].
Hence, it is important to maintain correct throwing action in sports and the need for a throwing action
assist system is significant. The assist system developed in this paper will be helpful for sportsmen in
training sessions to learn the most basic movements of the upper arm in order to prevent improper
upper extremity throwing postures to avoid the risk of getting injured. Furthermore, this assist system
will be useful for injured players returning to sports after a long time to correct their throwing action
and also for other players to analyze their throwing action and make further improvements in sports.

Human action analysis is considered a notable problem in different applications including physical
rehabilitation, artificial intelligence, healthcare, smart living, and sports [13,14]. Various studies were
carried out by researchers in the field of action recognition and movement analysis in different sports
to assist the players accordingly [15,16]. For instance, Kim et al. conducted studies on detection and
segmentation of sports motions using a wearable sensor [17] and estimation of knee joint forces in
sport movements using wearable sensors was carried out by Stetter et al. [18]. Moreover, a wireless
inertial motion-sensing system for capturing biomechanics in overhead pitching was developed by
Lapinski et al. [8]. Hettiarachchi et al. developed a wearable assist system to analyze the human
arm for predicting injuries due to throwing action especially in the field of cricket [19]. A wearable
inertial measurement unit (IMU) for shoulder injury prevention in overhead sports was developed
by Rawashdeh et al. [5]. Few action recognition studies were focused mainly on the field of baseball,
and in these studies, the motion involved during pitching is evaluated. For instance, Okoroha et al.
conducted a study to assess predictors of torque across the medial elbow in youth and adolescent
pitchers with a mobile sensor [2] and Makhni et al. carried out a study to determine the differences
in torque across pitch types and thrower demographic characteristics [20]. The relationship between
elbow varus torque and arm slot and arm rotation in professional baseball pitchers was studied by
Camp et al. [21]. Even though research was carried out in the field of human action recognition in sports,
the need for a user-friendly and efficient assist system with advanced functionalities is significant.
Hence, we have developed an efficient and user-friendly real-time wearable assist system based on the
accelerometers of inertial measurement unit (IMU) sensors for upper extremity throwing action that can
be easily worn on the upper arm and forearm. IMU is effectively utilized to detect movements based
on acceleration, angular velocity, and rotation. A six-axis IMU composed of a three-axis accelerometer
and three-axis gyroscope and a nine-axis IMU composed of an additional three-axis magnetometer are
used in different fields including navigation, manufacturing, and robotics [22–24]. The accelerometer
in IMU is utilized to measure inertial acceleration, a gyroscope is used for measuring angular rotation
(pitch, roll, yaw), and a magnetometer for magnetic field measurement. It is worth mentioning that
a good filtering approach is a necessity for IMU sensors as sensors’ noise and gyros drift issues can
adversely impact the overall accuracy. Hence, in our developed assist system based on IMU sensors,
we have included a signal pre-processing stage to achieve high accuracy.

The recognition technique incorporated in this work can be divided into three parts, namely signal
measurement, signal processing and conversion, and instant identification. As we are developing
a wearable device to be worn on the forearm and upper arm, it is important to design the device
in a manner such that all the sensors and microcontroller circuits are integrated into the device in a
miniaturized form. An embedded system is developed to measure the upper extremity throwing
action signal by analyzing the acceleration signals extracted from the throwing action and the longest
common subsequence (LCS) method is used for identification of the six serial phases of the throwing
action. LCS is a similarity measure that was utilized effectively for string matching [25]. It can be
considered a global alignment method robust to noise and outliers. The LCS method is a variation of
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the edit distance and its basic principle is matching two sequences by allowing them to stretch, without
rearranging the sequence of the elements but allowing some elements to be unmatched [26]. It is to be
noted that LCS tasks can be solved using a brute-force approach, in which all feasible subsequences of
one of the strings are found followed by testing of each string to check whether it is a subsequence of
other string [27,28]. Even though there is a similarity in the basic idea of LCS with that of dynamic
time warping (DTW), as both lineup test and template sequence temporally based on feature distance
costs, the robustness of LCS to noise and outliers make it more suitable for action recognition [29]. The
throwing action assist system is developed in a user-friendly manner. Appropriate notifications and
reminders allow the user to repeat the cycle to learn, rehabilitate, and correct posture and achieve the
correct upper extremity throwing action.

In this paper, we have developed a real-time wearable assist system for upper extremity throwing
action based on IMU sensors. Various technologies were incorporated into the system to achieve high
accuracy. Moreover, this paper gives insight into the advanced action recognition process we have
proposed for the development of the assist system. The rest of the paper is organized as follows: The
design and architecture of the assist system are described in Section 2. Section 3 deals with the detailed
throwing action analysis and various steps involved in the development of the assist system. The final
results and summarization of the work are described in Sections 4 and 5, respectively.

2. System Design

In this work, we have developed a real-time assist system for upper extremity throwing action
and we have incorporated various hardware and software technologies as part of its development.
Figure 1 depicts the hardware architecture of the developed real-time assist system. In the throwing
action recognition device, the acceleration signals of the upper arm and forearm generated by throwing
action are captured using two IMU sensors, respectively, as the primary step. We have used two
high-precision MPU6050 inertial sensors as part of this work. The package size of MPU6050 is
4 mm × 4 mm × 0.9 mm, which is comparatively very small and also its energy consumption is very
low. The IMU sensor comprises a three-axis gyroscope and a three-axis accelerometer. The function
of the accelerometer of an IMU is adequate to perform action recognition in this work. For analysis,
the acceleration signals captured using IMU sensors are sent to the microcontroller chip of the device.
A Bluetooth module is incorporated in the action recognition device to transmit instructions to the
action display device and mobile phone. Furthermore, a mode functionality is also provided in the
action recognition device. Based on the analysis of the acceleration signal by the microcontroller chip
of action recognition device, appropriate results are displayed on the liquid crystal display (LCD)
panel of the assist system placed at the glove end. It is possible for the user to check the correctness of
each phase of the throwing action at this stage by looking at the results displayed on the LCD panel.
The resultant data from the microcontroller chip is further transmitted to the mobile phone interface
also for the analysis of data statistics. In this way, the users are able to utilize the whole functionality of
the proposed upper extremity throwing action assist system to achieve a complete system of learning,
rehabilitation, and rectification.

The proposed real-time assist system for upper extremity throwing action has two modes. Mode
one and mode two represent the right hand and left-hand players, respectively. As our device is
a wearable one, it is designed in a user-friendly manner to help the user to use it conveniently in
the real-world. Moreover, the developed assist system is an alternative to conventional motion
capture biomechanical gait laboratories. The wearing design of the device includes two sections: the
forearm section and the upper arm section. As shown in Figure 2, the upper extremity throwing
action assist device is made as a wrist wearable type, which can be conveniently worn and taken off.
Furthermore, the device is lightweight and fits smoothly to the surface of the forearm and upper arm.
It is also possible to adjust the size of the device so as to fit the different arm and wrist circumferences.
The proposed throwing action assist system includes a rechargeable lithium battery, a miniaturized
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embedded system, and a device holster. The user can replace the battery in the future if it gets drained
and also easily adjust the learning mode accordingly.
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We have independently designed and integrated the miniaturized embedded system with the
inertial sensor acting as a spindle in order to realize the functionalities including acceleration signal
measurement, wireless transmission, and data analysis of the assist system. The embedded circuit is a
combination of technologies including Bluetooth wireless transmission, radio frequency (RF) wireless
transmission, step-down circuits, IMU sensors, and a microprocessor. The embedded circuit board
of the proposed throwing action assist system is displayed in Figure 2. We have also provided the
schematic diagram of the throwing assist system worn on the right arm and also the actual diagram of
the assist system worn on the user’s arm in Figure 3. The developed assist system includes a display
device, which is designed for the user to instantly recognize the throwing action problems in each
stage for learning, rehabilitation, and correction purposes. The display device uses a two-in-one design
so that it can be attached directly to the arm or on the surface of a baseball glove. When the user needs
to use the gloves for learning, rehabilitation, or correction, the display device can be directly attached
to the surface of the baseball glove and can be used by turning on the switch. The function of the action
display device is to display the throwing action phase in real-time and its circuitry includes an LCD
display panel, Bluetooth module, step-down circuit, charging circuit, and microprocessor as shown in
Figure 4.
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the baseball glove.

For the design of the mobile phone user interface, we used App Inventor, which was officially
opened to all users by Google at the end of 2010 [30]. The upper extremity throwing action recognition
results are transmitted from the recognition device to the mobile phone through a Bluetooth wireless
transmission chip.

3. Throwing Action Recognition Analysis

The real-time assist system for upper extremity throwing action can be used for learning,
rehabilitation, and rectification purposes. Figure 5 shows the block diagram of the developed assist
system. In this work, we have integrated multiple software and hardware technologies to achieve all
the functionalities of the proposed assist system. The functionality of the proposed assist system can be
divided into three parts as per the architecture shown in Figure 5, namely throwing action recognition,
real-time throwing action data analysis, and display of statistical information. The throwing action
recognition of the proposed assist system comprises different stages including signal acquisition using
IMU sensors, signal pre-processing, posture interval definition, vector space conversion, sequence
comparison, and throwing action identification.
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3.1. Signal Acquisition using IMU Sensors

The acceleration signal is captured primarily by the two IMU sensors in the signal acquisition
stage. In this study, the MPU6050 high-precision IMU sensor is used to measure the acceleration signals.
The integrated circuit (IC) outputs three-axis voltage changes of acceleration via Inter-Integrated
Circuit (I2C) communication transmission, and mainly outputs data via a serial data line (SDA) and a
serial clock line (SCL). The data transmission speed can be up to 400 kHz via I2C. In the MPU6050, the
accelerometer has built-in 16-bit analog-to-digital converter (ADC) functionality, and the 16-bit sensor
output data of each axis can be represented by 216, that is, 65,536 steps. The raw measurement data
ranges from −32,768 to +32,768. The acceleration measurement accuracy of the forearm and upper arm
is set to 2048 LSB/g and 4096 LSB/g, where LSB represents the least significant bit. The range measured
by the acceleration sensor is ±16 g of acceleration signal change.

3.2. Signal Pre-Processing

It is to be noted that the acceleration signal captured by IMU sensors may be distorted due to
the noise and vibrations of the sensor itself. Hence, it is important to eliminate the noise of the signal
to maintain a better accuracy of the action recognition system. Therefore, a signal pre-processing
stage is critical and thus we have fed the acceleration signal captured by the IMU sensors to the signal
pre-processing stage. Assuming the distribution of the acceleration signal noise is Gaussian, we have
chosen the Kalman filter as the best estimator [31]. When we analyze the acceleration signal captured
using IMU sensors before and after applying the Kalman filter, it is evident that we were successful
in eliminating noise from the signal to a greater extent. Moreover, we carried out the normalization
procedure also in the signal pre-processing stage. The acceleration signal is normalized after applying
the Kalman filtering technique to maintain the accuracy of the proposed action recognition system.
Figure 6 shows the acceleration signal after applying the normalization procedure. Based on positive
and negative values from the signal pre-processing stage, the thresholds corresponding to the system
are set using the leveling technique. The threshold value for the signal triad is set to +0.35 and −0.35.
The definition greater than +0.35 is set as 1, the definition between +0.35 and −0.35 is set as 0, and the
definition below −0.35 is set as −1 based on the leveling technique. The forearm acceleration signal
interval representation can also be visualized in Figure 6 where the yellow zone, the purple zone, and
the blue zone represent the different action zones. The acceleration signal is divided into different
action zones for the precise throwing action analysis. By defining different action zones based on the
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aforementioned threshold values we set, we could achieve better action sequence conversion based on
the labeling technique which is followed in the throwing action analysis.
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3.3. Throwing Action Analysis

This study considers three-quarters and overhand pitching types to analyze and identify the
throwing action. Three-quarters pitching is considered the mainstream pitching method today as
it possesses the common advantages of most pitching methods. When we perform three-quarters
pitching, there is minimum utilization of shoulder strength and hence there will be a lower burden on
the shoulder. If the elbow can be raised slightly above the shoulder line by 1 to 1.5 cm in the middle
of the arm cocking, it will save energy and enhance the endurance of the pitch. The three-quarters
method is the most ergonomic, which makes the movements easy to coordinate and helps to perform
the action. It is the most suitable method for beginners to practice. The disadvantage is that if the
elbow is lower than the shoulder when the arm is swung, it will give the elbow ligament a considerable
pulling force. Therefore, it is more likely to suffer from a “baseball elbow” or laceration of the medial
ligament of the elbow. The purpose of this study is to analyze the correctness of the upper extremity
throwing action. By prompting the user in real-time, the user can have a knowledge of which motion
phase is inappropriate and can avoid repeating it again.

3.3.1. Motion Mechanics in Throwing Action Recognition

Proper coordination of the upper and lower body movements is required to attain perfect
throwing action in baseball and softball [32,33]. When we analyze the relative movement mechanics
in static throwing action recognition, we can understand that it can be divided into six phases [34].
Wind-up, stride, arm cocking, arm acceleration, arm deceleration, and follow-through represent the
aforementioned six phases in static throwing action recognition.

In this work, we have analyzed both the aforementioned static throwing action technique and
Trosky’s throwing techniques. According to Trosky’s throwing drills [35–37], six throwing phases are
introduced in the “upper-body isolation” step. The definition of the upper extremity throwing action
is based on six cycles of the throwing-related motion mechanics. In this work, we have considered
wind-up as Step 1, the stride period as Step 2, arm cocking as Step 3, arm acceleration defined as
Step 4, arm deceleration is defined as Step 5, and follow-through is defined as Step 6. The beginning of
the action is defined as Step 0, which is the automatic detection of getting ready status. The overall
posture state flow of the upper extremity throwing action recognition is standing, forearm up, hands
flat, maximal external rotation, ball release, maximal internal rotation, and extending. The different
posture states and the six phases of upper extremity throwing action are depicted in Figure 7.
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3.3.2. Action Balance Judgment

It is necessary to establish an efficient database comprising of sample sequences of the various
throwing action phases for successful action recognition. This database is necessary for the classification
of throwing action phases based on the LCS algorithm. A full upper-body throwing action signal
comprising the forearm and upper arm acceleration signal must be established prior to creating the
throwing action database.

Before wind-up (Step 1) of the upper-body throwing phase, the signal should be processed based
on getting ready status corresponding to Step 0 in the definition of the upper arm posture phase. The
main purpose of this procedure is to prevent the user from wearing the device incorrectly so that
the system function will not be affected adversely. Step 0 also helps to isolate the noise signal that
affects the throwing action recognition accuracy. Figure 8 depicts the action balance judgment for the
getting ready status. Based on the trend of the waveforms of the forearm and upper arm defined
under different action zones and with the help of signal analysis and processing, the correct posture
and inappropriate posture of the forearm and upper arm can be clearly distinguished. The difference
between these rules is then used to define the throwing action database sequence.

3.3.3. Throwing Action Sequence Conversion

After defining the different action zones, vector space representation of the signal is carried out.
Based on the labeling technique followed in this system, “1” and capital letters “A–Z” are used to
represent the 27 kinds of symbols quantified by the acceleration of the forearm; “2” and lower case
“a–z” represents the acceleration of the upper arm. The action sequence conversion process based
on the labeling technique is described in Table 1. Analyzing Table 1, we can get a clear idea of how
we have used the labeling technique in this work. Moreover, we have detailed the action sequence
conversion process based on the labeling technique using an apt example given in Figure 9.
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Table 1. Action sequence conversion process based on the labeling technique.

Status axF,
axU

ayF,
ayU

azF,
azU Symbol Status axF,

axU
ayF,
ayU

azF,
azU Symbol

0 0 0 1 A, a 14 1 1 0 O, o
1 0 1 0 B, b 15 1 −1 0 P, p
2 1 0 0 C, c 16 −1 1 0 Q, q
3 0 0 −1 D, d 17 −1 −1 0 R, r
4 0 −1 0 E, e 18 1 1 1 S, s
5 −1 0 0 F, f 19 1 1 −1 T, t
6 0 1 1 G, g 20 1 −1 1 U, u
7 0 1 −1 H, h 21 −1 1 1 V, v
8 0 −1 1 I, I 22 1 −1 −1 W, w
9 0 −1 −1 J, j 23 −1 1 −1 X, x

10 1 0 1 K, k 24 −1 −1 1 Y, y
11 1 0 −1 L, l 25 −1 −1 −1 Z, z
12 −1 0 1 M, m 26 0 0 0 1, 2
13 −1 0 −1 N, n
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Each throwing stage includes multiple action sequences, which are all converted from the signal
measured by the throwing action process. Step 1 denotes the action process from standing to forearm
up, which is measured by the sensor of the forearm in Step 1. The sequence is “EE· · ·EEPP· · ·P”
and the sequence measured by the sensor on the upper arm is “pp· · ·pppp· · ·p”. Step 2 is the
action process for forearm up to hands flat, measured by the sensor of the forearm. The sequence
is “MM· · ·MMYY· · ·Y” and “AA· · ·AAMM· · ·M”, and the sequence measured by the sensor on the
upper arm is “aa· · · aakk· · ·k”. Similarly, the sequences of Step 3 to Step 6 are also measured. For the
sake of convenience, we denote the signal sequences from Step 1 to Step 6 as follows:

Step 1 = {E-P}⊕{p}
Step 2 = {A-M-Y}⊕{a-k}
Step 3 = {H-B-G}⊕{r-y-m}
Step 4 = {M-F-L-D}⊕{y-r}
Step 5 = {A}⊕{a}
Step 6 = {K}⊕{k}.

The sequence of the correct throwing action phases obtained from this measurement is summarized
in Table 2. We have carried out continuous action recognition using sequence comparison. For a
systematic comparison of the processing method, Steps 1–6 are divided into a sequence of 1–2 characters,
followed by overlapping of the sequence to recognize whether the sequence is continuous. A complete
sequence of actions will consist of the following sequential steps:
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Table 2. Throwing action sequence definition.

Throwing Step Throwing Action Process
Continuous Action Sequence Definition

Forearm Upper Arm

Step 0 Standing Action balance judgment

Step 1 Standing→ forearm up P p
E

Step 2 Forearm up→ hands flat
Y

kM
A a

Step 3 Hands flat→maximal
external rotation

G m
B y
H r

Step 4 Maximal external rotation→
ball release

D r
L
F y
M

Step 5 Ball release→maximal
internal rotation A a

Step 6 Maximal internal rotation→
extending K k

Step 1 = {E-P} ⊕ {p}
Steps 1–2 = {Y-E} ⊕ {k-p}
Step 2.1 = {M-Y} ⊕ {k}
Step 2.2 = {A-M} ⊕ {a-k}
Steps 2–3 = {G-A} ⊕ {m-a}
Step 3.1 = {B-G} ⊕ {y-m}
Step 3.2 = {H-B} ⊕ {r-y}
Steps 3–4 = {D-H} ⊕ {r}
Step 4.1 = {L-D} ⊕ {r}
Step 4.2 = {F-L} ⊕ {y-r}
Step 4.3 = {M-F} ⊕ {y}
Step 5 = {A-M} ⊕ {a-y}
Step 6 = {K-A} ⊕ {k-a}

Furthermore, it is to be noted that the number of characters in the sequence of throwing action is
dependent on the user’s throwing speed. A slower throwing action results in a greater number of
sequence characters and a faster throwing action will have a smaller number of sequence characters.
For instance, when the user throws faster, the sequence of Step 1 will look like “###EEEEPPPP###”
(# represents other signals). As the action takes a relatively short time, the number of characters
will be less; on the contrary, when the user throws slowly, the sequence of Step 1 will be like
“###EEEEEEEEEEPPPPPPPPPP###”. In this scenario, because of the slower action, there will be more
identical characters.

3.4. Action Identification Based on LCS Algorithm

In this work, we have used the LCS algorithm to compare different sequences and thereby analyze
improper postures if any. The LCS algorithm is a sequential comparison algorithm, which is often used
in different fields. Since the LCS algorithm has the advantages of high accuracy and less complexity,
it is quite suitable for the instantaneous similarity verification. Consider there are two sequences,
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A = a1 . . . am and B = b1 . . . bn . The LCS length of the two sequences A and B can be obtained from
the recursive relation, as shown in the following equation.

LCS(m, n) =


0

LCS(m− 1, n− 1) + 1
max(LCS(m− 1, n), LCS(m, n− 1))

i f
i f
i f

m = 0
m, n > 0
m, n > 0

or
&
&

n = 0
am = bn

am , bn

Based on the equation, we can calculate the longest common subsequence length between two
sequences, which can be used as a comparison cumulative length matrix by a dynamic two-dimensional
array. According to the recursive relationship, each position in the matrix is solved and stored. The
calculation process is solved from the upper left to the lower right of the matrix, which is the longest
common subsequence length representing the two sequences.

Based on the action balance judgment (Step 0), the system will decide whether to perform the
throwing action recognition or not. If the action balance judgment step is correct, then the sequence
of each phase is compared with the continuous action. When the sequence of each action made
by the user conforms to the alignment sequence in the throwing action database, the system will
automatically process the LCS algorithm and carryout throwing action recognition. Contrarily, if it
does not match with the alignment sequence in the throwing action database, the system will not
process the LCS algorithm to carryout throwing action recognition. This method will increase the speed
of recognition and recognition rate of the overall system and hence we can achieve continuous and
accurate recognition of different throwing actions in real-time. Figure 10 depicts the action identification
process based on the LCS algorithm. According to the process, after the comparison of the throwing
posture sequence between the current arm and the upper arm is completed, the forearm and the upper
arm must simultaneously meet the system to recognize that the throwing posture phase is “OK!!”. If
any one of the aforementioned cases is not correct, the system will identify the error type and throw an
erroneous action reminder as depicted in Table 3.
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Table 3. Erroneous action definition for different stages of throwing action.

Throwing Step Throwing Action Process Erroneous Action Definition

Step 0 Standing Worn too inside or outside

Step 1 Standing→ forearm up Error-1

Step 2 Forearm up→ hands flat Error-2
Inverted W

Step 3 Hands flat→maximal external rotation
Error-3

Elbow is too low
Forearm flyout

Step 4 Maximal external rotation→ ball release
Error-4

Elbow is not high enough

Step 5 Ball release→maximal internal rotation Error-5

Step 6 Maximal internal rotation→ extending Error-6
No follow-through
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4. Experimental Results and Discussion

In order to verify the usability and authenticity of the developed wearable assist system for
upper extremity throwing action, we have carried out several experiments including empty-handed
simulation of the upper extremity throwing action, towel throwing method, and baseball throwing
method to simulate the actual throwing posture. Figure 11 depicts the towel throwing and baseball
throwing experiments we have conducted to test all kinds of upper extremity throwing actions as part
of the work.
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Figure 11. (a) Towel throwing method; (b) baseball throwing.

We carried out throwing experiments using both right and left hands and recorded the respective
complete action signal. Figures 12 and 13 show the resultant complete action signal of the forearm and
upper arm of the right hand and the left hand, respectively. The photograph of the continuous action
signal measurement experiment carried out in this work is taken and is presented in Figure 14. All the
signals from the upper extremity throwing action can be combined to form a complete action signal
and then continuous upper extremity throwing action can be identified based on the algorithm.
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We have further tested the practicality of the developed upper extremity throwing action assist
system by carrying out experiments involving consecutive multiple throws using both hands. The
continuous action signal during multiple throws using the right hand and the left hand are depicted in
Figures 15 and 16, respectively. Furthermore, the user can view the real-time upper extremity throwing
action results in the display device attached at the glove end and also mobile phone. Figure 17 shows
the mobile phone interface we have developed and connected to the throwing action recognition
system. In an improper throwing action, the user can clearly understand in which stage he has gone
wrong by checking their mobile phone and can try to correct that particular phase as shown in Figure 17.
After the user completes a correct upper extremity throwing cycle, the display device will output
“S1: OK!!”, “S2: OK!!”, “S3: OK!”, “S4: OK!!”, “S5: OK!!”, and “S6: OK!!”. Furthermore, an instant
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message will be sent to the mobile phone following the throwing action. The mobile phone message
when an incomplete upper extremity throwing action was performed can be visualized in Figure 17c.
In this scenario, as the elbow of the user is not high enough, the mobile phone interface has displayed
the message as “STEP1: OK!!” “STEP2: OK!!”, “STEP3: OK!!”, “STEP4: Elbow is not enough high!!”,
“STEP5: OK!!”, and “STEP6: OK!!”. From this experimental result, it is evident that how accurately the
developed assist system recognizes the problems in throwing action.
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The user can analyze the data statistics received in the mobile phone and this functionality makes
this system more user-friendly and efficient. The warning message displayed in the warning area of
the mobile application helps the user to understand the phase of improper action, and in this way, the
user can avoid injuries due to improper action and make improvements in throwing action. With the
help of the mobile phone interface connected to the system, even other people apart from the user can
observe the user’s learning, rehabilitation, and rectification status.

We have carried out a performance evaluation of the developed assist system for upper extremity
throwing action. The experiment is performed with three users, where two users (User 1 and User 2)
performed a right-handed throwing action and one user (User 3) performed a left-handed throwing
action. Each user performed 50 throwing actions, the correct throwing action identification rate at each
throwing stage was evaluated, and the respective percentage accuracy was computed. Table 4 shows
the performance evaluation results we got for all three users from the experiment we have conducted.
We can observe high accuracy exhibited by the assist system at every stage of the throwing action for
all three users. The average percentage accuracy of all throwing stages for User 1, User 2, and User 3
are 95.14%, 91.42%, and 95.14%, respectively. So, the overall accuracy of our throwing assist system is
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estimated at 93.9%. Furthermore, when we analyze the table, we can infer that Step 0 has the highest
identification rate with an average percentage accuracy of 99.33% and the maximal external rotation
stage has the lowest accuracy of 85.33%. This high percentage accuracy indeed proves the outstanding
performance of our developed upper extremity throwing action assist system.

Table 4. Performance evaluation of throwing action recognition.

Throwing
Stage

User 1 User 2 User 3

Identification
Rate

Accuracy
(%)

Identification
Rate

Accuracy
(%)

Identification
Rate

Accuracy
(%)

Step 0 50/50 100 49/50 98 50/50 100
Step 1 49/50 98 49/50 98 49/50 98
Step 2 47/50 94 45/50 90 48/50 96
Step 3 46/50 92 42/50 84 45/50 90
Step 4 44/50 88 41/50 82 43/50 86
Step 5 49/50 98 47/50 94 49/50 98
Step 6 48/50 96 47/50 94 49/50 98

The need for an accurate assist system for baseball throwing was a necessity to avoid injuries and
improve rehabilitation to restore lost skills and regain maximum self-sufficiency faster. We believe the
development of this wearable assist system for upper extremity throwing action in baseball will be
a great help for the users. The practicality of the assist system is evident from the high percentage
accuracy the system exhibited during the experiment. Moreover, some of the major advantages of this
developed throwing assist system include ease of use, low cost, automated analysis, instant message
feedback, and high accuracy. Even though the throwing assist system developed in this work is better
suited for baseball, the basic principle used in this system can be further modified to be used in other
sports where throwing action is involved, particularly in cricket and softball. For instance, in the
case of softball, the body movements involved during the throwing action is different from that of
baseball. Hence, we have to make suitable changes to the different stages involved in this work, its
definition, and also the reference data have to be replaced with appropriate data developed from
throwing action in softball. In the developed wearable assist system, in case if the user does not wear
the device properly in their arm, it may adversely affect the accuracy of throwing action recognition
due to sensor shift. So, it is important for the user to wear the device correctly to achieve good results.
This work can be further extended to make the developed throwing action recognition device robust to
sensor shift. The greatest challenge in the future for the assist system is to miniaturize the embedded
circuit board using application-specific integrated circuit (ASIC) technology. In this case, the system
reliability can be further improved and the users can wear the small-size device on the right spot of
wrist conveniently.

5. Conclusions

In this work, we have successfully implemented a wearable real-time upper extremity throwing
action assist system based on the IMU sensor. We were able to efficiently integrate appropriate
hardware at the circuit level in the development of the assist system and also miniaturize the device
for convenient usage. Various intelligent action recognition functionalities are added to the system
for better analysis of the results. Moreover, this work involves different software and hardware
technologies, including the LCS algorithm, noise filtering based on the Kalman filter, the normalization
technique, Bluetooth wireless transmission, real-time display capabilities, and hardware design. We
have efficiently tested and analyzed different stages of upper extremity throwing action as part of
the experiment for the development of an efficient throwing action recognition system. All the
throwing stages exhibited a good identification rate for all the users considered for the experiment. The
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high percentage accuracy achieved for the throwing action assist system is evidence for its excellent
performance and its practicality in real-time action recognition.

Author Contributions: Conceptualization, K.-Y.L., W.-H.H., and C.-Y.L.; data curation, W.-H.H., D.B., and
C.-Y.L.; formal analysis, K.-Y.L., W.-H.H., D.B., and C.-Y.L.; funding acquisition, K.-Y.L.; investigation, K.-Y.L.;
methodology, K.-Y.L. and C.-Y.L.; project administration, K.-Y.L.; resources, K.-Y.L.; software, W.-H.H. and C.-Y.L.;
supervision, K.-Y.L.; validation, D.B.; visualization, D.B.; writing—original draft, W.-H.H., D.B., and C.-Y.L.;
writing—review and editing, K.-Y.L., W.-H.H., and D.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by the Ministry of Science and Technology (MOST), Taiwan, under Grant
No. 107-2221-E-027-114.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pappas, A.M.; Zawacki, R.M.; Sullivan, T.J. Biomechanics of baseball pitching: A preliminary report. Am. J.
Sports Med. 1985, 13, 216–222. [CrossRef]

2. Okoroha, K.R.; Lizzio, V.A.; Meta, F.; Ahmad, C.S.; Moutzouros, V.; Makhni, E.C. Predictors of elbow torque
among youth and adolescent baseball pitchers. Am. J. Sports Med. 2018, 46, 2148–2153. [CrossRef] [PubMed]

3. McGinnis, R.S.; Perkins, N.C. A highly miniaturized, wireless inertial measurement unit for characterizing
the dynamics of pitched baseballs and softballs. Sensors 2012, 12, 11933–11945. [CrossRef]

4. Fleisig, G.S.; Andrews, J.R.; Dillman, C.J.; Escamilla, R.F. Kinetics of baseball pitching with implications
about injury mechanisms. Am. J. Sports Med. 1995, 23, 233–239. [CrossRef] [PubMed]

5. Rawashdeh, S.A.; Rafeldt, D.A.; Uhl, T.L. Wearable IMU for shoulder injury prevention in overhead sports.
Sensors 2016, 16, 1847. [CrossRef] [PubMed]

6. Olsen, S.J.; Fleisig, G.S.; Dun, S.; Loftice, J.; Andrews, J.R. Risk factors for shoulder and elbow injuries in
adolescent baseball pitchers. Am. J. Sports Med. 2006, 34, 905–912. [CrossRef] [PubMed]

7. McFarland, E.G.; Wasik, M. Epidemiology of collegiate baseball injuries. Clin. J. Sport. Med. 1998, 8, 10–13.
[CrossRef] [PubMed]

8. Lapinski, M.; Brum Medeiros, C.; Moxley Scarborough, D.; Berkson, E.; Gill, T.J.; Kepple, T.; Paradiso, J.A. A
Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in
Overhead Pitching. Sensors 2019, 19, 3637. [CrossRef]

9. Fleisig, G.S.; Andrews, J.R. Prevention of elbow injuries in youth baseball pitchers. Sports Health 2012, 4,
419–424. [CrossRef]

10. Anz, A.W.; Bushnell, B.D.; Griffin, L.P.; Noonan, T.J.; Torry, M.R.; Hawkins, R.J. Correlation of torque and
elbow injury in professional baseball pitchers. Am. J. Sports Med. 2010, 38, 1368–1374. [CrossRef]

11. Braun, S.; Kokmeyer, D.; Millett, P.J. Shoulder injuries in the throwing athlete. JBJS 2009, 91, 966–978.
[CrossRef] [PubMed]

12. Ievleva, L.; Orlick, T. Mental links to enhanced healing: An exploratory study. Sport Psychol. 1991, 5, 25–40.
[CrossRef]

13. Lei, Q.; Du, J.-X.; Zhang, H.-B.; Ye, S.; Chen, D.-S. A Survey of Vision-Based Human Action Evaluation
Methods. Sensors 2019, 19, 4129. [CrossRef] [PubMed]

14. Zhang, Y.; Huang, Y.; Sun, X.; Zhao, Y.; Guo, X.; Liu, P.; Liu, C.; Zhang, Y.Z. Static and Dynamic Human
Arm/Hand Gesture Capturing and Recognition via Multi-Information Fusion of Flexible Strain Sensors.
IEEE Sens. J. 2020. (accepted). [CrossRef]

15. Santos-Gago, J.M.; Ramos-Merino, M.; Vallarades-Rodriguez, S.; Álvarez-Sabucedo, L.M.;
Fernández-Iglesias, M.J.; García-Soidán, J.L. Innovative Use of Wrist-Worn Wearable Devices in the Sports
Domain: A Systematic Review. Electronics 2019, 8, 1257. [CrossRef]

16. Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing Wearable Systems for Sports: A Review of
Trends and Opportunities in Human–Computer Interaction. IEEE Trans. Hum.-Mach. Syst. 2019, 49, 314–325.
[CrossRef]

17. Kim, W.; Kim, M. On-line detection and segmentation of sports motions using a wearable sensor. Sensors
2018, 18, 913. [CrossRef]

http://dx.doi.org/10.1177/036354658501300402
http://dx.doi.org/10.1177/0363546518770619
http://www.ncbi.nlm.nih.gov/pubmed/29746146
http://dx.doi.org/10.3390/s120911933
http://dx.doi.org/10.1177/036354659502300218
http://www.ncbi.nlm.nih.gov/pubmed/7778711
http://dx.doi.org/10.3390/s16111847
http://www.ncbi.nlm.nih.gov/pubmed/27827880
http://dx.doi.org/10.1177/0363546505284188
http://www.ncbi.nlm.nih.gov/pubmed/16452269
http://dx.doi.org/10.1097/00042752-199801000-00003
http://www.ncbi.nlm.nih.gov/pubmed/9448950
http://dx.doi.org/10.3390/s19173637
http://dx.doi.org/10.1177/1941738112454828
http://dx.doi.org/10.1177/0363546510363402
http://dx.doi.org/10.2106/JBJS.H.01341
http://www.ncbi.nlm.nih.gov/pubmed/19339585
http://dx.doi.org/10.1123/tsp.5.1.25
http://dx.doi.org/10.3390/s19194129
http://www.ncbi.nlm.nih.gov/pubmed/31554229
http://dx.doi.org/10.1109/JSEN.2020.2965580
http://dx.doi.org/10.3390/electronics8111257
http://dx.doi.org/10.1109/THMS.2019.2919702
http://dx.doi.org/10.3390/s18030913


Sensors 2020, 20, 1344 18 of 18

18. Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of knee joint forces in sport movements using
wearable sensors and machine learning. Sensors 2019, 19, 3690. [CrossRef]

19. Hettiarachchi, C.; Kodithuwakku, J.; Manamperi, B.; Ifham, A.; Silva, P. A Wearable System to Analyze the
Human Arm for Predicting Injuries Due to Throwing. In Proceedings of the 2019 41st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July
2019; pp. 3297–3301.

20. Makhni, E.C.; Lizzio, V.A.; Meta, F.; Stephens, J.P.; Okoroha, K.R.; Moutzouros, V. Assessment of elbow
torque and other parameters during the pitching motion: Comparison of fastball, curveball, and change-up.
Arthroscopy 2018, 34, 816–822. [CrossRef]

21. Camp, C.L.; Tubbs, T.G.; Fleisig, G.S.; Dines, J.S.; Dines, D.M.; Altchek, D.W.; Dowling, B. The relationship of
throwing arm mechanics and elbow varus torque: within-subject variation for professional baseball pitchers
across 82,000 throws. Am. J. Sports Med. 2017, 45, 3030–3035. [CrossRef]

22. Pham, D.D.; Suh, Y.S. Pedestrian navigation using foot-mounted inertial sensor and LIDAR. Sensors 2016, 16,
120. [CrossRef]

23. Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C. Implementation of an IMU aided image stacking
algorithm in a digital camera for unmanned aerial vehicles. Sensors 2017, 17, 1646. [CrossRef] [PubMed]

24. Ahamed, N.U.; Benson, L.; Clermont, C.; Osis, S.T.; Ferber, R. Fuzzy inference system-based recognition of
slow, medium and fast running conditions using a triaxial accelerometer. Procedia Comput. Sci. 2017, 114,
401–407. [CrossRef]

25. Nyirarugira, C.; Kim, T. Stratified gesture recognition using the normalized longest common subsequence
with rough sets. Signal Process. Image Commun. 2015, 30, 178–189. [CrossRef]

26. Vlachos, M.; Kollios, G.; Gunopulos, D. Discovering similar multidimensional trajectories. In Proceedings
of the 18th international conference on data engineering, California, CA, USA, 26 February–1 March 2002;
pp. 673–684.

27. Hao, J.; Shibata, T. Digit-writing hand gesture recognition by hand-held camera motion analysis. In
Proceedings of the 2009 3rd International Conference on Signal Processing and Communication Systems,
Nebraska, NE, USA, 28–30 September 2009; pp. 1–5.

28. Hirschberg, D.S. Algorithms for the longest common subsequence problem. JACM 1977, 24, 664–675.
[CrossRef]

29. Frolova, D.; Stern, H.; Berman, S. Most probable longest common subsequence for recognition of gesture
character input. IEEE Trans. Cybern. 2013, 43, 871–880. [CrossRef] [PubMed]

30. Pokress, S.C.; Veiga, J.J.D. MIT App Inventor: Enabling personal mobile computing. arXiv 2013,
arXiv:1310.2830.

31. Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng. Mar. 1961, 83,
95–108. [CrossRef]

32. Aguinaldo, A.L.; Buttermore, J.; Chambers, H. Effects of upper trunk rotation on shoulder joint torque among
baseball pitchers of various levels. J. Appl. Biomech. 2007, 23, 42–51. [CrossRef]

33. Pugh, S.F.; Kovaleski, J.E.; Heitman, R.J.; Pearsall, A.W. Upper and lower body strength in relation to
underhand pitching speed by experienced and inexperienced pitchers. Percept. Mot. Skills 2001, 93, 813–818.
[CrossRef]

34. Crotin, R.L.; Bhan, S.; Ramsey, D.K. An inferential investigation into how stride length influences temporal
parameters within the baseball pitching delivery. Hum. Mov. Sci. 2015, 41, 127–135. [CrossRef] [PubMed]

35. Throwing Drills. Available online: https://www.youtube.com/watch?v=9Yah6oeMOBE&t=15s (accessed on
4 March 2017).

36. TroskyBaseball247. Available online: https://www.youtube.com/channel/UCoXFlMhKIRFpDYX5zhl6N7w
(accessed on 4 March 2017).

37. Trosky Baseball. Available online: http://troskybaseball.com/ (accessed on 4 March 2017).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19173690
http://dx.doi.org/10.1016/j.arthro.2017.09.045
http://dx.doi.org/10.1177/0363546517719047
http://dx.doi.org/10.3390/s16010120
http://dx.doi.org/10.3390/s17071646
http://www.ncbi.nlm.nih.gov/pubmed/28718788
http://dx.doi.org/10.1016/j.procs.2017.09.054
http://dx.doi.org/10.1016/j.image.2014.10.008
http://dx.doi.org/10.1145/322033.322044
http://dx.doi.org/10.1109/TSMCB.2012.2217324
http://www.ncbi.nlm.nih.gov/pubmed/23047881
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1123/jab.23.1.42
http://dx.doi.org/10.2466/pms.2001.93.3.813
http://dx.doi.org/10.1016/j.humov.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25804970
https://www.youtube.com/watch?v=9Yah6oeMOBE&t=15s
https://www.youtube.com/channel/UCoXFlMhKIRFpDYX5zhl6N7w
http://troskybaseball.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Design 
	Throwing Action Recognition Analysis 
	Signal Acquisition using IMU Sensors 
	Signal Pre-Processing 
	Throwing Action Analysis 
	Motion Mechanics in Throwing Action Recognition 
	Action Balance Judgment 
	Throwing Action Sequence Conversion 

	Action Identification Based on LCS Algorithm 

	Experimental Results and Discussion 
	Conclusions 
	References

